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With the continuous development of computer technology, big data acquisition and

imaging methods, the application of artificial intelligence (AI) in medical fields is

expanding. The use of machine learning and deep learning in the diagnosis and treatment

of ophthalmic diseases is becoming more widespread. As one of the main causes of

visual impairment, myopia has a high global prevalence. Early screening or diagnosis

of myopia, combined with other effective therapeutic interventions, is very important

to maintain a patient’s visual function and quality of life. Through the training of fundus

photography, optical coherence tomography, and slit lamp images and through platforms

provided by telemedicine, AI shows great application potential in the detection, diagnosis,

progression prediction and treatment of myopia. In addition, AI models and wearable

devices based on other forms of data also perform well in the behavioral intervention of

myopia patients. Admittedly, there are still some challenges in the practical application of

AI in myopia, such as the standardization of datasets; acceptance attitudes of users;

and ethical, legal and regulatory issues. This paper reviews the clinical application

status, potential challenges and future directions of AI in myopia and proposes that the

establishment of an AI-integrated telemedicine platform will be a new direction for myopia

management in the post-COVID-19 period.

Keywords: artificial intelligence, machine learning, deep learning, telemedicine, myopia

INTRODUCTION

With the continuous development of computer technology, big data acquisition and imaging
methods, the application of artificial intelligence (AI) in medical fields is expanding. Recently,
a large number of AI-related studies have been carried out in many disciplines, such as
ophthalmology, radiology, cardiovascularology, and oncology (1–4). Thanks to the development
of multimodal imaging, fundus photography and optical coherence tomography (OCT) have
provided rich datasets for the development of AI models and have made it possible for AI to
flourish in the field of ophthalmology. The study of diseases has expanded from initial diabetic
retinopathy (5–8), age-related macular degeneration (9–11), and glaucoma (12–15) to anterior
segment diseases, such as refractive error (16–18).
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Refractive error, represented by myopia, is becoming a
key public health issue. As any degree of myopia will
increase the risk of adverse changes in eye tissue, high
myopia and pathological myopia (PM) significantly increase
the risk of irreversible visual impairment [e.g., glaucoma,
retinal detachment, myopic macular degeneration (MMD), and
macular choroidal neovascularization] or blindness (19). Early
identification of high-risk groups of myopia and regular and
repeated follow-up to document the progression of myopia
and complications are essential for eye care providers to plan
interventions. However, current healthcare systems may not
be able to cope with the growing burden. In particular, the
COVID-19 pandemic demonstrates the need for remote testing
and monitoring. Fortunately, AI technology combined with
telemedicine can bridge this gap. To date, studies have integrated
AI into all stages of clinical practice of myopia and have achieved
positive application effects. This paper introduces the concepts
of AI, summarizes the clinical application status, discusses
potential challenges and future directions of AI in myopia, and
proposes that the establishment of an AI-integrated telemedicine
platform will be a new direction of myopia healthcare to provide
personalized management throughout the whole process for
myopia patients in the post-COVID-19 period.

AI, MACHINE LEARNING, AND DEEP
LEARNING

The concept of AI was first proposed by John McCarthy
in 1956. Its definition simulates human intelligence through
machines (20). Machine learning (ML) is a branch of AI and
mainly uses computer system programming to perform tasks or
predict results (21). ML has great potential in clinical practice
and machine translation (22). Traditional ML algorithms use
variables selected by experts as input and usually do not involve
large neural networks. They include algorithms such as linear
regression, logistic regression, support vector machine, decision
tree, and random forest algorithms (23). Deep learning (DL) is a
subset of ML.Without special programming, it can automatically
extract the rules from known data for the judgment of unknown
data; hence, DL can process more complex data (24). DL
algorithms usually involve the use of large-scale neural networks,
such as artificial neural networks (ANNs), convolutional neural
networks (CNNs) and recurrent neural networks (RNNs) (23).
Since 2012, the introduction of CNNs has allowed for major
breakthroughs in DL in imaging-based applications (e.g., object
recognition, image segmentation, and disease classification) (24).
VGG, ResNet, Inception and Inception-ResNet are some of the
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SMILE, Small incision lenticular extraction; PIOL, Phakic intraocular lens; IOL,
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popular CNNs used for classification and are now widely used in
medical image recognition (23). Deep CNNs can learn the feature
representation from data without human knowledge and have the
power to process large training data with high dimensionality.
Studies have shown that the accuracy of medical image analysis
systems based on DL in disease detection is equal to or even
better than that of clinicians or trained personnel (25, 26).
Moreover, other studies have proven the potential and feasibility
of applying DL algorithms to disease screening and detection
(27, 28). The diagnosis of many ophthalmic diseases requires
not only symptom evaluation but also imaging information. This
feature leads to the widespread use of AI technology represented
by DL in clinical ophthalmology (1).

