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In recent decades, there has been increasing attention toward the quality of life of

breast cancer (BC) survivors. Meeting the growing expectations of fertility preservation

and the generation of biological offspring remains a great challenge for these

patients. Conventional strategies for fertility preservation such as oocyte and embryo

cryopreservation are not suitable for prepubertal cancer patients or in patients who

need immediate cancer therapy. Ovarian tissue cryopreservation (OTC) before anticancer

therapy and autotransplantation is an alternative option for these specific indications

but has a risk of retransplantation malignant cells. An emerging strategy to resolve

these issues is by constructing an artificial ovary combined with stem cells, which can

support follicle proliferation and ensure sex hormone secretion. This promising technique

can meet both demands of improving the quality of life and meanwhile fulfilling their

expectation of biological offspring without the risk of cancer recurrence.
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INTRODUCTION

Breast cancer (BC) is the most widespread cancer in female worldwide (1, 2). The incidence
of this cancer has remarkably increased since the 1970’s, with the greatest boost in patients of
reproductive age (3). Owing to the diagnostic and therapeutic advances, the mortality rate of
women with BC is decreasing yearly (4). The long-term side effect of BC treatment is impaired
or even loss of reproductive function. Premature ovarian failure (POF) may lead to insomnia,
vasomotor symptoms, and osteoporosis and significantly disturbs mental function that determines
the quality of life (5). Therefore, the greatest concern of these young survivors is to preserve and
maintain their fertility (6).

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2022.837022
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2022.837022&domain=pdf&date_stamp=2022-03-17
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cqhua616@126.com
mailto:wenjie.shi@uni-oldenburg.de
mailto:liyouzhu2006@sina.com
https://doi.org/10.3389/fmed.2022.837022
https://www.frontiersin.org/articles/10.3389/fmed.2022.837022/full


Chen et al. Treatment Effects on Ovarian Function

RISKS ON OVARIAN FUNCTION DURING
THE TREATMENT OF BC

First, surgical treatment may directly cause the loss of ovarian
function. For BC with BRCA mutation carriers, bilateral
salpingo-oophorectomy is recommended by the American
College of Obstetricians and Gynecologists (ACOG) for
reducing the risk of ovarian cancer (hereditary breast-ovarian
cancer syndrome; HBOC) (7). Because BC with a positive
BRCA mutation has a greater impact on ovarian reserve
after chemotherapy treatment (8). Second, chemotherapy has
genotoxic side effects. It has immediate and long-term side
effects on ovarian function. A woman has finite primordial
follicles (about one million) derived from the proliferation of
primordial germ cells (PGCs) in their ovaries at birth, that is
called a resting pool. But 85% of follicles in the resting pool
are atresia before birth. Primordial follicles are recruited and
activated to grow from the resting pool, most of them gradually
to be atresia, and eventually, only one will ovulate during every
menstrual cycle. When primordial follicles are <1,500 in the
resting pool, this woman may quickly undergo menopause and
lose ovarian function (9). The first effect of chemotherapy on
the ovarian is immediate. It is cytotoxicity to dividing cells,
which may directly kill growing follicles and induce POF.
Chemotherapy may also induce inflammation and destruction
of vascular and stroma, which is harmful to the growth of the
follicle. However, as long as there are enough primordial follicles
in the resting pool, this phenomenon can be reversible after the
cessation of chemotherapy (10). Another relative side effect of
chemotherapy is the long-term effect on the resting pool. The
acute decrease in growing follicles, which leads to the reduction
of sex steroid hormones and inhibin, may activate primordial
follicles in the resting pool, enhance the rate of recruitment,
accelerate the depletion of the reserve, and finally lead
to POF (6).

The side effect caused by chemotherapy is dependence on
the drug category used, the total dose given, and the duration
of treatment. Alkylating agent is the strongest gonadotoxic drug
that is widely used in BC chemotherapy. Cyclophosphamide is an
alkylating agent, due to its similar DNA interstrand crosslinking
agents, which can block the division of cells. Cyclophosphamide
also may induce the expression of H2AX, which can break the
double-strand DNA of follicles (11). Doxorubicin (adriamycin)
can cross the physiological barrier of the follicle, directly acts
on the DNA of oocytes, and induces cell apoptosis. Moreover,
follicles in the germinal vesicle (GV) stage were more vulnerable
to this toxic effect (12). Antimetabolite cytotoxic drugs often used
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skin-derived stem cells; bFGF, basic fibroblast growth factor; S1P, sphingosine−1-

phosphate; SCID, severe combined immunodeficient.

for BC therapy, for example, fluorouracil and epirubicin, which
are specific to the S-phase of the cell cycle (DNA synthesis), and
have a high risk of ovarian toxicity (6).

