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Sight is arguably the most important sense in human. Being constantly exposed to

the environmental stress, irritants and pathogens, the ocular surface – a specialized

functional and anatomical unit composed of tear film, conjunctival and corneal epithelium,

lacrimal glands, meibomian glands, and nasolacrimal drainage apparatus – serves as

a crucial front-line defense of the eye. Host defense peptides (HDPs), also known as

antimicrobial peptides, are evolutionarily conserved molecular components of innate

immunity that are found in all classes of life. Since the first discovery of lysozyme in

1922, a wide range of HDPs have been identified at the ocular surface. In addition

to their antimicrobial activity, HDPs are increasingly recognized for their wide array

of biological functions, including anti-biofilm, immunomodulation, wound healing, and

anti-cancer properties. In this review, we provide an updated review on: (1) spectrum

and expression of HDPs at the ocular surface; (2) participation of HDPs in ocular

surface diseases/conditions such as infectious keratitis, conjunctivitis, dry eye disease,

keratoconus, allergic eye disease, rosacea keratitis, and post-ocular surgery; (3)

HDPs that are currently in the development pipeline for treatment of ocular diseases

and infections; and (4) future potential of HDP-based clinical pharmacotherapy for

ocular diseases.

Keywords: antimicrobial peptide, cathelicidin, defensin, dry eye, host defense peptide, infection, keratitis, ocular

surface

INTRODUCTION

The ocular surface (OS) is a specialized anatomical and functional system composed of various
structures and components, including the tear film, conjunctival and corneal epithelium, lacrimal
glands, meibomian glands, and nasolacrimal drainage apparatus. Originating embryologically from
the surface ectoderm, all these OS structures are linked anatomically via the epithelium and
functionally via the regulation of neuronal, vascular, endocrinological, and immunological systems
(1). Together, they maintain the homeostasis of the OS which has critical roles in the optical quality
of the eye to focus light at the retina and serving as the most front-line defense system of the eye
against a wide array of pathogens as well as physical and chemical insults (2). In addition, the
periocular skin, which is in close vicinity to the eye, has important influences on the health of OS.
Inflammatory diseases of the periocular skin such as atopic dermatitis and rosacea often result in
the manifestation of OS damage (3–5).
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Being constantly exposed to pathogens, environmental
irritants and stress, the OS relies on a highly functional
innate immunity. Innate immunity mechanisms for the OS are
composed of three major components, including the physical
barrier (e.g., epithelial layers of conjunctiva and cornea),
chemical barriers (e.g., tears), and cellular responses (e.g.,
macrophages, neutrophils, and others), for which the host
defense peptides (HDPs) play important roles in the latter two.

Antimicrobial peptides (AMPs) are a group of evolutionarily
conserved molecules of the innate immunity (6). To better
capture the increasingly recognized multi-faceted roles of
AMPs, a broader term “host defense peptides (HDPs)” has
been subsequently introduced (7). They are ubiquitously
expressed at epithelial surfaces (e.g., eye, skin, respiratory,
gastrointestinal linings, etc.) and secreted by immune cells (e.g.,
polymorphonuclear leukocytes and macrophages) (8, 9). So far
more than 3,000 naturally occurring and synthetic HDPs have
been discovered across six life kingdoms (10, 11). These HDPs
are usually cationic (due to the relative excess of arginine, lysine
and/or histidine residues) and amphiphilic, with 30%−50%
hydrophobicity (12). They exhibit high structural plasticity and
can exist in the form of alpha-helical, beta-sheet, linear extension
ormixed a-helical and beta-sheet structures (Figure 1) (13). They
have recently shown promise as potential therapeutic agents
due to their broad-spectrum antimicrobial properties against
a wide array of infection, including drug-resistant bacteria,
fungi, acanthamoeba, and viruses, with minimal risk of inducing
antimicrobial resistance (11). In principle, HDPs are shown to
primarily exert their broad-spectrum and rapid antimicrobial
action through three main mechanisms of action, namely the
barrel-stave, toroidal pore, and carpet models (Figure 2) (14, 15).
The positively charged amino acid residues are responsible for
the adsorption of AMPs onto the anionic bacterial membrane
(via electrostatic interaction) and the hydrophobic residues
interact with the lipid tail region of the membrane, culminating
in membrane permeation, leakage of fluid into the bacterial
cytoplasm and subsequent bacterial cell death (14). In addition
to the membrane-targeting action, emerging evidence has
highlighted that HDPs can kill microorganisms through several
non-membrane perturbing mechanisms, such as biosynthesis of
disorganized bacterial membranes and direct intercalation into
the membrane, interfering with the intracellular DNA and RNA
molecules, and others (7). HDPs are also shown to participate
in chemotaxis, immunomodulation, wound healing, anti-biofilm
and anti-cancer activities (16–19), offering a wide range of
potential therapeutic applications.

The history of HDPs (or AMPs) dates back to 1922 when
lysozyme was first discovered in various human tissues and body
secretions, including the tear fluids (20). Since then, a wide
spectrum of human HDPs have been identified and reported
at the OS. These include lactoferrin, alpha- and beta-defensins,
cathelicidin (LL-37), ribonuclease, psoriasin and dermcidin,
amongst others (9, 21, 22). The expressions and actions of HDPs
in several OS diseases have been previously summarized by Kolar
and McDermott (23). Since then, there is a growing body of
evidence underlining the roles and therapeutic potential of HDPs
at the OS, ranging from novel observations at the molecular level

(e.g., upregulation of defensins and LL-37 in ocular rosacea) (24)
to the advancement of designed HDPs toward human clinical
trials (e.g., development of Mel4 as an antimicrobial coating for
contact lens) (25). In view of the rapid evolution of this field,
this review article aimed to provide an up-to-date, focused review
of the spectrum and expression of HDPs at the OS, the roles in
major OS diseases, and the therapeutic potential for OS diseases.

METHOD OF LITERATURE SEARCH

Electronic databases, including MEDLINE and EMBASE, were
searched to identify relevant studies on HDPs at the OS. Only
English articles were included in this review article. Key words
used were “antimicrobial peptide,” “defense peptide,” “ocular
surface,” “tear fluid,” “defensins,” “cathelicidin,” “keratitis,” “dry
eye,” “atopic keratoconjunctivitis/atopic dermatitis,” “ocular
rosacea.” The bibliographies of included articles were manually
screened to identify further relevant studies. The final search was
last updated in November 2021.

SPECTRUM AND CHARACTERISTICS OF
HDPs AT OCULAR SURFACE

A wide array of HDPs have been identified and reported
at the OS. In this section, we summarize the sources,
characteristics, and functions of important HDPs, including
lysozyme, lactoferrin, alpha- and beta-defensins, cathelicidin,
ribonucleases, psoriasin, dermcidin, and histatin (Table 1).

Lysozyme
In 1922, lysozyme was discovered by Sir Alexander Fleming
during the investigation of his patient with acute coryza. The
nasal secretion of the patient was found to completely inhibit
the growth of Micrococcus spp. (a Gram-positive bacteria). This
striking observation prompted a series of experiments, which
led to the discovery of lysozyme in various human tissues
and body secretions, including tear fluids, saliva, blood, semen,
respiratory tract linings, and connective tissues, amongst others
(20). Interestingly, the antibacterial potency of lysozyme was
influenced by the location of the tissues and types of microbes
(e.g., lysozyme in tears was very active against micrococci, but
was much less effective against other cocci in other parts of the
body), highlighting the specific adaptation of the human immune
system against specific pathogens at defined sties (20).

Lysozyme is primarily secreted in the tear fluid by the
tubuloacinar cells of the main and accessory lacrimal glands
(82) and, to a lesser extent, expressed by corneal epithelium
and meibomian glands (83). It constitutes around 20%−30%
of the total protein in tear fluids (82). Lysozyme exhibits its
broad-spectrum antimicrobial activity via dual mechanisms of
action (26). First, it hydrolyzes the bacterial cell wall by breaking
down the β-1,4 glycosidic linkages between the disaccharides,
N-acetylmuramic acid (NAM) and N-acetylglucosamine (NAG),
which forms the backbone of peptidoglycan in the bacterial
membrane. Second, the cationic property of lysozyme enables
pore formation in the anionic bacterial membrane, which is
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FIGURE 1 | Illustrations of the 3-dimensional secondary structures of the important host defense peptides (HDPs) at the ocular surface. The structures are obtained

from the RCSB Protein Data Bank. Cathelicidin, psoriasin, and dermcidin are primarily made of alpha-helical helixes whereas human alpha- and beta-defensins are

composed of triple beta-sheets. Lysozyme, lactoferrin and ribonuclease-7 (or RNase-7) are made of mixed alpha-helixes and beta-sheets.

