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Purposes and Objectives: The aim of this study was to predict the progression-free

survival (PFS) in patients with small cell lung cancer (SCLC) by radiomic signature from

the contrast-enhanced computed tomography (CT).

Methods: A total of 186 cases with pathological confirmed small cell lung cancer were

retrospectively assembled. First, 1,218 radiomic features were automatically extracted

from tumor region of interests (ROIs) on the lung window and mediastinal window,

respectively. Then, the prognostic and robust features were selected by machine

learning methods, such as (1) univariate analysis based on a Cox proportional hazard

(CPH) model, (2) redundancy removing using the variance inflation factor (VIF), and

(3) multivariate importance analysis based on random survival forests (RSF). Finally,

PFS predictive models were established based on RSF, and their performances were

evaluated using the concordance index (C-index) and the cumulative/dynamic area under

the curve (C/D AUC).

Results: In total, 11 radiomic features (6 for mediastinal window and 5 for lung window)

were finally selected, and the predictive model constructed from them achieved a C-index

of 0.7531 and a mean C/D AUC of 0.8487 on the independent test set, better than the

predictions by single clinical features (C-index = 0.6026, mean C/D AUC = 0.6312), and

single radiomic features computed in lung window (C-index = 0.6951, mean C/D AUC

= 0.7836) or mediastinal window (C-index = 0.7192, mean C/D AUC = 0.7964).

Conclusion: The radiomic features computed from tumor ROIs on both lung window

and mediastinal window can predict the PFS for patients with SCLC by a high accuracy,

which could be used as a useful tool to support the personalized clinical decision for the

diagnosis and patient management of patients with SCLC.

Keywords: small cell lung cancer (SCLC), radiomics analysis, progression-free survival (PFS), contrast-enhanced
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INTRODUCTION

Small cell lung cancer (SCLC) is an aggressive pulmonary
neuroendocrine tumor that causes about 250,000 deaths
worldwide yearly (1, 2). SCLC accounts for approximately 13%
of lung cancers (3). SCLC is sensitive to both chemotherapy and
radiotherapy, but has poor treatment performance with rapid
recurrence, early metastatic dissemination, and poor prognosis
(1, 4). Particularly, the overall survival (OS) rate and mortality
of patients with SCLC have remained the same during the past
several decades (5, 6). SCLC typically appears as a central tumor
with hilar/mediastinal lymphadenopathy and distant metastases
(7). The prognosis of SCLC strongly depends on the tumor stage.
For example, the 5-year survival rate of limited stage is 20–25%,
while only 2% for an extensive-stage (ES) disease (8).

In clinical practice, CT imaging is widely used for the clinical
diagnosis of SCLC. However, CT-based SCLC diagnosis greatly
depends on the experience and knowledge of radiologists. They
can provide some qualitative analysis for SCLC prognosis by their
experience, but the quantitative analysis of SCLC prognosis is
generally lacked (9). In the clinical treatment of SCLC, etoposide–
cisplatin or irinotecan–platinum remains the first choice for the
first-line treatment of SCLC. Clinicians have observed that some
patients made poor response to the chemotherapy (10, 11). It
is clinically important to predict which patients with SCLC will
have poor response to the chemotherapy, but this prognosis
problem is seldom studied. In this paper, we try to construct a
prediction model to quantitatively predict outcomes for patients
with SCLC by their CT images scanned before treatment.

Recently, radiomics analysis is increasingly popular in tumor
field, which is used for the diagnosis, stage, histology, prognosis,
and treatment response assessment of various tumors (12, 13). By
extracting a large number of image features from tumor regions,
which depict the spatial heterogeneity in tumors, radiomics
analysis is able to quantitatively characterize the tumor genomics
and phenotypes, and identify tumor attributes that may be
relevant to the tumor prognosis (14–16). However, due to the
relatively low incidence of SCLC in all lung cancer subtypes, there
were few reports focusing on the prognostic ability of radiomic
features in SCLC. In regular diagnostic radiology, contrast-
enhanced CT images are usually scanned for SCLC diagnosis.
Radiologists observed CT images on both the lung window and
mediastinal window. Here, an enhanced mediastinal window can
provide more information for lung cancer diagnosis by providing
clear tumor margin and enhancing pattern and intensity. It
has been reported that the contrast-enhanced lung CT scan
could influence the accuracy of pulmonary nodule classification
(17, 18), and could independently predict the pathologic grade
of lung adenocarcinoma (19). Additionally, researchers have
mentioned the advantages of radiomics analysis in the prediction
of response to chemotherapy in patients with SCLC (20), but
radiomics analysis is performed only on the lung window of
CT images. In such case, important radiomic features from the
mediastinal window might be lost. This paper will study the
progression-free survival (PFS) analysis in patients with SCLC
by radiomics analysis on both the lung window and contrast-
enhanced mediastinal window of CT images. By screening risk