Thirdly, radiotherapy has detrimental effects on ovarian
function. Follicle is strongly sensitive to ionizing radiation. It can
directly or indirectly impair ovarian function. When radiation
targeted the pelvis, abdomen, or total body, it will directly impair
fertility. When ovary is put away from the radiation range,
some escaping radiation will be scattered and will indirectly
impair fertility (10). The frequency of POF after radiotherapy is
related to the used dose of radiation. Whole irradiation doses
at 3–5Gy, 60% of the follicles are destroyed; with irradiation at
doses of 5Gy, 100% of the follicles are destroyed (10). When at
doses of 20Gy, 71% of women during childhood failed to enter
puberty (13).

Finally, risk of POF caused by chemotherapy is dependence
on the female’s age at breast cancer treatment. More than 80%
of childhood cancer survivors have long-term survival into
adulthood. These survivors have a 1.48-fold higher risk of POF
than their siblings (14). Anti-Müllerian hormone (AMH) was
detected falling rapidly in both prepubertal and pubertal girls
undergoing cancer therapy (15). Another risk of POF is age-
related resting pool decline on the number of primordial follicles.
Because female cancer survivors are often advised to postpone
pregnancy due to the risk of recurrence. For example, BC
survivors with hormone receptor-positive are advised to delay
pregnancy for up to 10 years after chemotherapy (6).

STRATEGIES FOR FERTILITY
PRESERVATION

Medical Gonadoprotection
Medical gonadoprotection through ovarian suppression using
GnRHa (gonadotropin-releasing hormone agonists) can inhibit
the maturation of oocyte. Its molecular structure is similar to
native GnRH but has a higher affinity to receptors. In the
beginning, it can flare up the ovarian hormone secretion (LH,
FSH). After 7 days, the reduction of functional GnRH receptor
may decrease the release of LH and FSH, which leads to the
decrease of primordial follicles’ recruitment and development.
So, GnRHa administer should start 7 days before chemotherapy
and continues until the end of therapy (16). The decrease
of ovarian hormone secretion can downregulate blood supply
to the utero-ovarian, thereby reducing the drug entering the
ovaries. The use of GnRH analogs to protect ovarian function
during chemotherapy treatment is controversial (17, 18). It
can interfere with anticancer therapy (19), and it also may
induce reversible menopausal symptoms (20). An analysis by
Lambertini et al. showed a higher pregnancy rate in women
undergoing chemotherapy combined with GnRHa. But this result
is still not ideal, the pregnancy rate in the chemotherapy-
GnRHa group is only 9.2%, whereas in the chemotherapy-alone
group is 5.5% (21). Hence, for patients with BC undergoing
fertility preservation, GnRHa can only be used as an additional
treatment to oocyte–embryo cryopreservation, but it cannot
replace it.
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Oocyte–Embryo Cryopreservation in
Patients With BC
Although young women with BC face challenges in fertility,
there are still many data showing that patients with a history
of BC successfully conceive and do not relapse, even in
patients with BC with estrogen receptor (ER)-positive (22)
or germline BRCA mutations (23). Fertility restoration by
oocytes and embryos cryopreservation should be highlighted
for young BC women before anticancer therapy. Many studies
have shown that the storage duration of cryopreservation had
no negative effects on clinical outcomes (24, 25). Additionally,
the pregnancy rate in frozen-thawed embryo transfer is even
higher than fresh embryo transfer (26). It is established that
fertility preservation and reproducible method can be safely
and efficiently without being interfered with by anticancer
treatments (27, 28). But it has some limitations. For embryo
cryopreservation, it requires sperm to fertilize, which is difficult
and unacceptable for single BC women. Oocyte and embryo
cryopreservation need ovarian stimulation to retrieve mature
oocytes, which may be considered contraindicated for patients
with BC due to its high levels of estradiol generated by
stimulation. Ovarian stimulation is also not feasible for patients
with BC in childhood or prepubertal girls. In addition, the
ovarian stimulation cycle usually takes 7–14 days, and there is
a risk of ovarian hyperstimulation. If ovarian hyperstimulation
occurs, it will take another 7–14 days to recover. These
may delay the timing of anticancer treatment, which is not
suitable for patients with who need immediate anticancer
treatment (29).