FIGURE 2 | Illustrations of the common membrane-permeabilizing mechanisms of host defense peptides (HDPs) against bacteria (and other microbes), namely: (1)

barrel-stave; (2) toroidal pore; and (3) carpet (detergent-like) mechanisms. In the barrel-stave model, the HDPs act as a stave and penetrate vertically into the negatively

charged, lipid bilayer bacterial membrane, creating permanent “barrel-shaped” pores. In the toroidal pore model, the HDPs interact with the negatively charged

phosphate head groups electrostatically, distort the arrangement of the lipid bilayer, and create a transient membrane pore, with HDPs lining and stabilizing the internal

part of the pore. In the carpet (detergent-like) model, the HDPs interact with the bacterial membrane electrostatically, and, upon reaching the critical concentration on

the bacterial membrane, they result in membrane fragmentation / aggregation. These mechanisms result in destabilization of the membrane integrity, which leads to

influx of fluid and efflux of intracellular content, culminating in cell lysis. Although less common (not shown in this figure), HDPs may also exert their antimicrobial action

via binding to microbial intracellular targets (i.e., non-membrane-permeabilizing mechanisms), inhibiting DNA/RNA synthesis, protein synthesis and protein folding).

responsible for its rapid and broad-spectrum antimicrobial
activity against a wide range of organisms.

In addition to its antimicrobial activity, lysozyme plays an
important immunomodulatory role in host defense. Particularly,
it activates lysozyme-dependent degradation of the engulfed

bacteria within the phagolysosomes of macrophages and releases
pathogen associated molecular patterns (PAMPs) from the lysed
bacteria, resulting in a pro-inflammatory response via interaction
with various pattern recognition receptors (PRRs) such as Toll-
like receptors (TLRs), nucleotide-binding oligomerization
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TABLE 1 | Characteristics and functions of common HDPs at the ocular surface (OS).

Type Source Functions

Lysozyme - Tear fluid (secreted by tubuloacinar

cells of lacrimal glands)

- Corneal epithelium

- Meibomian glands

- Antimicrobial property (via hydrolysis and pore formation of cell wall) (20, 26)

- Immunomodulatory function via interaction with various pattern recognition receptors (26, 27)

Lactoferrin - Tear fluid (secreted by acinar cells

of lacrimal glands)

- Conjunctival epithelium

- Corneal epithelium

- Meibomian glands

- Antimicrobial activity (via binding to free iron and membrane permeabilization) (28–30) and anti-biofilm

(31)

- Immunomodulatory function (anti- and pro-inflammatory) (32, 33)

- Antioxidant (via inhibition of iron-dependent formation of hydroxyl radicals) (34)

- Wound healing (32, 33)

Human

alpha-defensins

(or HNP)-1 to−4

- Azurophil granules of neutrophils - All: antimicrobial activity (via membrane perturbation) (35)

- HNP-1 to−3: immunomodulatory (Pro-inflammatory and anti-inflammatory) (36–38)

- HNP-1 to−3: anti-cancer (39, 40)

Human

beta-defensins

(HBD)-1 to−3

- Conjunctival and corneal epithelium - All: antimicrobial activity (via membrane perturbation) (41, 42)

- All: immunomodulatory function (pro-inflammatory and anti-inflammatory) (42, 43)

- HBD-3: wound healing (44)

- All: anti-cancer (45, 46)

Cathelicidin - Conjunctival epithelium

- Corneal epithelium

- Antimicrobial activity (via membrane perturbation) (47–52) and anti-biofilm (47, 53)

- Immunomodulatory function (pro-inflammatory and anti-inflammatory) (54, 55)

- Wound healing (48, 56)

- Anti-cancer (40, 57)

Ribonucleases

- (RNases)

- RNase-5: Tear fluid and corneal

endothelium

- RNase-7: Corneal epithelium

and stroma

- Antimicrobial activity (via binding to bacterial membrane lipoprotein and membrane perturbation) (58–66)

- Immunomodulatory function (activates adaptive immunity) (67, 68)

- Angiogenic and neurogenic (69, 70)

- Wound healing (71)

Psoriasin - Conjunctiva

- Cornea

- Lacrimal gland

- Nasolacrimal duct

- Antimicrobial activity (via zinc-dependent mechanism) (72, 73)

- Immunomodulatory function (chemotaxis, activates adaptive immune system via CD4+) (74, 75)

Dermcidin - Corneal epithelium

- Tear fluid

- Antimicrobial activity (via zinc-dependent mechanism) (76)

Histatin - Tear fluid - Antimicrobial activity (via membrane perturbation) (77, 78)

- Anti-inflammatory function (79)

- Wound healing property (80, 81)

HNP, human neutrophil peptide/human alpha-defensin; HBD, human beta-defensins.

domain-like receptors (NLRs), and inflammasomes (26).
Lysozyme may decrease systemic inflammation by restricting
bacterial growth (27). In view of the ubiquitous presence
and inherent antimicrobial and immunomodulatory activities
of host lysozyme, bacteria have evolved several ingenious
resistant mechanisms to survive against lysozyme. These
include modification of membrane peptidoglycan, alteration of
the membrane charges, and production of protein inhibitors
against lysozyme (26). The understanding of the mechanisms
of antimicrobial resistance (AMR) related to lysozyme (and
potentially other naturally occurring HDPs) is unequivocally
pivotal for development of the next generation of synthetic
peptide-based therapeutics for tackling AMR.

Lactoferrin
Lactoferrin, belongs to the transferrin family, is an 80 kDa
iron-sequestering HDP. It consists of a polypeptide chain that
is folded into two highly symmetrical lobes (N- and C-lobes),
which are capable of binding a variety of metal ions including
ferric and ferrous ions (28). It is found abundantly in milk

and in many other body tissues and secretions, including tears,
saliva, sweat, nasal secretion, bronchial mucus, hepatic bile and
others (84). Similar to lysozyme, lactoferrin is also primarily
synthesized by the acinar cells of the main and accessory
lacrimal glands (85). Some evidence has suggested the expression
of lactoferrin in meibomian glands (83) and epithelium of
conjunctiva and cornea (83, 86). It constitutes around 25%
of the total protein in tear fluids, with a concentration of
∼2.2 mg/ml (29).

Lactoferrin has been shown to play multi-functional roles
in host defense, armed with antimicrobial, anti-biofilm, anti-
inflammatory, anti-cancer and anti-complement functions (28,
87). The antimicrobial activity of lactoferrin is attributed to its
underlying dual mechanisms of action: (a) binding to free iron,
an essential element for microbial growth; and (b) interaction
and permeabilization of the anionic bacterial membrane through
its positively charged N-terminal, which accounts for its rapid
antimicrobial action (28). At the OS, it has been shown to exert
broad-spectrum antimicrobial activity against Gram-positive and
Gram-negative bacteria, fungi, and viruses (29). It has a strong
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affinity toward the lipopolysaccharides (LPS) of the Gram-
negative bacterial membrane, resulting in increased permeability.
Studies have also shown that lysozyme and lactoferrin work
in synergy where lactoferrin binds to the lipotechoic acid
(LTA) of staphylococcal membrane and enables a greater access
of lysozyme to the peptidoglycan (30). Another recent study
by Avery et al. (31) showed that lactoferrin exhibits strong
antimicrobial and antibiofilm activities against Acinetobacter
baumannii, which is an important member of the ESKAPE
pathogens commonly responsible for multidrug resistance in
clinical setting. Interestingly, lactoferrin is ineffective against
Acanthamoeba trophozoites and this is attributed to the effect of
proteases released by Acanthamoeba (88).