factors for SCLC prognosis and constructing a high-accuracy
prediction model for outcomes of patients with SCLC, we will
provide a useful tool for quantitatively predicting the PFS in
patients with SCLC.

MATERIALS AND METHODS

Patients
We retrospectively search the database from November 2012
to May 2019 under an active institutional review board, and
written informed consents were acquired. The inclusion criteria
were as follows: (1) patients pathologically proved SCLC by
biopsy or operation. (2) Patients underwent chest CT scans.
(3) Patients received standard Etoposide–Cisplatin combination
chemotherapy. The exclusion criteria were as follows: (1) patients
with treatment history before baseline CT scans; (2) patients
lack of stage before treatment; (3) patients losing contact or
die before progression; (4) patients without progression until
deadline; (5) patients without contrast enhanced CT imaging;
and (6) insufficient CT imaging. Finally, 186 cases were included
in this study and divided into a training set (130 cases) and an
independent test set (56 cases). The clinical information, such as
age, gender, and stage were recorded.

CT Imaging Parameters
All patients underwent contrast-enhanced chest CT on 64-slice
multidetector row CT scanner (LightSpeed 64; GE Medical
Systems, Milwaukee, WI, USA) with the following acquisition
and reconstruction parameters: tube voltage of 120 kV; tube
current of intelligent mAs; section thickness of 5mm, and
reconstruction interval of 5mm. The contrast enhanced CT
was administered intravenously with an amount of 60–70ml of
iohexol (Omnipaque 300; Amersham, Shanghai, China) followed
by a saline flush of 20ml, by using a power injector (LF CT
9000; Liebel-Flarsheim, Cincinnati, OH, USA) at a flow rate of
2.5–3.0 ml/s.

Tumor Segmentation
A radiologist with 10 years of experience segmented each
tumor region manually slice-by-slice on the axial CT images
using the ITK-SNAP software (http://www.itksnap.org/pmwiki/
pmwiki.php). Each tumor was segmented two times, first on
the mediastinal window for consistency and then on the lung
window, respectively. The lung window level (1600 and −500
HU) and the mediastinal window level (300 and 40 HU) were
used during the tumor segmentation. The vessels and air regions
were carefully excluded from the segmented tumor regions.

Radiomic Feature Extraction
As shown in Figure 1, high through image features were
automatically calculated from each tumor region using
PyRadiomics package (21), including features describing
shape, intensity, texture, etc. (22) Shape features reflect
geometric properties of tumor regions. Intensity features were
calculated using first-order statistics to depict the distribution
of voxel intensities. Texture features could quantify the tumor
heterogeneity and were calculated based on different texture
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FIGURE 1 | The workflow of radiomics analysis. (A) The tumor region of interests (ROIs), which were manually segmented by an experienced radiologist from CT

images with the lung window and contrast-enhanced mediastinal window, respectively; (B) the high throughput image features were extracted automatically from

each ROI and the radiomic signatures were selected from them; (C) Random survival forests (RSFs) models were established for the progression-free survival (PFS)

prediction.

matrixes. Additionally, wavelet filters and Laplacian of Gaussian
(LoG) filters are applied to the original images for richer feature
extraction (23). Wavelet features were extracted based on wavelet
decomposition, which performed the multi-scale analysis of
intensity and texture information. The LoG filters could enhance
edge information, and 5 different sigma values were used to
emphasize tumor textures of different coarseness. In total, 1,218
image features were extracted from each tumor region on the
lung window and mediastinal window independently, and a total
of 2,436 comprehensive CT image features were extracted.