Ovarian Tissue Cryopreservation
Ovarian tissue cryopreservation (OTC) before anticancer therapy
and autotransplantation after healed is an emerging and
successful method for young BC females that has produced more
than 180 babies (16). OTC is a surgical method that can be
carried out at any stage of BC, it not only can preserve fertility,
but also restore endocrine function, produce a natural level of
hormones, and have been considered as an established strategy
for young patients with BC in many countries (30). OTC does
not need ovarian stimulation nor require sperm and can be
performed in aged 0–40 years, especially for children without
delay the timing for anticancer therapy. Gellert et al. review data
about 328 women who underwent autologous retransplantation
of ovarian tissue, nearly 95% restored hormonal function,
72% recovered fertility function, and 40% were pregnant (31).
Pacheco et al. also recorded a 65% of endocrine renovation
and produced a 37% of pregnancy rate in patients with OTC
and autotransplantation (32). The pregnancy and birth by
OTC are increasing steadily and are exceeded 200 of live
birth (33).

The risk of reimplanting residual neoplastic cells in ovarian
tissue is a major safety issue (34). Ovary contaminated by BC
is not uncommon, and nearly 13–47% of BCs have ovarian
metastases (35). These cases were asymptomatic and often
diagnosed accidentally based on autopsy or ovarian surgery,
which suggests that the incidence of ovarian metastasis was

underestimated (36). Both invasive lobular carcinoma and
invasive ductal carcinoma in BC were reported about BC cells
metastasizing to the ovaries (35). Besides, ER-positive BC and
BC with axillary lymph node metastasis are positively correlated
with ovarian metastasis (36). Furthermore, BC at stages III–IV
and inflammatory BC are more likely to have ovarian metastasis
(37). Hence, the OTC strategy for fertility preservation in young
BC females should be aware and handled with caution due to the
higher risks of ovarian metastasis and cancer recurrence. In these
patients, the emerging technology of artificial ovary which can
be an ideal alternative strategy to preserve and restore fertility
should be emphasized.

Artificial Ovary
Considering the risk of reimplanting the metastasis BC cell by
autotransplant OTC, artificial ovary as a promising fertility-
restoring alternative approach has been investigated by many
research groups from worldwide (38, 39). Although this strategy
remains challenging for clinical use, promising results have
been reported in animal models. Laronda et al. isolated
follicles from cryopreserved human ovarian tissues to form
an artificial ovary and transplanted them into ovariectomized
adult mice. A number of 6 out of 7 ovariectomized mice
with artificial ovary implanted had recovered hormone cycle
in 4 weeks (38). Kniazeva et al. extracted follicles from
young female mice and encapsulated them into an artificial
ovary, mice for subsequent transplantation and mated. Nearly
33% of female mice deliver offspring (39). The main target
function of the artificial ovary is to prevent reimplantation
of malignant BC cells and mimic the function of the ovary.
It can offer BC women opportunities to have their genetic
offspring and recover endocrine functionwithout cyclic hormone
replacement therapy.

Management for Creating a Safe Artificial
Ovary
Breast cancer cells spread through lymphatic and blood vessels
to invasive the ovaries and colonize (37). Follicles in ovary
are surrounded by a basement membrane as a protective
barrier to avoid direct contact with blood vessels, capillaries,
and white blood cells which can protect follicles from being
contaminated by malignant BC cells (34). Follicles also is a
functional unit in ovary secreting hormones and regulating the
menstrual cycle. Hence, preserving follicles is a fundamental
part of safely preserving reproductive function. Fortunately,
primordial follicles in resting pool population in the outer
cortical region of ovary and these stages of follicles are most
stable for cryopreservation due to the absence of spindle, zona
pellucida, and the smallest of follicular size (40). Theoretically,
a small biopsy of ovarian cortex is enough for cryopreservation,
because there are numerous follicles in the resting pool in the
cortex. But to increase the success rate of fertility preservation,
1/2–2/3 of the cortex from one ovary should be cryopreserved
in BC cases (41). Therefore, ovarian cortex cryopreservation
is stable, and its isolation for retrieval follicles is a safe
and well-preserved fertility function without metastasis by BC
malignant cells.