Lactoferrin has been shown to play an important role in
corneal wound closure where it regulates the anti-inflammatory
and pro-inflammatory responses (32, 89). Pattamatta et al.
(32, 33) demonstrated that lactoferrin stimulates corneal
wound healing via upregulation of plate-derived growth
factor and IL-6, downregulation of IL-1, and reduction of
infiltrating inflammatory cells. Lactoferrin also acts as an
antioxidant via inhibition of iron-dependent formation of
hydroxyl radicals, thereby protecting corneal epithelium from
oxidation-mediated tissue injury (34). This may have an
implication on the pathogenesis of keratoconus (refer to Section
Keratoconus). Furthermore, reduced levels of lactoferrin have
been associated with systemic mucosal immunity incompetence.
Hanstock et al. (90) observed that patients affected by
upper respiratory tract infection had a significantly lower
concentration of tear lysozyme and/or lactoferrin compared
to healthy volunteers, suggesting that lysozyme and lactoferrin
may serve as clinically relevant biomarkers for mucosal
immune competence.

Defensins
Defensins are a large family of cysteine-rich HDPs that consist
of a predominantly triple-stranded beta-sheet core structure
stabilized with three pairs of intramolecular disulfide bridges
(91). Depending on the pattern of the disulfide linkage, human
defensins can be broadly divided into two groups, namely
the alpha- and beta-defensins. Alpha-defensins have a cysteine
pairing motif of Cys1–Cys6, Cys2–Cys4, and Cys3–Cys5 whereas
beta-defensins form disulfide bridges at Cys1–Cys5, Cys2–
Cys4, and Cys3–Cys6 (35, 91). Interestingly, this evolutionarily
conserved disulphide bridge motif is similarly observed in
defensins found in plants and invertebrates (92, 93).

Human alpha-defensins, also known as human neutrophil
peptide (HNP) due to their abundant presence in neutrophils,
can be subclassified into 6 main subtypes (HNP-1 to−6). HNP-1
to−4 are found primarily in the azurophil granules of neutrophils
(35). HNP-1 to−3 sequences are highly homologous with only
difference in a single N-terminal residue; removal of the alanine
(the first amino acid of HNP-1 at the N-terminal) gives rise to
HNP-2 and substitution of the alanine with aspartic acid yields
HNP-3. HNP-5 and−6 are primarily located in the epithelium
of Paneth cells of small intestines (35). On the other hand,
more than 30 types of human beta-defensins (HBDs) have been
described in the literature (94). HBD are mainly synthesized

by the epithelial cells, including the conjunctiva, cornea, skin,
oral mucosa, lining of respiratory and gastrointestinal tracts,
and others (95). As described by McIntosh et al. (96), about 28
novel beta defensins were identified in human genome using the
hidden Markov model. Thus far, only few, namely the HBD-1
to−4 and HBD-9 were shown to be involved in host immunity
at the OS.

In view of the diverse function of defensins, it is not surprising
that a plethora of HNPs and HBDs are abundantly present at a
variety of bodily surfaces. At the OS, HNP-1 to−3, but not HNP-
4 to−6, have been identified in normal human tears, conjunctival
and corneal epithelium, lacrimal gland, and inflamed conjunctiva
(in relation to infiltrating polymorphonuclear cells) (22, 97,
98). Similarly, McIntosh et al. (96) discovered an array of
HBDs, including HBD-1 to−4, at the corneal and conjunctival
epithelium, though the level of HBD-4 was relatively low.
Another novel HDP, HBD-9, was discovered at the ocular surface
epithelia and corneal stroma by our research group (99, 100).
Further studies from our group and others have also shown
that the expressions of HBDs are modulated by various PRRs,
including TLRs and NLRs (99, 101, 102).

Defensins have been shown to exhibit broad-spectrum
antimicrobial activity against bacteria, fungi, enveloped viruses,
and parasites (35, 41). Similar to most cationic HDPs, the
defensins also perturb the microbial membrane through direct
interaction with the anionic and lipid microbial membrane.
The antimicrobial efficacy of defensins is likely related to their
inherent physicochemical characteristics such as cationicity,
hydrophobicity, and amphiphilicity (35). It has been shown
that cationicity plays a more important role in Gram-negative
infections, whereas increased hydrophobicity enhances the
antimicrobial action against Gram-positive infections (103, 104).
In addition, synergy between different families of HDPs have
been reported; for instance, HBD-2 and LL-37 exhibit synergistic
antimicrobial killing of Staphylococcus aureus, which is likely
accountable for the minimal risk of S. aureus infection in
inflamed psoriatic skin (105).

In addition to the antimicrobial function, defensins
are endowed with a wide range of functions, including
immunomodulatory (pro-inflammatory and anti-inflammatory),
wound healing, maintenance of skin barrier, and anti-
cancer (Figure 3) (17, 36, 39–41, 43–46, 106). HBD has
been shown to orchestrate the cross-talk between innate and
adaptive immunity by recruiting T cells and dendritic cells
to the infection site through interaction with chemokine
(CCR6) receptor (43). HNP-1 regulates inflammation by
inhibiting macrophage mRNA translation and secretion of
proinflammatory cytokines and nitric oxide, enabling clearance
of pathogen and resolution of inflammation with minimal
collateral tissue damage (37, 38). Moreover, HBD-3 has been
shown to promote wound closure in S. aureus infected diabetic
wounds (44).

To gain a better understanding of the structure-activity
relationship, many research groups have investigated the
functional role of the evolutionarily conserved cysteine disulfide
bridge moiety of defensins. Although this moiety is widely
observed in vertebrate and invertebrate defensins, Wu et al. (42)
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FIGURE 3 | Schematic representation of key signaling mechanisms involved in host defense peptides (HDPs) production in response to bacterial infection. Multiple

intracellular signaling pathways are activated downstream of toll-like receptors (TLRs) in response to a variety of pathogen-associated molecular pattern (PAMPs),

resulting in production of HDPs and cytokines/chemokines. TLR2/1 and TLR2/6 are shown to recognize diacylated (DAL) and triacylated (TAL) lipopeptides,

respectively. TLR4 is present both on cell-surface and intracellularly on endosomes specifically recognizes lipopolysaccharide (LPS). LPS is recognized by LPS binding

protein (LBP) and presented to CD14 (present in a soluble form in tear fluid), which transports LPS to myeloid differentiation-2 (MD-2)/TLR4 complex. Flagellin (Flag), a

flagellar protein of Gram-negative bacteria, is recognized by TLR5. TLR9 present on endosomes recognizes CpG containing bacterial DNA; however, its role in

production of HDPs and associated signaling mechanisms in corneal epithelial cells remain unclear. A pleiotropic cytokine, interleukin-1β (IL-1β) is recognized by IL-1R

on cell surface. Activation of toll/IL-1-receptor (TIR) domain of both TLR and IL-1R triggers recruitment of the adaptor molecule myeloid differentiation primary

response protein 88 (MyD88). TLR4 signaling can be activated via MyD88 and TIR-domain-containing adaptor protein inducing interferon-β (TRIF). Both MyD88 and

TRIF initiate phosphorylation and ubiquitylation of several other molecules (not shown) leading to activation of transforming growth-factor-β activated kinase-1 (TAK1).

In the cytosol, TAK-1 triggers activation of mitogen-activated protein kinases (MAPKs) and nuclear-factor-κ-B (NF-κB) pathways. This allows nuclear translocation of

NF-κB and activator protein 1 (AP-1; complex of Jun and Fos protein) transcription factors and modulates expression of target HDPs. The scheme was adapted from

Mohammed et al. paper (9).

demonstrated that removal of this structure has no influence
on their inherent antibacterial activity against Escherichia coli.
On the other hand, the chemotactic function (e.g., HBD-3)
(42), anti-tumor necrosis factor (TNF)-alpha (e.g., HNP-1) (38),
and antiviral activity (e.g., HNP-1 to−3) (107) are abolished
when this disulfide moiety is destabilized or removed, suggesting
that the disulfide bridges play important immunomodulatory
and antiviral roles in innate immunity. These observations
provide invaluable insight into the design and development
of antimicrobial HDPs that are based on cysteine-rich native
templates (108).