Feature Selection
Feature selection was conducted in the training set in three
steps. First, the univariate prognostic ability of each feature was
evaluated using a Cox proportional hazard (CPH) model (24).
Features with concordance index (C-index) less than 0.5 were
removed, because their prognostic abilities are worse than a
random model:

Funi =
{

f
∣

∣c
(

CPH
(

f , y
))

> 0.5, f ǫF
}

(1)

Where, F is the unselected feature set, c(•) is the C-index
of the CPH model which can be calculated by Equation 4.
Second, to remove redundancy from image features, the variance
inflation factor (VIF) was applied to quantify the collinearity
between features (25). This procedure was performed iteratively
until VIF values of all remaining features were less than the
certain threshold, and the feature with the highest VIF value

was removed in each iteration. The iteration process can be
defined as:

Funi = Funi −
(

f
∣

∣VIF
(

f , Funi − f
)

> Tvif

)

(2)

Third, we used random survival forests (RSFs) for multivariate
analysis to further simplify the features (26). An RSF model is an
ensemble of tree-based learners which has powerful non-linear
analysis capability. For each feature, an importance score was
calculated based on the evaluation of relevance and prognosis
of all features by RSF. Features with important scores above a
certain threshold were finally selected and used to generate the
radiomic signature:

Fmul =
{

f
∣

∣Score
(

RSF
(

f , Funi, y
))

> Trsf , f ǫFuni
}

(3)

In above procedures, statsmodels (27), scikit-learn (28),
and scikit-survival (29–31) packages were used for the
implementation and grid search was performed to determine the
parameters and thresholds. To compare the prognosis of different
CT windows, the feature selection was performed on lung
window features and mediastinal window features, respectively.

Prognostic Model Establishment
Based on the selected radiomic features and three clinical features
(gender, age, and stage), the random survival forests can be used
to establish their corresponding prognostic model. For clinical
features, selected lung window features and mediastinal window
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features, three different prognostic models can be generated,
respectively. By combining the two classes of selected radiomic
features into a feature set and simplifying them according to the
Pearson’s correlation (32), the corresponding prognostic models
can be generated. By combining selected radiomic features and
clinical features, the prognostic model can be constructed. For
all above models, the 3-fold cross-validation was performed to
determine model parameters in the training set.

Statistical Analysis
A univariate analysis was used to assess the statistical significance
of the clinical characteristics of the patients, and the independent
sample t-test and χ2 test were performed for continuous and
categorical variables, respectively. The correlation matrix of
selected features was calculated based on Pearson’s correlation
coefficient and illustrated in a heatmap. The predictive capacity
of radiomic signature was evaluated using Kaplan–Meier analysis
(33). The performance of each prognostic model was evaluated
on the independent test set with the C-index which is most
frequently used in the survival analysis and assesses the overall
prognostic ability of the model and can be defined as:

c =
1

num

∑

i : δi=1

∑

j : yi<yj

I
[

ri > rj
]

(4)

Where, i, jǫ {1, · · · ,N}, num denotes the number of all
comparable pairs, δi is the binary event indicator, I [•] is
the indicator function, and r is the risk predicted by the model.
In addition, the time-dependent cumulative/dynamic AUC was
calculated to measure the performance in a specific time range,
which is an extension of the area under the receiver operating
characteristic (ROC) curve (AUC) in survival data (34, 35).
The cumulative/dynamic AUC (C/D AUC) at time t can be
defined as:

ˆAUC(t) =

∑n
i=1

∑n
j=1 I

[

yj > t
]

I
[

yi < t
]

ωiI
[

ri > rj
]

(
∑n

i=1 I
[

yi > t
]) (

∑n
i=1 I

[

yi ≤ t
]

ωi

) (5)

Where,ωi is inverse probability of censoring weights (IPCW). All
statistical analyses were two-sided with the statistical significance
level of 0.05, and performed with statsmodels, scikit-learn, and
scikit-survival packages in Python 3.6.