Frontiers in Medicine | www.frontiersin.org 3 March 2022 | Volume 9 | Article 837022

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Chen et al. Treatment Effects on Ovarian Function

To retrieve the most quality and quantity of follicles, several
follicle isolation methods have been proposed and tested due
to the fibrous structure of ovarian cortex. The mechanical
isolation method was first used for follicle isolation and is
the best method to preserve the morphology of follicles. It
can generate follicles with intact basement membrane and less
granulosa cell loss. But mechanical isolation is a laborious
process that takes a long time, only a small part of the follicles
can be isolated, and most of them remain in the tissues
(42). Enzymatic digestion is an alternative approach including
collagenase, Liberase, and TDE enzyme can isolate the greatest
quantity of follicles, but most of them were granulosa cell
lost or membrane damaged because the enzyme can digest
the extracellular matrix and degrade the basement membrane
(43, 44). The most effective method is the combination of
mechanical isolation and enzymatic digestion yielding high
quality and quantity of follicles (45, 46). Chiti et al. use a
modified protocol by filtering the digestion solution every
30min. After filtering, the isolated follicles were picked up
and the remaining fragments were redigested until completely
digested. This modified protocol can fully digest all types of
ovarian tissue with a good preserve of isolated follicles from
prolonged exposure to enzyme solution which may toxic and
damage for follicles (46).

Ensuring the safety of the follicular isolation procedure
without metastasis by malignant cells is a crucial step for
the artificial ovary because both follicles and BC cells are
involved in the digested solution. During the follicular retrieval
process, follicles may also contaminate by malignant cells and
replant into the artificial ovary. Soares et al. transplanted
100 leukemic cells inside an artificial ovary and grafted
it into mice, none showed any sign of leukemia after 20
weeks, with reassurance by IHC and PCR method which
showed all negative in the recovered ovary. It appears
that grafting 100 leukemic cells is insufficient to induce
leukemia (47). Meanwhile, further verified through 3 washes
of follicles can effectively eliminate malignant cells without
affecting the viability of follicles (48), and repeated experiments
by multicolor flow cytometry (MFC) also confirmed this
result (49).

Management for Creating a Functional
Artificial Ovary
Folliculogenesis is a complex regulated by interaction among
follicles, ovarian cells, and environmental (50). Mimicking the
natural environment of the follicle to support follicle survival
and development is vital for creating a functional artificial ovary.
Isolated primordial follicles that are fragile need a scaffold to
support three-dimensional structure (51). Interestingly, isolated
follicles cultured in alginate scaffold together with theca and
stromal cells had higher survival and development rates, which
indicate that extracellular scaffold together with other cells as
their native tissue microenvironment benefits follicle growth.
Growing follicles with multilaminar structures can grow up in
such tissue engineering scaffolds (52). Hence, for constructing
an artificial ovary, we need a suitable scaffold that can

maintain follicular three-dimensional structure and with other
cells or factors which could allow follicle-cell-matrix dynamic
signal communications to lead to an ovary-like environment
(Figure 1).

Design a Suitable Scaffold for Artificial
Ovary
The ultimate goal of artificial ovaries is to be retransplanted
into the human body, so its ingredients must be biosafety
and tolerable by the human body. The diameter of follicles’
folliculogenesis from the primordial stage is 19–30µm to the
mature stage 100–110µm, so this scaffold should be degradable
for follicle growth and migration. Additionally, it also should be
high-temperature resistance due to the human body temperature
(34). In addition, follicles need signal communication with cells
and their environment, and this 3D matrix should be high
penetrated to allow the diffusion of nutrients and signal pass
in and out the scaffold. Isolated follicles were fragile but it is
stable while embedded in a 3D scaffold and is convenient and
safe to manipulate and handle without disrupting the follicular
structure (53). Overall, this 3D scaffold should be (i) biosafety
and tolerable by the human body, (ii) resistant to the human
body temperature, (iii) liable for cell adhesion, proliferation, and
differentiation, and (iv) allow the dissemination of nutrients,
growth factors, and oxygen. Tissue engineering using biomaterial
supporting artificial ovary varies from natural (collagen, plasma
clot, alginate, fibrin, decellularized tissues, etc.) to synthetic
polymer (polyethylene glycol, 3D printing ovary, etc.) with
promising and encouraging outcomes conducted in animal
research models. Natural polymers are not rigid enough to
support the mechanical structure, but it is superior for cell
adhesion, migration, and signal communication. Synthetic
polymers are superior for supporting mechanical properties
when grafted in the human body, but they lack molecules for cell
adhesion which is not conducive for nutrient exchange and signal
crosstalk (54).

