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Summary: Ultrawide field fundus images could be applied in deep learning models to

predict the refractive error of myopic patients. The predicted error was related to the older

age and greater spherical power.

Purpose: To explore the possibility of predicting the refractive error of myopic patients

by applying deep learning models trained with ultrawide field (UWF) images.

Methods: UWF fundus images were collected from left eyes of 987 myopia patients of

Eye and ENT Hospital, Fudan University between November 2015 and January 2019.

The fundus images were all captured with Optomap Daytona, a 200◦ UWF imaging

device. Three deep learning models (ResNet-50, Inception-v3, Inception-ResNet-v2)

were trained with the UWF images for predicting refractive error. 133 UWF fundus images

were also collected after January 2021 as an the external validation data set. The

predicted refractive error was compared with the “true value” measured by subjective

refraction. Mean absolute error (MAE), mean absolute percentage error (MAPE) and

coefficient (R2) value were calculated in the test set. The Spearman rank correlation test

was applied for univariate analysis and multivariate linear regression analysis on variables

affecting MAE. The weighted heat map was generated by averaging the predicted weight

of each pixel.

Results: ResNet-50, Inception-v3 and Inception-ResNet-v2 models were trained with

the UWF images for refractive error prediction with R2 of 0.9562, 0.9555, 0.9563 and

MAE of 1.72(95%CI: 1.62–1.82), 1.75(95%CI: 1.65–1.86) and 1.76(95%CI: 1.66–1.86),

respectively. 29.95%, 31.47% and 29.44% of the test set were within the predictive error

of 0.75D in the three models. 64.97%, 64.97%, and 64.47% was within 2.00D predictive

error. The predicted MAE was related to older age (P < 0.01) and greater spherical

power(P < 0.01). The optic papilla and macular region had significant predictive power

in the weighted heat map.

Conclusions: It was feasible to predict refractive error in myopic patients with deep

learning models trained by UWF images with the accuracy to be improved.

Keywords: refractive error prediction, myopia, deep learning, ultrawide field imaging, ResNet-50, Inception-V3,

Inception-ResNet-v2
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INTRODUCTION

Myopia is one of the most common causes of distance vision
impairment with its global incidence continuing to increase
each year (1, 2). High myopia and its related retinopathies
have been reported to be one of the most common causes of
blindness (3). Tessellated fundus, lacquer cracks, focal or diffuse
chorioretinal atrophy are all typical fundus findings of myopia,
especially high myopia, in clinical settings (4). Deep learning
models have already been successfully trained by fundus images
in assessing glaucoma (5), diabetic retinopathy (6), age-related
macular degeneration (7, 8) and retinopathy of prematurity (9).
With the help of ultrawide field (UWF) imaging, the visualized
fundus photograph obtained an unprecedented large-angle view
of up to 200◦ and achieved a wide application in ophthalmic
settings (10–13).

Optomap UWF images were gained from a green (532 nm)
and a red (633 nm) laser wavelength scanning and were
superimposed from the red and green channels by the software
to yield semirealistic color, different from the true color of
the traditional fundus photographs. While UWF imaging was
originally utilized to assess the fundus pathologies, Varadarajan
et al. explored the feasibility of training a deep learning model
for predicting the refractive error via traditional fundus images
(14). However, such feasibility has not been verified on UWF
images. It remained unknownwhether the peripheral retinal area,
unavoidable eyelids or eyelashes would produce noise for the
prediction or not. Up to now, fundus images utilized for deep
learning training were mainly traditional fundus images with a
30 or 45◦ view (15, 16).

It is worth exploring the potential of predicting the refractive
error viaUWF images. The purpose of this study is to explore the
feasibility of applying UWF images for deep learning training to
predict the refractive error of myopic patients.

METHODS

Datasets and Image Acquisition
Nine hundred and eighty seven fundus images of 987 patients’
left eyes were photographed by Optomap Daytona scanning
laser ophthalmoscope (Daytona, Optos, UK) under dual lasers at
532nm and 633nm to gain the 200◦ pseudo-color fundus images.
The images were obtained from November 2015 to January 2019
in Eye and ENT Hospital of Fudan University. Only patients
with myopia in both eyes were included in this study. 133 UWF
fundus images were collected after January 2021 as the external
validation set to test the performance ResNet-50, Inception-v3
and Inception-ResNet-v2 deep learning of the threemodels. Only
left eyes were chosen since data obtained from the both eyes of the
same patient were regarded correlated. All the enrolled patients
were myopia patients seeking for refractive surgery treatment.
Patients with ocular diseases besides myopia (e.g., diseases that
affected fundus imaging like cataract or vitreoretinal diseases
or glaucoma), history of trauma or any ocular surgery were
all excluded. All enrolled images were gradable with the fovea

Abbreviations:UWFI, ultrawide field imaging; CI, confidence interval; D, diopter.

located in the center. The images were regarded as gradable when
there was no blurring of the optic disc or foveal area and less than
50% peripheral retinal area covered by eyelids or eyelashes.