RESULTS

Clinical Characteristics
A total of 186 cases were enrolled and divided into a training set
and an independent test set. As shown in Table 1, the median
(range) of age in the two sets were 62 (37–80) and 62 (43–
78). In training set, 109 (83.8%) cases were men and 21 (16.2%)
cases were women, with 47 (36.2%) cases were limited stage
and 83 (63.8%) cases were extensive stage. In the test set, there
were 50 (89.3%) male cases and 6 (10.7%) female cases, and 19
(33.9%) and 37 (66.1%) cases were limited and extensive stage,
respectively. There were no significant differences for all clinical
characteristics between the training and test sets (p = 0.334–
0.771). In addition, through the univariate survival analysis, stage

TABLE 1 | Clinical characteristics.

Characteristics Training set Test set p-value

Number 130 56

Gender

Male 109 (83.8%) 50 (89.3%) 0.334

Female 21 (16.2%) 6 (10.7%)

Age 62 (37–80) 62 (43–78) 0.635

Stage

Limited stage 47 (36.2%) 19 (33.9%) 0.771

Extensive stage 83 (63.8%) 37 (66.1%)

(p = 0.007) and sex (p = 0.039) were statistically relevant to the
survival, and there was no significant difference regarding to age
(p= 0.698).

During the follow-up, different types of progression were
observed. Among 186 cases, there were 85 (45.7%) cases of
primary progression, 23 (12.4%) cases of original metastases
progression, 13 (7.0%) cases of primary progression and newly
metastases, 11 (5.9%) cases of both the primary and metastasis
progression, 16 (8.6%) cases of newly brain metastases, 14 (7.5%)
cases of newly bone metastases, 8 (4.3%) cases of newly lung
metastases, 6 (3.2%) cases of newly liver metastases, 1 (0.5%) case
of cardiac metastases, 1 (0.5%) cases of pancreas metastases, 3
(1.6%) cases of adrenal metastases, and 5 (2.7%) cases of newly
multiple metastases.

Important Radiomic Feature Selection
In total, 1,218 radiomic features were extracted from CT images
on the lung window and mediastinal window, respectively, and
the feature selection was performed independently on both
windows. After the univariate analysis, 724 and 895 features
were remained, respectively. Then, with an iterative collinearity
elimination based on VIF, a mass of redundant features was
removed, resulting in 17 and 16 remained features for the lung
window and mediastinal window, respectively. Finally, an RSF-
based multivariate analysis was performed on the remaining
features, and 6 features for the lung window (f1, f2, f3, f4, f5,
and f6) and 6 features for the mediastinal window (f7, f8, f9, f10,
f11, and f12) were selected as radiomic signature, as shown in
Table 2 and Figures 2, 3. The correlation heatmaps in Figures 2,
3 indicated that the selected features are relatively independent.
Definitions of all selected features are in compliance with the
Imaging Biomarker Standardization Initiative (IBSI) (36).

Performance of Prognostic Model
Based on 3 clinical, 6 lung window, and 6 mediastinal window
features, three basic prognostic models can be established,
respectively, namely, Model_C3, Model_L6, and Model_M6. For
these basic models, the optimal risk cut-off was determined
using log-rank test on the training set, and patients in the
training set and test set were stratified into high-risk and low-
risk groups using the same cut-off, respectively. In Figure 4,
the Kaplan–Meier curves of lung window (cut-off = 112)
and mediastinal window (cut-off = 117) features revealed the
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TABLE 2 | Description of the selected radiomic features.