Collagen and plasma clot was the first natural scaffolds
used to embedded isolated primordial follicles. Telfe et al.
isolated follicles from mice and cultured them in a collagen
matrix for 5 days and then grafted them to ovariectomized
mice. Follicle can develop to a mature stage and can
produce hormones enough to support vaginal opening and
cornification of vaginal epithelium in ovariectomized mice
after 5 days of transplant, and blood vessels also appear
in the grafted gel. Mature follicles that are extracted from
this grafted gel can be harvested and finally resulted in
the embryo through in vitro fertilization (55). In the same
year, Gosden et al. isolated primordial follicles from infant
mice and culture in a plasma clot and then transferred
them back into a vacant periovarian capsule which was
immediately formed after ovariectomy. All stages of follicular
maturation can be seen in the grafted clot, eleven of fifteen
mice were pregnancies, and 2 mice produced offspring (56).
Dolmans et al. isolated human primordial follicles, embedded
in plasma clot, and xenotransplanted to immunodeficient
mice. Secondary stage and antral follicles can be found
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FIGURE 1 | Protocol for constructing an artificial ovary combined with stem cells for patients with BC to preserve fertility and restore endocrine function. (I) If the

patient is prepubertal or requires immediate chemotherapy with a potential risk of transmitting malignant cells, ovarian tissue slices are removed and long-term

cryopreserved in liquid nitrogen. After thawing, follicles can be isolated from ovarian tissue and then embedded inside a scaffold, we called it “artificial ovary.” (II)

Patient-specific induced stem cells, such as PGCs, ESCs, and OSCs, can be differentiated to form follicles and embedded into an artificial ovary. OSCs and MSCs

can also be directly placed inside the artificial ovary without differentiation. (III) Other additives can also be added into the artificial ovary, such as ovarian cells, growth

factors (VEGF, bFGF), and apoptosis suppression factor (S1P). Finally, this transplantable and functional artificial ovary can be grafted to the ovarian medulla or

implantation in a specially created peritoneal window.

in clots after 5 months of transplanted, but plasma clots
were degraded quickly leading to a large number of follicle
losses (57, 58). Hence, the contraction and deformation
characteristics of collagen or plasma clot scaffolds are difficult
to manipulate, and follicles are easy to lose which has limited
their application to load-bearing tissues in the human body
(34, 54).

Alginate is a polysaccharide-based natural polymer derived
from algae, and the rigidity of alginate can avoid structure
from being degraded. Rios et al. encapsulated isolated follicles
from mice into alginate matrix and transplanted them back
into ovariectomy mice. Many follicles can develop into antral
follicles and even mature follicles which can be successfully
fertilized by intracytoplasmic sperm injection (ICSI) (59). It
is reported that embedded isolated human primordial follicles
in alginate gel and culture in vitro for 8 days, follicles can
develop, and some of them can reach the preantral stage (60).
But when the culture in vitro for a longer time (>30 days),
follicles grow to the antral stage, but many of them were
degenerated and stopped growing after further culture (61),
since human follicles are larger than mouse follicles, alginate is
rigid and cannot be degraded without alginate lyase, which can
limit the further growth of follicles and also not conducive for
vascularization (62).