Cathelicidin
Cathelicidins are a large family of AMPs widely found in
vertebrates (93, 109). The hallmark of cathelicidin is the presence
of highly conserved cathelin domain, which was first identified in
pig leukocytes as a cathepsin-L inhibitor and termed “cathelin”
based on this property. Cathelicidin proteins comprised of a
conserved 14 kDa cathelin domain flanked by a signal peptide
(up to 30 residues) on N-terminus and an antimicrobial peptide
region on its C-terminus. hCAP18, an 18 kDa preprotein,
is the lone member of cathelicidin found in humans (110,
111). Its derivative, hCAP18(104–140), was shown to neutralize
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lipopolysaccharide (LPS) activity both in vitro and in vivo (112).
Proteinase-3, a proteolytic enzyme in human neutrophils can
cleave hCAP18 into an active 37 amino-acid AMP, known as LL-
37 (110, 113, 114). Moreover, another serum protease, gastricsin,
at low vaginal pH was shown to cleave hCAP18 into a slightly
longer active peptide, termed ALL-38 (115).

Since its first discovery in 1988 (116), cathelicidin is
the most studied cationic HDP due to its wide-spectrum
of activity, including anti-infective, anti-biofilm, anti-cancer,
immunomodulatory, chemotactic, and wound healing properties
(47, 53, 54, 57, 104, 117–120). The protective function of LL-37
against OS has been widely established (48, 49, 121, 122). LL-
37 is constitutively expressed in OS epithelial specimens from
healthy living patients and donor cadaveric tissues, including
conjunctival and corneal epithelium (96, 123). It has been
shown to play an important role in corneal wound healing
and protection against various types of microbes at the OS
(48, 123). In addition to its antimicrobial activity, Torres-
Juarez et al. (55) demonstrated the immunomodulatory effects
of LL-37 during mycobacterial infection, including reduction of
tumor necrosis factor (TNF)-alpha and IL-17, and promoting
the production of transforming growth factor (TGF-beta) and
anti-inflammatory IL-10. Furthermore, LL-37 promotes wound
healing via keratinocyte migration, which occurs via epidermal
growth factor receptor transactivation (56).

Biochemical studies have elegantly demonstrated that smaller
synthetic fragments derived from the parent LL-37 sequence
were as effective as the full-length LL-37 (124–128). Studies have
revealed that the middle region of LL-3717−29 (i.e., FK13) and/or
LL-3718−29 (i.e., KR12) is largely responsible for the antimicrobial
activity of LL-37 and has the ability to form amphipathic helix
rich in positive charge, which enables effective interaction with
the anionic membrane and subsequent microbial killing (126,
127, 129). In view of its therapeutic promise, a variety of strategies
have been adopted to enhance the safety and efficacy of LL-37 and
its derivatives (104, 130). Similar to LL-37, its smaller derivatives
have shown considerable activity against a range of pathogens,
including ESKAPE bacteria, fungi and viruses (47, 50–52). Our
group has recently demonstrated that LL-3717−32 (FK16 peptide
with free N- and C-termini) could also be utilized to improve
the activity of conventional antibiotics such as vancomycin
against Pseudomonas aeruginosa, as a strategy to repurpose the
antibiotics and tackle AMR (131).

Ribonucleases (RNases)
Human ribonucleases (RNases) have an inherent ability to
hydrolyze polymeric RNA and share a unique structural
similarity to bovine pancreatic RNase A, therefore, also referred
to as RNase A superfamily (132, 133). Similar to defensins,
members of RNase A superfamily are comprised of six to eight
conserved cysteine residues forming disulfide bridges. Genes
encoding for human RNases 1 to 13 are clustered on chromosome
14q11.2 (133, 134). RNases are highly cationic and exhibit
strong cytotoxic and microbicidal properties. Human RNase-
2 (eosinophil derived neurotoxin) and RNase-3 (eosinophil
cationic protein) are the first members of RNase A superfamily
to show a strong role in host defense against an RNA virus,

respiratory syncytial virus (RSV) (58, 59). Further studies have
demonstrated that RNase-2 and−3 also have an ability to activate
adaptive immunity (67, 68) and possess potent bactericidal and
anti-helminthic properties (60–63). RNase-4 and−5 are shown
to display potent angiogenic and neurogenic properties (69, 70).
RNase-5, also known as angiogenin, has been widely studied due
to its immunomodulatory properties. It is shown to be produced
by skin keratinocytes and mast cells and has been detected in
lacrimal secretions. RNase-5 has been shown to promote corneal
endothelial wound healing via activation of PI3-kinase/Akt
pathway (71), highlighting its therapeutic potential for corneal
endothelial diseases. RNase-6 is ubiquitously expressed in
immune cells including neutrophils and monocytes. Similar to
RNase-3, it also exhibits bactericidal effect through agglutination
and membrane disruption (64). Against Mycobacterium spp., it
has been shown to induce autophagy in the infectedmacrophages
leading to intracellular growth inhibition (135).

RNase-7 and−8 despite being structurally similar, their
expression in different bodily tissues is greatly varied. On
the OS, RNase-7 is constitutively expressed in healthy corneal
epithelium and stroma (65). Further studies have demonstrated
elevated levels of RNase-7 in samples collected from patients
with bacterial, viral and Acanthamoeba keratitis as well as
in CECs treated with cytokines, live bacteria and different
pathogenic proteins that activates innate immune receptor
signaling (65, 66). Specifically, the signaling mechanisms that
are involved in elevation of RNase-7 levels in CECs in response
to activation of interleukin 1β (IL-1β)/IL-1 receptor (IL-1R)
axis was mapped by our group (65). Notably, the canonical
nuclear factor κB (NFκB) transcription factor which mediates
transcription of most HDPs in OS epithelium was found to
be non-redundant in regulation of RNase-7. It was shown
that IL-1b/IL-1R triggered mitogen activated protein kinases
(MAPKs) signaling was responsible for RNase-7 regulation in
CECs. Further analysis showed that the transcription factors,
c-JUN and ATF, are involved in transcription of RNase-7 in
CECs. This suggested that a biomarker or protein that directly
activates these transcription factors could elicit HDPs in CECs
during infection.

Psoriasin
Psoriasin, or S100A7, represents one of the main members
of the S100 family of calcium-binding proteins (136). It is a
low molecular weight protein (∼11 kDa) which consists of
five alpha-helices and the structure relies on the binding of
calcium (137). The term “psoriasin” was first coined in 1991 by
Madsen et al. (138), who observed the upregulation of this novel
HDP in psoriatic skin. Subsequently, its immunomodulatory
role in psoriasis was shown to be related to the downstream
stimulation of interleukin-1a (IL-1a) expression in human
epidermal keratinocytes via the receptor for advanced glycation
endproducts (RAGE)-p38 MAPK and calpain-1 pathways (139).
At the OS, psoriasin was also found to be constitutively present
various structures, including the conjunctiva, cornea, lacrimal
gland and nasolacrimal ducts (72, 140), highlighting its protective
role at the OS.
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Psoriasin has been shown to exhibit strong antimicrobial
activity against E. coli and S. aureus, likely via a zinc-
dependent mechanism (72, 73). The upregulation of psoriasin
against E. coli was found to be mediated via TLR5 (141).
Interestingly, studies have shown that the antibacterial efficacy of
psoriasin is likely conferred by the central region of the protein
(amino acids at 35–80) (73). In addition to its antimicrobial
activity, psoriasin has been shown to play essential important
immunomodulatory roles, including chemotaxis for CD4+

and neutrophils, production of cytokines and chemokines by
neutrophils, generation of reactive oxygen species, and release of
HNP-1 to−3 (74, 75).

Dermcidin
Dermcidin (DCD) is an important 110-residue HDP that is
constitutively present in the golgi complex and the secretory
granules of eccrine sweat. After being proteolytically processed,
it is secreted into the sweat and transported onto the epidermal
surface of skin as DCD-1L (which constitutes the N-terminal 48
residues of DCD) (76, 142, 143). It has been shown to adopt
a unique high-conductance transmembrane hexameric channel
architecture comprising trimers of antiparallel helical pairs,
which is responsible for its membrane-disruptive antimicrobial
mechanism (144).