Index Feature Description

F1 Lung_log-sigma-1-0-mm-3D

_glcm_Correlation

A Measure of the linear dependency

of gray level values to their respective

voxels in the GLCM

F2 Lung_log-sigma-3-0-mm-3D

_glcm_ClusterShade

A measure of the skewness and

uniformity of the GLCM

F3 Lung_original_firstorder_90

Percentile

The 90th percentile of the voxels

included in the ROI

F4 Lung_wavelet-

LHH_glcm_ClusterShade

A measure of the skewness and

uniformity of the GLCM

F5 Lung_log-sigma-4-0-mm-

3D_glszm_SmallAreaLowGray

LevelEmphasis

A measure of the proportion of the

joint distribution of smaller size zones

with lower gray-level values

F6 Lung_original_shape_Flatness A measure of the relationship

between the largest and smallest

principal components in the ROI

shape

F7 Mediastinal_log-sigma-4-0-mm-

3D_glszm_SmallAreaLowGray

LevelEmphasis

A measure of the proportion of the

joint distribution of smaller size zones

with lower gray-level values

F8 Mediastinal_wavelet-

HHL_firstorder_Skewness

A measure of the asymmetry of the

distribution of values about the Mean

value

F9 Mediastinal_original_shape_

Flatness

A measure of the relationship

between the largest and smallest

principal components in the ROI

shape

F10 Mediastinal_log-sigma-5-0-mm-

3D_glszm_GrayLevelNon

UniformityNormalized

A measure of the variability of

gray-level intensity values in the image

F11 Mediastinal_wavelet-

HLH_firstorder_Skewness

A measure of the asymmetry of the

distribution of values about the Mean

value

F12 Mediastinal_log-sigma-3-0-mm-

3D_glcm_InverseVariance

A measure of inverse variance

significant difference in PFS between high-risk and low-risk
groups, which is better than clinical features (cut-off = 112),
demonstrating the predictive capabilities of the two different
radiomic signatures.

By combining the lung window and mediastinal window
radiomic features into a feature set, the combined model based
on all 12 radiomic features (Model_L6+M6) was established.
Additionally, to simplify radiomic features and reduce the risk
of overfitting, we removed features with the higher correlation
between two feature sets (f6, which has a Pearson’s correlation
coefficient of 0.75 with f9 and a lower importance score).
Then, 11 remained radiomic features were used to generate
a simplified model (Model_L5+M6). The overall prognostic
ability of each prognostic model was evaluated with C-index
and illustrated in Table 3. The C-index values of Model_C3,
Model_L6, Model_M6, Model_L6+M6, and Model_L5+M6 are
0.6426, 0.7455, 0.7728, 0.7927, and 0.8033 for the training
set and 0.6026, 0.6951, 0.7192, 0.7362, and 0.7531 for the
test set, respectively. Model_L5+M6 attains the highest C-
index among the models. In addition, by combing the selected

radiomic features and clinical features, their corresponding
prognostic models have better performances or the performances
comparable with the radiomic features-based models.

The C/D AUC can evaluate the model performance from time
level on the test set. The C/D AUC_90 evaluates how well these
models can distinguish the patients progressing before and after
90 days, which is an important time for the prognosis of SCLC.
As illustrated in Table 3, Model_L5+M6 achieved the best C/D
AUC_90 of 0.8902. Furthermore, the restricted mean C/D AUC
(37), which is a summary measure of discrimination ability of
each model, was calculated. The mean C/D AUC of Model_C3,
Model_L6, Model_M6, Model_L6+M6, and Model_L5+M6 are
0.6312, 0.7836, 0.7964, 0.8387, and 0.8487, respectively. These
results are consistent with C-index results of these models.

Based on our survival models, a survival function can be
generated and used to analyze the prognosis for each patient.
Three typical cases with different survival time were illustrated
in Figure 5. The survival function gives the progression-free
probability at different times, which can provide clinicians with
a more intuitive and reliable prognostic prediction and is helpful
for the personalized clinical decision-making.

Two typical cases which are challenging and hard to predict
the prognosis are illustrated in Figure 6. For case A, a pulmonary
tumor with mediastinal and lateral hilar lymph node metastases
was found on CT images. No distant metastasis was detected.
This 62-year-oldman was diagnosed with a good prognosis based
on the visual analysis and limited stage. However, the actual
PFS was only 90 days, and our model correctly predicted it
with a high risk of 157.0. For case B, in a 67-year-old man,
bone metastases and lymph node metastases were found on the
primary radiological scans. The primary pulmonary tumor of
case B, with obstructive pneumonia, was larger than the case A.
This patient was diagnosed as a poor prognosis with extensive
stage. However, the actual PFS was over a year (431 days), and
our model correctly predicted it with a low risk of 55.0.