UWF images were exported in JEPG forms and compressed
to 512 ∗ 512 pixels for analysis. The training processes of
deep learning models by UWF images for spherical equivalent
prediction were summarized in Figure 1. This study complied
with the requirements of the Ethics Committee of Eye and ENT
Hospital of Fudan University (No. 2020107) and was conducted
following the principles of the Declaration of Helsinki.

Network Structure
The deep learning neural network models applied pixel values
of UWF fundus images in a series of mathematical calculations,
which was the process of the models “learning” how to
calculate the spherical equivalent. During the training process,
the parameters of the neural network were initially set to random
values. For each image in the training set, the predictive values
given by the model were compared with the known labels,
namely spherical equivalent in this study. Refractive parameters
were measured by an experienced optometrist through subjective
refraction with the phoropter (NIDEKRT-5100, Japan). Spherical
equivalence was used as the label for refractive prediction.
Spherical equivalence (SE) equaled spherical power (D) plus 1/2
∗ cylindrical power (D). With proper adjustments and sufficient
data, the deep learning model could predict the refractive error
on the new image.

Three deep learning models (ResNet-50, Inception-v3 and
Inception-ResNet-v2 models) were trained by UWF images for
refractive error prediction. 987 fundus images were divided into
the training data set (790 UWF images) and the internal test set
(197 UWF images) with a ratio of 8:2.

The deep learning models were all built following the
Apache2.0 license and written in Python 3.6.6. TensorFlow-GPU
1.12.0 was used as the backend. Keras was adopted as the neural
network application programming interface. Keras (https://keras.
io) is an open-source artificial neural network library written in
Python that serves as an application interface to TensorFlow.
Keras supports many artificial intelligence algorithms and serves
as a platform for building deep learning models of designing,
debugging, evaluation and application.

To visualize the weights of the predicted power of each
part of the UWF images, the image features were used as
input and the weights predicted by each pixel were averaged to
generate the heat map that represented the weight of predicted
refractive power.

Algorithm Evaluation
Mean absolute error (MAE), mean absolute percentage error
(MAPE) and coefficient value (R2) of refractive prediction were
calculated in the test set to assess the predictive performance.
MAE (Mean Absolute Error) is defined as the average of the
absolute difference between the predicted value and the true
value as follows. MAPE (Mean Absolute Percentage Error)
is another measure of prediction accuracy defined by the
following formula.
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FIGURE 1 | The training process of deep learning models.

The sample size is n, the true value of each sample is yi, and
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Statistical Analysis
Kruskal-Wallis rank sum test was used to compare the
characteristics of participants between different datasets. One-
way ANOVA was applied to compare the differences in both
MAE and MAPE between different refractive error groups.
Tukey multiple comparison test was adopted to assess the
differences between each two groups. The Spearman rank
correlation test was used to perform univariate analysis and
multivariate linear regression analysis on variables that affected
the MAE value. Statistical analyses were performed with SPSS
version 22.0 (IBM Corp, New York). P < 0.05 was considered
statistically significant.

RESULTS

Characteristics of the Participants
Nine hundred and eighty seven enrolled patients (male/female:
274/713) were aged 27.68 ± 7.04 years (range: 16 - 55 years).
The averaged spherical equivalent was−11.17±-4.41D (range:
−1.25-−28.88D). Spherical power averaged−10.53±-4.64D and
cylindrical power averaged −1.73 ± 1.27D. The axial length
averaged 27.85± 1.99mm, ranging from 20.67mm to 37.15mm.

One hundred and thirty three patients (male/female: 23/110)
enrolled for the external validation were aged 27.76 ± 5.53
years. The averaged spherical equivalent was−9.03 ± 2.79D.
The axial length averaged 27.19 ± 1.50mm. The distributions of
refractive error of enrolled eyes in the training set, the test set,
the whole data set and the external validation set were shown
in Supplementary Figure 1. The patient characteristics of the
training set, the test set, the whole data set and the external
validation set were detailed in Supplementary Table 1.