Fibrin is another natural polymer to replace plasm colt,
fibrinogen and thrombin are the main components of fibrin,
and their concentration determines the porosity and hardness of
fibrin. Fibrin has high bioadhesion with minimal inflammation
after being grafted into the human body and has been widely used
for tissue engineering. Paulini et al. isolated human primordial
follicles encapsulate in fibrin gel and xenografted in mice, and
many of the follicles can grow into the second stage after 7
days of xenografted (63). Long-term (21 days) culture in fibrin
gel of isolated mice primordial follicles can also be developed
into the antral stage, and hormone levels can be detected in
the mice (64). But fibrin has a higher degradation rate in the
human body, due to the inherent plasmin and other inhibitors
in the human body, follicles will lose the support of the
architecture after the degradation. Fortunately, the degradation
of fibrin is safe from toxic and can be naturally cleared by
the human body (65). In the natural ovary, the outer cortex
is more solid whereas the medulla is soft which can allow
follicles to migrate from solid cortex to soft medulla (66).
An interpenetrating network composed of fibrin-alginate was
investigated for embedding mice secondly follicle for short-
term culture and produced a higher meiotic rate of oocyte than
alginate or fibrin along (67). Longer-term (30 days) cultures
of isolated caprine follicles in a fibrin-alginate matrix have a
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higher maturation rate than alginate only (68). We can infer
that a partially degraded fibrin-alginate matrix is beneficial
for follicle survival and proliferation with adjustable rigidity
and degradability.

Decellularized ovarian extracellular matrix is another natural
matrix, obtained by removing the cellular components from the
natural ovary, which can highly mimic the natural ovary in vivo
allow cells to adhere and grow. Decellularized tissue has been
tested in the liver (69), lung (70), and heart (71). Nevertheless,
xenotransplantation may induce the immune reaction in the
human body and should be paying more attention to further
clinical application. Laronda et al. seeded isolated mice follicles
into decellularized bovine ovary scaffolds and grafted them to
normal ovariectomy mice with normal immune function. After
2 weeks of transplantation, an antral follicle can be discovered
in grafted scaffold (38). Isolated mice follicles were also cultured
in a decellularized porcine ovary and regrafted back natural
pregnancy, and healthy offspring was generated in the POF
mouse model after 100 days of graft (72). Hassanpour et al.
decellularized the human ovary embedded with isolated rat
follicles and grated back into a rat. Hormone and primordial
or primary follicle-like structures were detected in this suitable
cytocompatibility scaffold after 4 weeks of surgery (73). Pors
et al. also successfully embedded isolated human follicles in a
decellularized human scaffold and grated them back into a rat
for 3 weeks (74). But xenogeneic scaffolds may induce a high risk
of the immune response and also may induce some diseases, for
example, viruses, or cell residues from the donor (75).

Synthetic polymer has its advantage compared to the natural
polymer. It can tailor according to the different hardness of
the natural ovary and meet the different clinical requirements
(76). Polyethylene glycol (PEG) is widely used for engineering,
and oxygen and carbon are the main components of PEG. Kim
et al. use PEG hydrogels for embedding isolated mice follicles
and grafted into ovariectomized mice, and each stage of follicles
and corpora lutea can be discovered in scaffold after 30 days
of grafting. Hormone levels improve significantly after 60 days
of graft, and functioning blood vessels can also be detected in
the scaffold (77). However, the degradation of PEG hydrogels
is toxic, and the degradation products can easily cause immune
response (78).

3D bioprinting can precisely adjust the pore size and thickness
of the stent and can also control the rigid and other properties
of the scaffold to meet the clinical needs. It can create the
scaffold layer-by-layer to generate a tissue mimic structure (79).
Laronda et al. use gelatin as 3D ink to print a scaffold crosslink
with 250µm diameter of the strut, 350µm diameter of the
pore. After seeding isolated mice follicles in 3D printed scaffold,
the scaffold was grafted into ovariectomized mice and became
vascularized after 7 days of implantation without additional
exogenous angiogenic factors. Mature follicles can be found after
3 weeks of implantation, after 10 weeks, these grafted mice were
mated, and each recipient mice have one or two litters (80).
Other seeding isolated porcine follicles in a scaffold composed
of gelatin together with poly(epsilon-caprolactone) (PCL), to
construct a structure with 300µmof pore size and 1µmdiameter
of struts. After 10 days of in vitro culture, the follicle can adhere

well to the stent with good development and a high survival
rate (81).