The presence of DCD was first discovered in 2001 by
Schittek et al. (145) and was found to possess broad-spectrum
antimicrobial activity that is maintained over a broad pH range
and in high salt concentrations, which resembles the human
sweat. At the OS, McIntosh et al. (96) observed that dermcidin
may be present at the corneal epithelium but this was only
detected in one of the nine corneal samples. The presence of
dermcidin in tear fluid was further confirmed by You et al.
(146). Unlike most HDPs (which are cationic and kill bacteria
via pore formation), dermcidin is an anionic peptide (147).
It exerts its antimicrobial killing through interaction with the
anionic bacterial phospholipids with subsequent zinc-dependent
formation of oligomeric complexes in the bacterial membrane,
resulting in formation of ion channels, membrane depolarization
and cell death (76).

Histatin
Histatin belongs to a family of histidine-rich, cationic HDPs
that are produced by the salivary gland into the saliva. They
were first identified in 1988 by Oppenheim et al. (77) in human
parotid secretion.Within the family, histatin-1,−3 and−5 are the
major and most widely studied members and have been shown
to exhibit antibacterial, antifungal and wound healing properties
(77, 78). Histatin-1 and−3 are encoded by HTN1 and HTN3
genes, respectively, and histatin-5 is a proteolytic product of
histatin-3 (148).

The first evidence of the presence of histatin at the ocular
surface was demonstrated by Kalmodia et al. (149) in 2019.
Histatin-1 was found to be present in normal human tears and
reduced in aqueous-deficient dry eye disease by around 10-fold,
suggesting the potential diagnostic value in evaluating dry eye
disease. Based on in vitro studies, histatin-1 has been shown
to enhance human corneal epithelial wound healing (80). In

addition, histatin-1 can significantly reduce lipopolysaccharide-
induced inflammatory signaling and production of nitric oxide
and inflammatory cytokines via the JNK and NF-kB pathways
in RAW264.7 macrophages (79). The multi-faceted properties of
histatin, including antimicrobial, anti-inflammatory and wound
healing properties, are particularly attractive for ocular surface
diseases, especially infectious keratitis where inflammation
overdrive and persistent epithelial wound are common sequelae
of the infection (81, 150, 151).

ROLES OF HDPs IN MAJOR OCULAR
SURFACE DISEASES

It is evident that HDPs play important roles in innate immunity
and crosstalk between innate and adaptive immunity. In this
section, we aim to provide a concise overview of the roles of
HDPs in major OS diseases.

Infectious Keratitis
Infectious keratitis (IK) represents a major cause of corneal
blindness worldwide (152). It has been estimated to cause
1.5–2 million new cases of monocular blindness every year,
highlighting its significant burden on human health, healthcare
resources and economy (152–154). Subject to geographical,
temporal and seasonal variations, bacteria and fungi are the most
common culprits for IK globally (150, 155–161). Broad-spectrum
topical antimicrobials are currently the mainstay of treatment for
IK but adjuvant therapy such as amniotic membrane transplant,
therapeutic corneal cross-linking treatment (i.e., PACK-CXL)
and therapeutic keratoplasty are often required to manage
refractory cases of IK (162–166).

The pivotal roles of HDPs in IK are supported by a number of
in vitro and in vivo observations and experiments (9). McIntosh
et al. (96) investigated differential gene expression of HDPs in
non-infected and infected eyes and demonstrated that some
HDPs, notably HBD-3 and LL-37, were significantly elevated
during OS infection. In addition, HBD-2 and−3, LL-37, MIP-
3α, and thymosin β-4 were shown to exhibit moderate to
strong in vitro antimicrobial activity against a range of ocular
pathogens, including S. aureus, P. aeruginosa, adenovirus and
HSV-1 (49, 123). Furthermore, cathelicidin-deficient/knockout
mice were found to be more susceptible to P. aeruginosa corneal
infection when compared to the wild type mice, underlining
the antimicrobial function of cathelicidin at the OS (122).
Synergistic antimicrobial action among different HDPs has
also been reported in several studies (167, 168). For instance,
Chen et al. (167) demonstrated that various combinations of
HDPs, including HBD-1 to−3, LL-37 and lysozyme, exhibited
synergistic or additive antimicrobial effect against S. aureus and
E. coli.

The role of HDPs has also been implicated in other types of
IK such as fungal and Acanthamoeba keratitis (9). Our recent
study demonstrated that a range of HDPs, including HBD-
1,−2,−3 and−9, LL-37 and S100A7, were upregulated during the
active phase of fungal keratitis and returned to the baseline level
upon resolution of the infection (169). Interestingly, there was
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a preferential increase in mRNA expression of different types of
HDPs, with HBD-1 and−2 being most commonly upregulated
(90% of the cases) and LL-37 being least commonly upregulated
(35% of the cases), highlighting the pathogen-specificity of HDPs.
Similarly in Acanthamoeba keratitis, a wide range of HDPs such
as HBD-2 and−3, LL-37, LEAP-1 and−2, and RNase-7 (but not
HBD-1), were shown to be upregulated (66). Interestingly, HBD-
1 andHBD-9 were significantly downregulated in Acanthamoeba
keratitis (66, 170). Taken together, it is evident that HDPs serve
as an integral component of the innate immunity of the OS,
via their broad-spectrum and rapid antimicrobial activity against
a wide range of ocular pathogens. These unique characteristics
also render HDPs (usually those that are membrane-active)
an attractive class of antimicrobial agent for managing IK,
particularly in the face of polymicrobial keratitis and emerging
antimicrobial resistance (152, 158, 171, 172).

Dry Eye Disease and Sjogren’s Syndrome
Dry eye disease (DED) is one of the most common ocular surface
morbidities with severe impact on vision and quality of life of
affected individuals (173, 174). According to the recent TFOS
DEWS II report, DED is defined as “a multifactorial disease of
the ocular surface characterized by a loss of homeostasis of the
tear film, and accompanied by ocular symptoms, in which tear
film instability and hyperosmolarity, ocular surface inflammation
and damage, and neurosensory abnormalities play etiological
roles” (173). Sjogren’s syndrome is a systemic autoimmune
disease that primarily affects the lacrimal and salivary exocrine
glands, leading to dry eyes and dry mouth (175). It is caused
by lymphocytic infiltration of the exocrine glands secondary to
the abnormal B- and T-cell autoimmune response against the
auto-antigens, particularly SSA and SSB (175).

Several studies have demonstrated the dysregulation of HDPs
in the DED. A range of HDPs, particularly lysozyme and/or
lactoferrin, have been shown to be reduced in various types of
DED, including SS and non-SS-related DED (176), evaporative
DED (177), graft versus host disease (GvHD)-related DED (178),
and others. Furthermore, HBD-2 and HBD-9 are found to be
upregulated and downregulated, respectively, whereas HBD-1
and−3 remain unchanged in DED (100, 179). In addition, tear
HDPs may also serve as useful biomarkers in DED. Studies have
shown that tear lactoferrin was significantly reduced in various
types of DED, including SS-related and non-SS-related DED,
Steven–Johnson syndrome and evaporative DED secondary to
meibomian gland dysfunction (177, 180). Sonobe et al. (176)
recently demonstrated an inverse correlation between reduced
lactoferrin concentration in tears and increased severity of
DED using a novel and innovative microfluidic paper-based
analytical device (µPAD). It has been shown that reduced level
of lactoferrin serves as a good biomarker for distinguishing SS-
related DED from non-SS-related DED (181), and for diagnosing
DED in postmenopausal patients (182). The reduction of these
tear HDPs in DED, in addition to the breakdown of corneal
epithelium and increased bacterial load associated with DED,
may potentially account for the increased risk of IK (though lack
of strong evidence) (183, 184).

Keratoconus
Keratoconus is a bilateral, non-inflammatory corneal condition
characterized by progressive corneal thinning and protrusion
with resultant myopia and irregular astigmatism. It is the most
common corneal ectatic disorder with an estimated prevalence
of 1:2,000 to 1:400 people (185, 186). Depending on the severity
and stability of keratoconus, it can be managed with glasses, soft
and rigid contact lens, corneal cross-linking, intrastromal corneal
ring segments, and corneal transplantation if all other measures
fail (187–189). Although uncommon, keratoconus still remains a
leading indication for corneal transplantation in many countries
(190, 191).