The indexes used to evaluate the quality of an AI model
are accuracy, sensitivity and specificity, which are calculated
by using four quantitative indexes: true positive, false positive,
true negative and false negative (Table 1). A receiver operating
characteristic curve (ROC) can be drawn with the false positive
rate (FPR) as the X-axis and the true positive rate (TPR) as the Y-
axis. The area under the curve (AUC) is defined as the area under
the ROC curve and generally ranges from 0.5 (for a model with
no predictive value) to 1 (for a perfect model) (29) (Figure 1).

GLOBAL BURDEN OF MYOPIA

Myopia is one of the most common ophthalmic diseases in
the world. It mainly occurs in childhood and early adulthood
(30). According to the work of Holden and his coworkers, the
global prevalence of myopia is close to 28.3% (2 billion) of the
world’s population, of which 4.0% (277 million) suffer from high
myopia. The “myopia epidemic” is estimated to affect 49.8%
(4.758 billion) of the world’s population by 2050, with 9.8% (938
million) suffering from high myopia (≤-5.00 D). Of note, Holden
et al. standardized to a spherical equivalent of 5.00 D or less
for high myopia because it is widely used to identify people
at higher risk of pathologic myopia (31). Nature (genetics and
heredity) and nurture (environment and lifestyle) are all factors
leading to myopia (19). For most people with myopia, the most
critical risk factor is likely to be related to modern lifestyles,
which include long periods of close-eye activity. The outbreak

TABLE 1 | Common terminologies used to evaluate AI model performance.

Predicted outcome

Disease No disease

Actual outcome
Disease True positive

(TP)

False negative

(FN)

No disease False positive

(FP)

True negative

(TN)

Remark

Accuracy = (TP+TN)/(TP+FN+FP+TN)

Sensitivity = TP/(TP+TN)

Specificity = TN/(TN+FP)

True positive rate (TPR) = Sensitivity

False positive rate (FPR) = 1-Specificity
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FIGURE 1 | Three examples of ROC curve are illustrated. (A) AUC=1: A

“perfect” classifier; (B) 0.5<AUC<1: A real-world classifier, better than

random guess; (C) AUC=0.5: Like random guess (e.g., coin tossing), models

have no predictive value.

of COVID-19 at the end of 2019 undoubtedly exacerbated the
above phenomenon. Research shows that during the COVID-
19 pandemic, the reduced time spent outdoors and increased
exposure to electronic screens have led to a further increase in
the risk of myopia in children (32, 33).

Most cases of myopia are associated with excessive axial
growth (19). Retinal damage caused by excessive axial growth
is irreversible. Irreversible visual impairments caused by
myopia (e.g., glaucoma, retinal detachment, MMD and macular
choroidal neovascularization) or blindness not only increase
medical costs but also reduce the quality of life of patients,
which has caused a global medical and economic burden.
Therefore, it is of great significance to comprehensively carry out
myopia healthcare services, including the detection, diagnosis,
progression prediction and treatment of myopia, as well as the
management and prevention of ocular complications and visual
impairment in patients with high myopia.

AI IN THE DETECTION AND DIAGNOSIS
OF MYOPIA

Refractive Error Assessment
To evaluate refractive error, traditional visual acuity
examinations are not only time consuming and laborious
but also rely on expensive machines and experienced doctors
and technicians. People with expression difficulties (e.g., young
children, the elderly, and patients with verbal communication
disabilities) have particular difficulties cooperating during an
examination (34). In developing countries or impoverished

areas, the lack of doctors and medical equipment makes it
difficult to accurately evaluate refractive error, and patients
are likely to miss the optimal treatment window, resulting
in an irreversible loss of vision. Thus, providing timely and
high-quality refraction services that are accepted by the general
population is extremely needed.