ADDITIVES FOR TRANSPLANTABLE AND
FUNCTIONAL ARTIFICIAL OVARY

Stem Cells for Generating New Oocytes in
Artificial Ovary
Stem cell is an alternative source and promising strategy for
constructing an artificial ovary with regenerative function.
Pluripotent stem cells have self-renewal and differentiation
functions. Additionally, a functional oocyte in mammals needs
multiple steps of generation from a germ cell. Embryonic stem
cells (ESCs) and induced pluripotent stem cells (iPSCs) can be
induced to primordial germ cells (PGCs) or primordial germ cell-
like cells (PGCLCs), in turn, differentiated to the oocyte. Female
oogonial stem cells (OSCs) originate from very small embryonic-
like (VSEL) stem cells that exist in the ovary and have the ability
of oogenesis without inducing differentiation. In oogenesis, these
differentiations becoming primary oocytes were also regulated by
the environment in the artificial ovary on transplantation into
the body.

Induced Pluripotent Stem Cells and Embryonic Stem

Cells
Hayashi et al. induced iPSCs to perform PGCLCs and
transplanted the PGCLCs into mice seminiferous tubules. After
10 weeks of transplantation, spermatogenesis was exhibited and
can form an embryo followed by ICSI and successfully resulted
in offspring (82). Subsequently, they derived female ESCs like
ESCs and iPSCs to perform epiblast-like cells (EpiLCs) and
further induce it to PGCLCs, later coculture it with embryonic
gonadal somatic cells to form ovary in vitro and then transfer this
artificial ovary to mice for oogenesis, follicles at GV stage were
detected in 32 days after transplantation, and mature oocyte can
be isolated at 53 days after transplantation, which can be well
fertilized and generate offspring (83). Hence, ESCs–iPSCs can
be a promising source for generating new oocytes for artificial
ovaries. Despite these encouraging results, induced iPSCs may
have a risk of mitochondrial mutations, and we should pay more
attention to pathogenic mitochondrial DNA modifications after
transplanting it in vivo (84).

Female oogonial stem cells that are extracted on the surface
of the ovary can generate primordial follicles. Many studies have
confirmed the existence of OSCs in the human ovarian cortex
(85, 86). Compared to ESCs and iPSCs, OSCs initially arise
from VSEL stem cells and have the ability of oogenesis without
inducing differentiation (87). White et al. obtained OSCs from
human ovaries and in vitro manipulation, and oocytes were
generated after 2 weeks of xenotransplantation in mice (88). Zou
et al. isolated OSCs from mice ovary and transplanted them into
the ovary of POF mice which was induced by chemotherapy.
Oocytes were detected in the recipient ovary after 8 weeks of
transplantation, and offspring was generated after long-term
transplanted (more than 15 weeks) (89). Another repeated study
obtained OSCs from mice ovaries and grafted them into adult
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mouse intraovarian. Follicles can be successfully generated, and
15% of offspring was delivered after natural mating in these
grafted mice (90).

Mesenchymal stem–stromal cells (MSCs) that were obtained
from the bone marrow have self-renewal potential without
pluripotent function. It also can be retrieved from menstrual
blood, cord blood, and adipose tissue as a paracrine provider to
support stem cell growth and differentiation (91). Although it
cannot directly differentiate to the oocyte, transplantation MSCs
can secrete cytokines, signal, and growth factors to promote
stem cells such as ESCs, iPSCs, and OSCs in artificial ovary
differentiate into oocytes (92). MSCs can also simultaneously
support nutrition and immune regulation for the ovary (93). It
was reported that transplantation of MSCs can provide nearly
109 cytokines in the ovary to help recover follicles in POF
patients (94). Wang et al. grafted green fluorescence protein
(GFP, Genechem, China)-positive MSCs to the ovary and found
that they gather in the interstitium instead of follicles in
the grafted ovary (95). The umbilical cord (UC) is the most
promising source of MSCs in humans (UC-MSCs) due to its
low oncogenicity and rapid self-renewal. Yang et al. embedded
human UC-MSCs into a collagen matrix and then transplanted
it into POF mice. After 2 weeks of transplantation, hormone
levels and follicles’ number have risen significantly, and granulosa
cell proliferation and ovarian angiogenesis were detected in the
graft (96). Transplantation of MSCs can boost ovarian function
and improve the success rate and outcome of the artificial ovary
in vivo.