The pathogenesis of keratoconus is likely to be multifactorial,
contributed by genetic predisposition, environmental factors,
proteolytic degradation of collagen, and mechanical trauma
such as eye rubbing (192). Several molecular and proteomics
studies (193–196) have also demonstrated the upregulation of
certain tear proteins and inflammatorymolecules in keratoconus,
including interleukin-6, TNF-alpha, matrix metalloproteinases
(MMP)-1,−3,−7,−9, and−13, lipocalin-1, neutrophil-defensin
1 precursor, mammaglobulin-B precursor, and keratin types
1 and 2, suggesting that inflammation plays a role in the
pathogenesis of keratoconus. A recent proteomic study by
Yam et al. (197) demonstrated that the epithelial and stromal
proteins in keratoconic corneas were altered. The proteomic
changes were primarily related to developmental and metabolic
disorders (particularly in relation to mitochondria), cellular
assembly, tissue organization and connective tissue disorders
(particularly in relation to endoplasmic reticulum protein
folding). Interestingly, the changes were not limited to the “cone
area” but also involved the peripheral non-cone region of the
keratoconic corneas. In addition, patients with keratoconus were
found to have a significantly lower level of tear lactoferrin
and the amount of reduction correlated with the severity of
keratoconus (198). It is postulated that reduced lactoferrin results
in accumulation of free iron in the tear fluids and iron deposition
on the cornea (“Fleischer’s ring”), thereby increasing cytotoxicity
to the corneal epithelial cells (199). Based on these observations,
Pastori et al. (199) have demonstrated that the oxidative stress
induced by the tears in keratoconic patients, due to increased
free iron, may be dampened by lactoferrin-loaded contact lens,
potentially deterring the progression of keratoconus.

Pterygium
Pterygium is a common inflammatory ocular surface disease
that is commonly encountered in tropical countries, with
an estimated prevalence of 12% (200). It is characterized
by fibrovascular growth of the conjunctiva into the cornea,
resulting in ocular surface discomfort, pain, visual disturbance
and impairment (if visual axis is encroached upon) (201).
The pathogenesis of pterygium is likely attributed to a
number of factors, including chronic ultraviolet radiation,
human papillomavirus infection, oxidative stress, and genetic
predisposition (202). So far, few groups have examined the role
of HDPs in patients with pterygium. Ikeda et al. (98) observed
the presence of HBD-2 in one of two conjunctival tissues of
pterygium but in none of all eight normal conjunctival samples.
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In addition, Zhou et al. (203) reported an upregulated expression
of HNP-1 to−3, and calcium-binding proteins S100A8 and
S100A9 in the tear fluids of eyes affected with pterygium.
Another demonstrated the upregulation of HBD-1 and−2 along
with a downregulation of HBD-9 in pterygium (204). These
observations may be related to the underlying fibrovascular
proliferative changes or inflammation. It was also suggested
that the dysregulation of these HDPs may play an important
contributory role to the pathogenesis of pterygium and may
serve as useful biomarkers for predicting the recurrence of
pterygium (203).

Post-ocular Surface Surgery and Wound
Healing
The integrity of corneal epithelium is of utmost importance
for ocular surface defense. Corneal wound healing relies on
the regenerative capability of limbal stem cells and involves
a complex process of cell death, migration, proliferation,
differentiation, and remodeling of extracellular matrix (205).
The integral role of HDPs for ocular surface wound healing
has been evidently demonstrated in many studies. Zhou et al.
(206) observed that the level of HNP-1 to−3 in tear fluids
increased significantly after surgical removal of ocular surface
neoplasm and returned to the baseline level after complete
healing. Moreover, the concentration of HNP-1 and−2 reached
a therapeutic level at day 3 postoperative (206). In addition,
upregulation of HBD-2 mRNA expression was observed during
the phase of corneal re-epithelialization (207).

Similarly, Huang et al. (48) previously demonstrated that
LL-37 was increased in injured corneal epithelial cells (CEC),
and recombinant LL-37 was capable of increasing the pro-
inflammatory cytokines from CECs through the activation of
G-protein coupled receptors (i.e., formyl peptide receptor-like
1). Application of vitamin D on wounded mouse corneas
was shown to delay the normal wound healing process and
increase the production of cathelin-related antimicrobial peptide
(CRAMP) (208). However, the cause-effect relationship between
CRAMP and corneal wound healing remains unknown but it
was suggested that the increase levels of HDPs during epithelial
defect would protect the cornea from infection during the healing
phase. Recent studies have demonstrated that a deficiency of
vitamin D receptors significantly delays the corneal wound
healing and decreases the nerve density (209, 210). These findings
suggest that HDPs play a crucial role in wound healing and
protection against ocular surface infection.

Atopic Dermatitis and Allergic
Keratoconjunctivitis
Atopic dermatitis (AD) is the most common inflammatory
skin condition characterized by intense pruritus and chronic,
relapsing eczematous lesions (211). The lifetime prevalence
has been estimated at 20% (211). The pathogenesis of AD
is multifactorial, with loss-of-function of the filaggrin gene
(which regulates the epidermal barrier function), overgrowth
of S. aureus (which may be caused by the dysregulation
of HBD), IgE-mediated sensitization, and neuroinflammation

playing important contributory roles (105, 211). Patients with
ADmay also suffer concurrently from atopic keratoconjunctivitis
(AKC), which is a potentially sight-threatening ocular surface
disease. Vernal keratoconjunctivitis (VKC) is another severe
form of allergic eye disease that primarily affects the children and
young adults (212).

Several studies have implicated the roles of HDPs in
AD, AKC and VKC. Both HBD-2 and LL-37 are known to
possess good antimicrobial activity against S. aureus and they
work in synergy (105). Patients with AD are found to have
substantially lower expressions of HBD-2 and−3, LL-37, and
dermcidin, which may explain their increased susceptibility to
staphylococcal skin infection compared to patients with psoriasis
(105, 213). Similarly, patients with AKC are at risk of developing
staphylococcal and herpetic infectious keratitis (214), which may
be linked to the downregulation of mBD-2 mRNA at the ocular
surface based on in vivomurine allergic eye conjunctivitis studies
(215). Hida et al. (216) observed significantly higher levels of
HNP-1 to−3 in the tears of patients with AKC complicated by
allergic corneal epithelial disease compared to healthy patients
or AKC patients with no corneal disease, suggesting a potentially
protective role of HDP in corneal complications related to allergic
eye disease. In addition, tear lactoferrin is reduced in VKC and
the underlying mechanism is likely not related to lacrimal gland
dysfunction but other factors since the level of tear lysozyme is
unaffected (217).

Rosacea
Rosacea is a chronic, relapsing inflammatory skin disease
that affects around 5% of the population (218). The risk of
ocular surface involvement may develop in up to 70% of the
rosacea patients and may occur with or without concurrent
facial/skin rosacea (3). It can result in a wide array of ocular
symptoms and signs, ranging from grittiness, visual blurring,
and pain to sight-threatening complications such as corneal
infection and perforation. The pathogenesis of rosacea remains
to be fully elucidated; however dysregulation of the innate
immunity (e.g., dysfunctional expression of HDPs) has been
implicated, in addition to a number of environmental factors,
genetic predisposition, and neurovascular dysregulation (219).
The level of LL-37 is significantly increased in the skin epidermis
in rosacea, which promotes skin inflammation via leukocyte
chemotaxis and angiogenesis (220, 221). Gokcinar et al. (24)
recently examined the role of HDPs in ocular rosacea and
observed that the gene expressions of a wide range of HDPs,
including tear HNP-1 to−3 and HBD-2, and conjunctival LL-37,
were upregulated. On the other hand, tear lactoferrin was found
to be reduced in rosacea (222).

THERAPEUTIC POTENTIALS OF HDPs
FOR OCULAR SURFACE DISEASES

Despite their promising potential as effective antimicrobial
and immunomodulatory therapies, several issues have
impeded the successful translation of HDPs into clinical
use. Complex structure-activity relationship, susceptibility to
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TABLE 2 | A summary of host defense peptide (HDP)-based molecules that are in the development pipeline for ocular surface diseases.