Performance of Deep Learning Models in
Refractive Prediction
The ResNet-50, Inception-v3 and Inception-ResNet-v2 models
trained by UWF images for predicting spherical equivalent were
with R2 of 0.9562, 0.9555, 0.9563 in the test set. MAE of the
three deep learning models was 1.72D (95%CI: 1.62–1.82D),
1.75D (95%CI: 1.65–1.86D) and 1.76D (95%CI: 1.66–1.86D),
respectively. MAE was of no statistical difference in the three
deep learning models. MAPE of the above three deep learning
models was 61.01% (95%CI: 54.19–67.82%), 40.50% (95%CI:
33.64–47.35%) and 36.79% (95%CI: 30.05–43.52%).

29.95, 31.47, and 29.44% of the test set were within 0.75D of
deviation from the “true value”measured by subjective refraction.
64.97, 64.97, and 64.47% of the test set were within 2.00D
of deviation from “true value”. The comparison of predicted
spherical equivalent in the test set and that measured by
subjective refraction was shown in Figure 2. Detailed distribution
of MAE was summarized in Supplementary Figure 2.

Performance of Deep Learning Models in
the External Validation
MAE of the external validation was 1.94D (95%CI: 1.63–2.24D),
1.79D (95%CI: 1.53–2.06D) and 2.19D (95%CI: 1.91–2.48D)
in the trained ResNet-50, Inception-v3 and Inception-ResNet-
v2 models, respectively. MAE was of no statistical difference
in the external validation of the three deep learning models.
R2 was 0.9265, 0.9148, 0.9330 in the three deep learning
models in the external validation. 27.07, 27.07, and 21.80%
of the external validation set were within 0.75D of deviation
from the “true value” measured by subjective refraction. 64.66,
64.66, and 53.38% of the external validation set were within
2.00D of deviation from “true value”. The comparison of
predicted spherical equivalent in the external validation set
and that measured by subjective refraction was shown in
Supplementary Figure 3.

MAE and MAPE of Different Refractive
Error Groups
−10.00D to −8.00D group, −12.00D to −10.00D group and
−8.00D to −6.00D group shared the least MAE with no
significant difference (P > 0.05) in all three models. The least
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FIGURE 2 | Predicted spherical equivalent versus that measured by subjective refraction in three deep learning models. (A) ResNet-50; (B) Inception-v3; (C)

Inception-ResNet-v2.

MAE was 1.29D (95%CI: 1.07–1.52D),1.21D (95%CI: 0.98–
1.44D) and 0.86D (95%CI: 0.67–1.04D) in the Inception-ResNet-
v2, ResNet-50 and Inception-v3 model, respectively. MAPE
was the least in −10.00D to −8.00D group and −12.00D to
−10.00D group with no statistical difference (P > 0.05) in
the three deep learning models. The least MAPE was 12.29%
(95%CI: 9.23–15.34%), 11.46% (95%CI: 9.06–13.86%), and 9.57%
(95%CI: 7.50–11.64%) in the Inception-ResNet-v2, ResNet-50
and Inception-v3 model, respectively. Detailed comparisons
between different groups were shown in Figure 3.

Analysis of Factors Affecting the MAE of
Refractive Error Prediction
The MAE was related to the older age (P < 0.01) and the greater
spherical power (P < 0.01). Univariate and multivariate analyses
of parameters associated with MAE were detailed in Table 1.
Examples of typical UWF images in the test set withMAE≤ 0.5D
were shown in Figures 4A–D. The macular and optic papilla
area of UWF images made a significant contribution to refractive
error prediction in the weighted heat map.

DISCUSSION

Though deep learning models trained by fundus imaging have
constantly been utilized for the detection and grading of
ophthalmic pathologies (15, 17, 18), few studies have applied
fundus photographs for refractive error prediction (14, 19).

Deep learningmodels trained by traditional 45 and 30◦ fundus
photographs from the UK Biobank and the Age-Related Eye
Disease Research Database could reach the MAE of 0.56D (95%
CI: 0.55–0.56 D) and 0.91D (95% CI: 0.89–0.93 D) for refractive
prediction (14) while most of the patients were low-grade myope
or hyperope. Compared with refractive prediction utilizing 7,307
UWFI fundus images, the MAE could reach 1.115 D with more
than a half of enrolled eyes were moderate myopia(−6D ≤ SE <

−3D) (19).
It is worth noticing that the enrolled patients in this study

were withmuch highermyopia than those of the previous studies.

More than 90% of the patients in this study were more than
−6.00D. Thus, the concept of MAPE was introduced in this
study. MAPE is of vital importance in clinical practice. For

example, MAE of 2.00 D indicated a huge deviation if a patient’s
“true” SE was−0.50D, while the same 2.00D predictive error was
a minor and insignificant error for a patient with SE of−12.00D.