Ovarian Cell for Functional Artificial Ovary
An ovarian cell can support angiogenesis, and signal transduction
of the artificial ovary is fundamental for follicle proliferation
and maturation (97). Ovarian cells can secrete factors that
can regulate the transformation of primordial follicles into
primary follicles and simulate the microenvironment for follicle
growth and survival proliferation (98). There is a positive
correlation between the number of human ovarian stromal
cells and endothelial cells, the area of angiogenesis, and the
survival of follicles in the artificial ovary after transplantation
in vivo (99). Dath et al. embedded isolated human stromal and
endothelial cells together with follicles into plasma clots and
xenografting in mice ovary. Fully vascularized stromal structure
and higher scaffold degradation were detected in graft after short-
term xenograft (100). Additionally, the best source for ovarian
cells comes from fresh medulla part in the ovary after cancer
remission, and this strategy not only can reduce the risk of
reintroducing the malignant to the body, but it also can avoid
the damaging effect of cryopreservation to ovarian cells. Because
ovarian cells are sensitive to cryopreservation, chemotherapy has
less effect on ovarian cells (97). Another source for the ovarian
cell is the stem cell. Park et al. isolated stem cells from mice skin,
and we can call it skin-derived stem cells (SSCs), induced SSCs
differentiation to ovarian-cell-like cells, embedded in Matrigel
scaffold, and then transplanted into ovariectomized mice. Estrus
cycles were recovered, and follicles and blood vessels were found
in the transplants after 8 weeks of transplantation (101).

Factors for Supporting the Artificial Ovary
Growth factors such as vascular endothelial growth factor
(VEGF) and basic fibroblast growth factor (bFGF) can promote
angiogenesis and decrease apoptosis for artificial ovary in vivo.
Shikanov et al. embedded ovarian tissue together with VEGF in
fibrin gel and grafted it back into bilateral ovariectomy mice.
After 2 weeks of transplantation, a gel containing VEGF has
two times as many survival follicles and blood vessels as the
control group (102). Another study also encapsulated ovarian
tissue together with bFGF in fibrin gel and then grafted it under
the skin of mice. After 7 days of transplantation, the bFGF group
has higher follicle survival and proliferation rate, lower follicle
and ovarian cell apoptosis rate, and higher angiogenesis rate
compared to the non-bFGF group (103).

Apoptosis suppression factor sphingosine-1-phosphate (S1P)
is one of the apoptosis suppression factors that can induce cell
survival and proliferation. It is a signaling sphingolipid that
can act as an intracellular second messenger and extracellular
ligand for G protein-coupled receptors. It also can regulate
angiogenesis and vascular stability (104). Soleimani et al.
reported that xenograft of human ovarian into severe combined
immunodeficient (SCID) mice together with S1P. After 10 days
of transplantation, vascular density, angiogenic, and proliferation
of ovarian cells were increased significantly in graft, with lower
follicle apoptotic compared to the control group (104). Another
research embedded follicles together with S1P and VEGF into
fibrin scaffold and generated two times as many primordial
follicles, blood vessels, and offspring compared to the control
group (105).

CONCLUSION AND FUTURE ENDEAVORS

The number of young women who are diagnosed with BC
has risen continuously in recent years. Simultaneously, the
development of modern therapeutic significantly improved
the survival rates and prolong the life expectancy. Hence,
fertility preservation turned out to be an urgent request for
young females before gonadotoxic therapy. Artificial ovary
combined with stem cell can mimic natural ovary as a
promising strategy for patients with BC that meets the needs
of recover fertility and restore gonadal hormone function
without reintroducing the malignant cells and delaying their
cancer therapy.

As a transplantable in the human body, the scaffold of
artificial ovary should allow follicle survival and proliferation,
facilitate the formation of blood vessels and stroma in vivo,
and should be safe for the human body. Although animal
research has generated few offspring on artificial ovaries, more
experiments and animal studies should be tested to search for a
suitable scaffold for transplantable artificial ovaries. Due to the
finite source of follicles, stem cells as an alternative to female
gametes bring great hope for future clinical implementation.
Yet, stem cell therapy is still in the research stage and is
insufficient for clinical use. More research is needed to verify
and test for fill gaps that may lead to clinical benefits in
the future.
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