Molecules

(sequence)

Primary sources Current development

stage

Activities

B2088*

([RGRKVVRR]2KK)

HBD-3 (C-terminal) Pre-clinical stage - Good activity against PA (108, 226)

- Synergism with gatifloxacin and tobramycin (108)

Esculentin1–21(NH2)

(GIFSK LAGKK IKNLL ISGLK G-NH2)

Esculentin (N-terminal) Pre-clinical stage - Good activity against SA and PA (227, 228)

- Good anti-biofilm activity against PA (228, 229)

RP444

(FAOOF AOOFO OFAOO FAOFA FAF)

Cecropin and magainins Pre-clinical stage - Good activity against Gram-positive and Gram-negative

bacteria (230)

Melimine/Mel4

(KNKRK RRRRR RGGRR RR)

Melittin and protamine Pre-clinical stage +

phase 3

- Good activity against Gram-positive and Gram-negative

bacteria (231, 232)

- Reduces risk of CL-related infection (if CL coated with

Mel4) (233)

MEL-4**

(GIGAV LKVLT TGLPA LISWI KRKRQ Q)

Melittin (full-length) Pre-clinical stage - Good activity against Gram-positive and Gram-negative

bacteria and fungi (234)

CaD23

(KRIVQ RIKDW LRKLC KKW)

Cathelicidin and HBD-2 Pre-clinical stage - Good activity against SA, MRSA and PA (104)

- Strong additive effect when used with levofloxacin or

amikacin (235)

Histatin-5

(DSHAK RHHGY KRKFH EKHHS HRGY)

Histatin-5 Pre-clinical stage - Promote corneal wound healing (81)

HBD, human beta-defensin; SA, Staphylococcus aureus; MRSA, methicillin-resistant S. aureus; PA, Pseudomonas aeruginosa; CL, contact lens.

*This is a branched peptide. The duplicating residues are in bracket.

**The italicized “K” residue refers to epsilon-lysylated lysine residue. This MEL-4 molecule is different from the other Mel4 molecule.

host/bacterial proteases and physiological conditions, pro-
inflammatory properties, discrepancy between in vitro and in
vivo efficacies, and toxicity to the host tissues are the main
barriers (14, 23, 223, 224)Furthermore the lack of interest and
investment from the pharmaceutical companies, stemming
from limited life-span of antimicrobial therapy and low profits,
poses another significant hurdle for the development of new
antimicrobial agents (225). Herein, we present some of the
key HDP-based molecules that have completed in vivo animal
studies and are in the developmental pipeline for treating
ocular surface diseases. These include B2088 branched peptide,
Esculentin1–21(NH2), RP444, melimine/Mel4 antimicrobial
coating for contact lens, epsilon-lysylated melittin (MEL-4),
CaD23, histatin-5, and endogenous LL-37 (Table 2).

B2088 Branched Peptide
B2088 is a covalent dimeric peptide that is derived from the
C-terminal of HBD-3 [peptide sequence: (RGRKVVRR)2KK]
(226). The development of this branched peptide was started
in 2007 where Liu et al. (236) demonstrated that the linear
form of HBD3 maintained similar antimicrobial efficacy and
exhibited lower cytotoxicity and haemolytic activity compared
to the native form of HBD3, after refining the hydrophobicity
and substituting the cysteine residues with various amino acids.
Such properties were postulated to be related to the removal of
the disulfide bridges and the loss of secondary structure. Bai et al.
(237) further enhanced the antimicrobial activity and reduced the
host toxicity of linear HBD3 analogs by shortening the HBD3
to 10 amino acids from the C-terminal end. Taking it further,
the antimicrobial efficacy of the truncated HBD3 was further
optimized via dimerization at the lysine, which yielded the final
lead compound of B2088 (108, 226).

B2088 has been shown to demonstrate strong antimicrobial
activity against Gram-negative bacteria, particularly P.
aeruginosa (108, 226). It exerts its bacterial killing through
the binding of lipid A and disruption of supramolecular
organization of lipopolysaccharides, a major component of
the outer membrane of Gram-negative bacteria. In addition,
B2088 strong synergism with various antibiotics through
time-kill and checkerboard assays. This was further validated
in an in vivo murine P. aeruginosa keratitis study where B2088
0.05%-gatifloxacin 0.15% combination treatment reduced the
bacterial burden of corneal infection by an additional 1 LogCFU
compared to gatifloxacin 0.3% alone (108).

Esculentin-1a(1–21)NH2
The skin of amphibians contains a rich source of HDPs (238).
Esculentin-1a is a type of frog-derived HDP isolated from
the skin of Rana esculenta, or now known as Pelophylax
lessonae/ridibundus. The modified version, Esculentin-1a(1–
21)NH2, is composed of the first 20 amino acids of esculentin-
1a with a glycinamide residue at the C-terminal end (peptide
sequence: GIFSKLAGKKIKNLLISGLKG-NH2) (227). It has
been shown to demonstrate strong in vitro antimicrobial
activity against various P. aeruginosa laboratory strains (both
invasive and cytotoxic strains) and clinical strains (isolated
from eyes with keratitis and conjunctivitis), and Staphylococci
species (with a MIC range of 1–16µM) (227). In an in vivo
murine bacterial IK model infected with cytotoxic P. aeruginosa
strain, topical treatment of esculentin-1a(1–21)NH2 significantly
reduces the bacterial load, clinical severity and recruitment of
inflammatory cells to the infected corneas measured by the
relative myeloperoxidase activity (227). In addition, it was shown
to exhibit anti-biofilm activity against P. aeruginosa (228, 229)
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and prolong the survival of PAO1-infected mice in both sepsis
and pneumonia models (228). The potent activity against both
planktonic and sessile forms of P. aeruginosa was ascribed to its
underlying membrane perturbation activity (228).

RP444
The development of RP444 was inspired by the “freedom from
infection” observed in Cecropia moth and African clawed frog,
which is attributed to the cecropins and magainins peptides,
respectively (113). RP444 is a 23-amino acid designed HDP
primarily composed of phenylalanine, alanine and ornithine,
which is an unnatural amino acid used to replace lysine
residue to enhance antimicrobial activity and proteolytic stability
(peptide sequence: FAOOFAOOFOOFAOOFAOFAFAF) (230).
This designed HDP possesses a broad-spectrum antimicrobial
activity against a range of Gram-positive and Gram-negative
bacteria (MIC ranges between 4 and 64µg/ml) and anti-biofilm
efficacy. Similar to other natural and synthetic HDPs, RP444
exhibits rapid bacterial killing within 30–60min with no risk of
developing resistance. Further in vivo murine bacterial keratitis
study showed that RP444 was able to significantly reduce the
bacterial load and clinical severity of P. aeruginosa keratitis
and reduce inflammatory cell infiltration toward the infected
site (230).

Melimine and Mel4 Antimicrobial Coating
for Contact Lenses
Melimine is a 29-amino acid cationic synthetic HDP
derived from melittin (from honeybee venom) and
protamine (from salmon sperm) (239). This hybrid HDP
combines the C-terminals of both melittin and protamine,
yielding a total cationic charge of +14 (peptide sequence:
TLISWIKNKRKQRPRVSRRRRRRGGRRRR). When attached to
contact lenses, either through adsorption or covalent binding,
melimine demonstrates higher antimicrobial activities against
both Gram-positive and Gram-negative bacteria than melittin
or protamine alone (239). In addition, the hemolytic activity of
melimine is significantly lower than melittin. Furthermore, in
vivo rabbit models successfully showed that melimine-coated
lenses were safe to wear and they prevented bacterial growth on
contact lenses, which consequently reduced the rate and severity
of adverse reactions such as contact lens-induced acute red eye
(CLARE), contact lens-induced peripheral ulcers (CLPUs) and
IK (240–242). This suggests that hybridization of two different
HDPs serves as a novel strategy to enhance antimicrobial efficacy
and reduce toxicity.