DISCUSSION

In this study, a PFS predictive model was proposed by
integrating the radiomic features extracted from lung window
and mediastinal window CT images in patients with SCLC.
Our main findings indicated the contrast enhanced-mediastinal
window radiomic features as an independent reliable prognostic
factor. Our model effectively separated the groups of high risk
and low risk, gave better predictive performance than the typical
clinical visual analysis, and generate a survival function to analyze
the prognosis for each patient. Our radiomics-based model
offers more reliable PFS predictions which could support the
personalized clinical decision-making.

Radiomics can extract more quantitative information than
bare eye to guide clinical decisions, usually from non-
enhanced CT images. Unenhanced CT images reflect the
tumor heterogeneity and microenvironment, demonstrating
the prognostication and treatment response. Fried et al. (38)
and Ganeshan et al. (39) indicated that texture features
from pretreatment non-contrast CT scans may provide the
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FIGURE 2 | The selected lung window features. (A) The RSF-based feature importance score; (B) the correlation heatmap.

FIGURE 3 | The selected mediastinal window features. (A) The RSF-based feature importance score; (B) the correlation heatmap.

prognostic information for patients with non-small cell lung
cancer (NSCLC). Mohammadhadi Khorram et al. (40) stated
that radiomics was useful for predicting the early-stage NSCLC
recurrence, progression, and recurrence free survival. For
patients with SCLC, Haifeng Wei et al. (10) revealed radiomic
texture characteristics may be an independent predictor of the
efficacy of chemotherapy and help clinical guidance. Additional
enhanced contrast mediastinal images may provide more
image information about the grade of enhancement and the
heterogeneity of the tumor, which may be due to the presence of
different tumor vascularization (41). Radiomic texture analysis
on the contrast-enhanced CT could be a good predictor of
the survival and treatment response in patients with NSCLC
(42, 43). Another study stated that the texture analysis of

CECT images provides the predicted pathologic grading of lung
adenocarcinoma (19).

In this study, we investigated the value of radiomic signature
in predicting the prognostication and treatment response in
patients with SCLC. Two cases with different prognosis are
shown in Figure 6. The prognosis was contrary to the expectation
with clinical visual analysis. Compared with the inadequate
clinical outcomes, our radiomic model with the contrast–
enhanced mediastinal window predicted an accurate outcome
with little difference.

Our radiomic models showed a good performance of C-index
in predicting the PFS with conventional lung window features
and enhanced mediastinal window features respectively, with a
lowest C-index of clinical model. Furthermore, the predictive

Frontiers in Medicine | www.frontiersin.org 6 February 2022 | Volume 9 | Article 833283

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Chen et al. Radiomics Analysis of SCLC

FIGURE 4 | Kaplan–Meier progression-free survival curves of prognostic models based on 3 clinical features (Model_C3), 6 lung window features (Model_L6), and

mediastinal window features (Model_M6) for patients in (A) the training set and (B) the independent test set. In the training set, the median PFS were 211, 233, and

238 days for the low-risk group and 140, 99, and 112 days for the high-risk group. In the independent test set, the median PFS were 209, 209, and 209 days for the

low-risk group and 147, 91 and 90 days for the high-risk group.

performance of radiomic features in an enhanced mediastinal
window was superior to the lung window, indicating that
enhanced mediastinal window features played an important role
in predicting the PFS in patients with SCLC. Some previous
studies showed that the predictive performance of quantitative
texture features were similar between non-contrast and contrast-
enhanced CT in diagnosing lung nodule (17, 44). Another
study reported that the unenhanced CT was better than the
contrast-enhanced CT on the predictive performance. However,
those studies focused on lung adenocarcinoma and did not
include SCLC cases which may cause result deviation (45).
Our study results were generally in agreement with some other

studies. Linning et al. (18) and Liu et al. (19) investigated that

the contrast-enhanced CT were useful predictors of survival

and treatment response, which may be related to the tumor
heterogeneity. After contrast administration, tumoral vascularity

may reflect local spatial variations in image brightness, and then

result in the variability of radiomic features (18, 46).

For further verification, we analyzed the time-dependent
cumulative/dynamic ROC curve and calculated the

TABLE 3 | Prognostic performance of different survival prediction models.