From the perspective of MAPE, the predictive error via
UWF images in this study was relatively smaller than that
of the previous study utilizing traditional fundus images and
comparable to deep learning models trained by 7,307 UWFI
fundus images in certain refractive groups. The deep learning

models trained in this study were capable of refractive prediction
from UWF images, but the obtained MAE so far was not enough

for directly guiding the prescription of eyeglasses or as a reference
before refractive surgery.

The MAPE of different myopia groups showed that MAPE

increased in SE ≤ −12.00D and low-to-moderate myopia (SE
> −6.00D) groups, which was attributed to the imbalanced
refractive distribution of enrolled samples.

Older age was found to be related to greater MAE in all three

deep learning models. It could be attributed to the darkening
of the foveal reflection because of aging (20, 21). The MAE

was also found to be related to spherical power and had barely
relation with cylindrical power, which was consistent with clinical
experience. It is the excessive elongation of the globe that plays
an important role in the development of myopia and certain
fundus degenerative changes like posterior staphyloma, lacquer
cracks (22). Astigmatism is the result of irregularity of the cornea
or lens, the information of axial length, choroid thickness and
retinal portraits was rarely “stored” in astigmatism.

The weighted heat map showed that the macular and optic
papilla area contributed the most in predicting the refractive
error, which is also consistent with the clinical experience.
Myopia, especially high myopia, could result in the thinning
of the choroid layer at the macula (23). Although the size of
the optic papilla has proven to be unrelated to the degree of
myopia (24, 25), myopia still affects the morphology of the
optic disc, e.g., optic disc tilt, rotation, torsion and the angle
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FIGURE 3 | Comparison of MAE and MAPE in different refractive error groups. *P < 0.05, ***P < 0.001.
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TABLE 1 | Parameters influencing MAE in deep learning models.

Univariate analysis Model_1 Model_2 Model_3 Multivariate

analysis

Model_1 Model_2 Model_3

Parameters P Correlation

coefficient

P Correlation

coefficient

P Correlation

coefficient

Parameters P Correlation

coefficient

P Correlation

coefficient

P Correlation

coefficient

Age 0.006* 0.195 0.000* 0.249 0.001* 0.230 Age 0.010* 0.185 0.001* 0.204 0.003* 0.197

Sex 0.986 NS 0.846 NS 0.501 NS SE(D) 0.023 NS 0.765 NS 0.511 NS

SE (D) 0.080 NS 0.001* −0.243 0.002* −0.219 Sphere (D) 0.014* −0.175 0.000* −0.300 0.000* −0.365

Sphere (D) 0.058 NS 0.000* −0.246 0.001* −0.244 LOGMAR

BCVA

0.561 NS 0.010* 0.217 0.405 NS

Cylinder (D) 0.477 NS 0.832 NS 0.541 NS Axial length

(mm)

0.401 NS 0.683 NS 0.257 NS

LOGMAR BCVA 0.008* 0.189 0.000* 0.257 0.001* 0.226 K1 NA 0.453 NS NA

Axial length

(mm)

0.055 NS 0.015* 0.173 0.018* 0.169 K2 NA 0.313 NS NA

Intraocular pressure

(mmHg)

0.573 NS 0.837 NS 0.980 NS

K1 0.956 NS 0.023* 0.162 0.238 NS

K2 0.859 NS 0.021* 0.164 0.456 NS

*When p is significative.

FIGURE 4 | Weighted heat map for four myopic eyes SE between −6.00D to −12.00D. (A) Subjective refraction of −8.50D with the predicted value of −8.37D. (B)

Subjective refraction of −9.13D with the predicted value of −8.89D. (C) Subjective refraction of −10.63D with the predicted value of −10.52D. (D) Subjective

refraction of −12.00D with the predicted value of −11.65D.

between the superior temporal and inferior temporal arteries of
the retina (26). Another reason might be that the brightness of
the optic papilla area exceeds the rest area in the UWF imaging
dual-color channel.

The limitations of this study were, firstly, the sample size
was relatively small. The sample size required for the deep
model of training may better reach tens of thousands. Secondly,
only data augmentation and dropout layer were applied to
prevent over fitting in deep learning training without further
separating the validation dataset. Thirdly, part of examined eyes

could be minimally too close to or too far from the optimal
capturing distance, causing the overall image color to be reddish
or greenish.

CONCLUSION

Ultrawide field fundus images could be applied in deep learning
training to predict the refractive error of myopic patients with the
accuracy to be improved.
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