However, when the melimine-coated contact lenses were
tested in a human clinical trial, these lenses were paradoxically
associated with significantly higher corneal staining compared
to uncoated lenses at day 1 (241). To overcome this unforeseen
corneal toxicity, the same research group has further refined the
hybrid HDP, which has led to the creation of Mel4 – a truncated
version of melimine with +14 net charge (peptide sequence:
KNKRKRRRRRRGGRRRR) (231). This modified HDP exhibits
modest antimicrobial activity against a broad range of Gram-
positive and Gram-negative bacteria, with good in vivo safety

demonstrated in rabbit and human trials (231). The mechanism
of action of Mel4 against P. aeruginosa was found to be related
to the neutralization of lipopolysaccharide and disruption of
cytoplasmic membrane whereas its action against S. aureus was
likely attributed to the release of autolysins with resultant cell
death instead of pore formation (232, 243). A recent randomized
controlled trial demonstrated that Mel4-coated antimicrobial
contact lens was able to reduce corneal infiltrative events by
at least 50% when compared to uncoated control lens during
extended wear over 3 months (233).

Epsilon Lysylated Melittin (MEL-4)
Being as one of the main basic and cationic amino acids, lysine
serves as a major constituent of many naturally occurring and
synthetic HDPs (244, 245). In addition to the L- and D-form,
lysine can also exist in epsilon form (ε-) where the NH2 group
at the side chain of L-lysine is linked to the alpha-carbon. ε-
Poly-L-lysine (EPL) is a basic polyamide consisting of 25–30 ε-
lysine that is naturally produced by Streptomycetaceae and Ergot
fungi (246). It is commonly used as a food preservative with
strong antimicrobial activity (247, 248). Compared to alpha-poly-
L-lysine, EPL exhibits enhanced antimicrobial efficacy against a
range of Gram-positive and Gram-negative bacteria (248, 249).
Employing the similar strategy, Mayandi et al. (234) explored the
selective incorporation of ε-lysine in melittin, which is a potent
yet toxic HDP that is found in honeybee venom. They showed
that ε-lysylation of melittin, in particular MEL-4 (different from
the Mel4 described in the above Pterygium Section), improved
the cell selectivity of the synthetic HDP toward a range of
Gram-positive and Gram-negative bacteria with reduced host
cytotoxic and hemolytic activities, whilst maintaining the in vivo
efficacy of melittin (234). This suggests that ε-lysylation may
serve as a novel strategy for improving the cell selectivity in
lysine-rich HDPs.

Hybridized LL-37 and HBD-2 (CaD23)
LL-37 and HBDs are major groups of HDP that have been
shown to play vital roles in various ocular surface diseases,
particularly infectious keratitis. Inspired by these observations,
our group recently developed a novel molecule, CaD23,
via rationale hybridization of LL-37 and HBD-2 (peptide
sequence: KRIVQRIKDWLRKLCKKW), and demonstrated
good antimicrobial activity against a range of organisms
commonly responsible for infectious keratitis, including S.
aureus, MRSA and P. aeruginosa (104). The therapeutic potential
of CaD23 was further substantiated by the strong in vivo
antimicrobial activity against S. aureus in a pre-clinical murine
model with good safety profile.

In addition, CaD23 demonstrates eight times faster
antimicrobial action when compared to amikacin, a commonly
used antibiotics for infectious keratitis (104). CaD23 also
demonstrates a strong additive effect when used in combination
with amikacin and levofloxacin against S. aureus and MRSA,
underscoring the translational potential of peptide-antibiotic
combined therapy in clinic (235). More importantly, when S.
aureus was exposed to 10 consecutive sub-lethal concentration
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of treatment, the bacteria did not develop any antimicrobial
resistance against CaD23 whereas it developed significant
antimicrobial resistance against amikacin by 32-fold (104).
The rapid antimicrobial action (thence low risk of AMR) is
likely attributed to its membrane-permeabilizing properties,
evidenced by a combination of experimental and computational
studies. Moreover, the molecular dynamics (MD) simulations
study revealed the importance of alpha-helicity, cationicity,
hydrophobicity and amphiphilicity in contributing to the
antimicrobial action of CaD23 (235).

Histatin-5
Histatin peptides have been shown to demonstrate antimicrobial
activity and wound healing properties. Based on a combination of
in vitro and in vivomurine studies, Shah et al. (81) demonstrated
that histatin-5 was able to promote corneal wound healing, and
the effect pro-migratory effect was extracellular signal-regulated
kinase 1/2 (ERK1/2) dependent. The authors were also able to
determine that the C-terminal of histatin-5 (i.e., SHRGY) was
the critical functional domain responsible for the wound healing
property. These findings highlighting the potential of histatin-
5 and/or the SHRGY pentapeptide for further development
into clinical therapeutics for ocular surface diseases such as
neurotrophic keratopathy or persistent corneal epithelial defect
following infection or injury.

Endogenous LL-37 for Atopic Dermatitis
Understanding of the dysregulated expression of HDPs provides
a unique opportunity to explore new therapeutic avenue in
managing atopic dermatitis and potentially allergic eye diseases.
As mentioned, a number of HDPs, including defensins and
LL-37, are downregulated in the AD skin lesions (250). It
has also been shown that the expression of LL-37 at the
skin can be induced by the active 1,25 dihydroxy-vitamin
D, which is regulated by the TLR-2 in keratinocytes and
monocytes (251). In addition, the severity of AD is inversely
proportionate to the level of LL-37 (252). Leveraging on
these observations, several research groups have investigated
and demonstrated that administration of oral vitamin D may
improve the clinical severity of AD (253, 254), accompanied
by an increased level of LL-37 (252). Similar strategy can
potentially be employed for treating OS diseases, including
allergic eye disease.

FUTURE DIRECTIONS

Currently there are a few clinical trials underway investigating
the potential translation of HDPs from bench to clinics. Learning
from the previous experience of other trials, particularly those
that had reached but failed phase 3 trials (255, 256), it is
important to select clinical areas and diseases that are likely
to benefit from HDP treatment; for instance, comparing the
efficacy between HDPs and antibiotic treatment for diseases
caused by multi-drug resistant infection instead of routine
and mild infection (which can be simply managed by current
antibiotic treatment) is more likely to yield significant and
clinically relevant results (130). In addition, based on the

synergistic effect and benefit of reducing dose-related toxicity
and AMR, researchers are exploring the use of HDP as adjuvant
therapy in addition to antibiotic instead of monotherapy
(108, 235). Furthermore, the increasingly recognized multi-
faceted biological functions of HDPs, including anti-biofilm,
immunomodulatory, wound healing, and anti-cancer properties,
have yet to be fully capitalized in the clinic. For instance,
HDPs such as defensins and lactoferricin have been shown to
exert strong anti-cancer activity against various types of cancer,
including colorectal, bladder, neuroblastoma, melanoma, and
cutaneous squamous cell carcinoma (257). Nonetheless, the
effect of HDP on OS neoplasia (e.g., squamous cell papilloma /
carcinoma) has never been investigated or reported, highlighting
a potential area for future research.

As there is no one set rule or principle to predict the efficacy
and toxicity of designed HDPs, the infinite chemical space
renders the design of HDPs a formidable task (7). With the
rapid advancement in bioinformatics study (including molecular
dynamic simulation), artificial intelligence and drug delivery
technologies, efficient design and development of more effective
HDPs are more likely to be achieved (130, 258). Integrating
synthetic HDPs with novel delivery systems (e.g., nanoparticles,
liposomes) may serve as a useful strategy to enhance the
proteolytic stability and reduce toxicity of HDPs in the future
(130, 259). Stimulation of the production of endogenous HDP
using FDA-approved drugs or supplements, for instance using
4-phenylbutyrate and/or vitamin D to increase the level of LL-
37, may also serve as a useful strategy in exploiting the benefits
of HDP (251, 260, 261). Such an approach helps overcome
the significant hurdles encountered during the bench-to-bedside
translational process, including the regulatory barriers, for
synthetic HDP-based molecules. In addition, the advancement
in proteomics and whole genome sequencing technologies could
facilitate the mining of previously unknown and undetected
natural gene-encoded HDP sequences (262, 263), which can be
utilized for therapeutic use in the future.
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