Model C-index C/D AUC_90 Mean C/D AUC

Training set Test set

Basic models

Model_C3 0.6426 0.6026 0.5218 0.6312

Model_L6 0.7455 0.6951 0.7727 0.7836

Model_M6 0.7728 0.7192 0.8646 0.7964

Combined models based on radiomic features

Model_L6+M6 0.7927 0.7362 0.8769 0.8387

Model_L5+M6 0.8033 0.7531 0.8902 0.8487

Combined models based on radiomic and clinical features

Model_L6+C3 0.7500 0.7316 0.7898 0.8206

Model_M6+C3 0.7933 0.7440 0.8485 0.8367

Model_L6+M6+C3 0.7961 0.7459 0.8523 0.8413

Model_L5+M6+C3 0.8276 0.7518 0.8258 0.8441

The bold values indicate the highest score in each performancemetric. C3means 3 clinical

features, L6 means 6 selected lung window radiomic features, M6 means 6 selected

mediastinal window radiomic features, L5 means the remained 5 lung window radiomic

feature by removing the most correlated feature (f6) among the 12 radiomic features

according to Pearson’s correlation on the basis of L6.
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FIGURE 5 | Progression-free probability curves of the survival function generated by our model for three typical cases. (A) A patient with PFS less than 90 days (85

days); (B) a patient with PFS more than 90 days (156 days); and (C) a patient with PFS more than 1 year (431 days).

FIGURE 6 | Two typical cases from the visual analysis and our method: (A) a patient (male, age = 62 years, limited stage) with PFS of 90 days. Our model correctly

predicted it with a high risk of 157.0, but the visual and clinical prognosis was good. (B) A patient (male, age = 67 years, extensive stage) with PFS of 431 days. Our

model correctly predicted it with a low risk of 55.0, but the visual and clinical prognosis was poor. From left to right are the lung window CT, enhanced mediastinal

window CT, and the feature weights, respectively.

time-dependent AUC. The time-dependent cumulative/dynamic
ROC curve analysis defined a marker value updated at each
time point during the disease status individually, allowed to
compare the marker’s predictive ability and may give guidance
for medical decisions (47). In our study, we achieved similar

results with the C-index, suggesting the importance of enhanced-
mediastinal window in predicting the PFS. Our study illustrated
an important time of 90 days for the prognosis of SCLC and the
median survival time was around 200 days in high-risk groups
from Kaplan–Meier curves.
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There were numerous texture features in CT images, which
may provide different anatomical and biological information in
tumor. Thus, the selection of texture features was meaningful
and time-saving for model building. During feature extraction,
original images were transformed to derived images with the
wavelet filter and LoG filter to extract more radiomic features.
After feature selection, the most important features for lung
window and mediastinal window were selected respectively. For
both lung window and mediastinal window, 50% (3/6) selected
features were LoG-based, including the top-ranked features.
These results illustrated that LoG-based features play a more
important role in the survival analysis of SCLC. Actually, a LoG
filter could enhance the edge information by emphasizing the
areas of gray level change. The fine textures and coarse textures
of the tumor were both taken into consideration by high and low
sigma parameter. During the clinical diagnosis of SCLC based on
CT images, the texture feature of the tumor edge is always an
important indicator, which also proves the rationality of extracted
radiomic features.

There were several limitations in our study. First of all, due to
the relatively low incidence of SCLC in Asian race, the population
of this study is relatively small. Second, previous studies indicated
that the suitable section thickness may be as thin as 1.25 or
2.5mm. But the section thickness was 5mm in this retrospective
study, which may reduce the predictive accuracy of lung window.
Third, smoking is an important risk factor in patients with SCLC
especially in women, which did not calculate into the clinical
features in our study.

CONCLUSION

In summary, our study revealed that the textual features
extracting from the contrast-enhanced mediastinal window
were useful for predicting the PFS. The integration of
textual features from the lung window and contrast-enhanced

mediastinal window provided the more valuable information in

survival prediction in comparison with the conventional visual
assessment, which could be applied to support personalized
clinical decision for the diagnosis and patient management in
patients with SCLC.
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