While it is generally difficult for ophthalmologists to evaluate
refractive error from a retinal fundus photograph, DL techniques
are capable of predicting them fairly accurately. Varadarajan
et al. (16) trained a DL algorithm to predict refractive error
from retinal fundus photographs. By analyzing attention maps to
determine the parts of a photographmost relevant for prediction,
they concluded that attention maps consistently highlighted the
fovea as a feature that was important for prediction. Tan et
al. (35) also reported that by using color fundus photographs,
a system consisting of a CNN pretrained with the XGBoost
algorithm was able to evaluate refractive error with a high degree
of accuracy. Yang et al. (17) trained a DL system to detect
myopia automatically from ocular appearance images, and the
system obtained an AUC of 0.9270. The research demonstrated
the possibility of screening and monitoring refractive status in
children with myopia in remote areas.

The Diagnosis of Pathologic Myopia and
Complications
PM is accompanied by degenerative changes in the retina, which,
if left untreated, can lead to irrecoverable vision loss. It is essential
for ophthalmologists to have a sustainable method of monitoring
eyes with PM to reduce blinding complications, especially given
that many PM patients are young or middle aged. However, the
diagnosis of PM, defined as peripapillary atrophy and myopic
maculopathy, generally requires a complete examination that
includes an assessment of the visual acuity and color fundus
photograph acquisition tasks that are labor intensive and skill-
dependent (36).

Tan et al. (37) introduced a method to automatically
detect PM via peripapillary atrophy features by means of
variational level sets from fundus photographs. To improve
prediction accuracy, Zhang et al. (38) proposed a computer-aided
framework based on anML algorithm for the detection of PM. By
analyzing demographic and clinical information, retinal fundus
photograph data and genotyping data from 2,258 subjects,
this method achieved an AUC of 0.888 and outperformed
the detection results obtained from the use of demographic
and clinical information (an AUC of 0.607), imaging data (an
AUC of 0.852) or genotyping data (an AUC of 0.774) alone,
with increases of 46.3%, p < 0.005; 4.2%, p = 0.19; and
14.7%, P < 0.005, respectively. Recently, Hemelings et al. (39)
developed a successful approach based on a DL algorithm for the
simultaneous detection of PM, with an AUC of 0.9867, and the
segmentation of myopia-induced lesions. Other similar studies
have also been reported, such as those identifying the different
types of lesions of myopic maculopathy automatically from
fundus photographs with DL models (40, 41). In addition, OCT
macular images were used for the development of CNN models
to identify vision-threatening conditions, such as retinoschisis,
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macular holes and retinal detachment, in adults with high
myopia, and the models obtained good sensitivity and AUC
scores (42, 43).

AI IN THE PREDICTION OF MYOPIA
PROGRESSION

Considering the potential irreversible disease burden during
adulthood, concerns from parents, clinicians and policy makers
include the potential progression rate and risk of developing
high or even pathological myopia from childhood myopia (44).
Thus, predicting myopia progression can provide evidence for
transforming clinical practice, health policy-making, and precise
individualized interventions regarding the practical control of
school-aged myopia.

Lin et al. (45) identified myopia development rules and
predicted the onset of myopia and its progression for children
and teenagers from clinical measures using a random forest ML
model, which had good predictive performance (the AUC ranged
from 0.801 to 0.837) for up to 8 years in the future. Yang et al. (46)
developed a prediction model to predict myopia in adolescents
based on both measurement and behavior data of primary school
students, and the model achieved reasonable performance and
accuracy. Further research is still required for interpopulation
validation to allow these models to be generalized.

AI IN REFRACTIVE SURGERY FOR MYOPIA

The aim of refractive surgery is to correct refractive error
in adults with stable myopia and reduce their dependence
on corrective aids. Keratorefractive procedures and intraocular
procedures are two main forms of refractive surgery. At
present, keratorefractive procedures include laser epithelial
keratomileusis (LASEK), laser in situ keratomileusis (LASIK)
and small incision lenticular extraction (SMILE). Intraocular
procedures include phakic intraocular lens (PIOL) implantation
and cataract surgery (19). To achieve the goal of optimal visual
and refractive outcomes and tominimize the risk of postoperative
complications, researchers have creatively applied AI to various
stages of refractive surgery and achieved ideal results, particularly
in the preoperative screening for risk of ectasia following LASIK,
guiding the formulation of surgical plans and intraocular lens
(IOL) power calculations.

Preoperative Screening
In 1998, Seiler et al. (47) published the first reports of iatrogenic
progressive ectasia after LASIK, also known as iatrogenic
ectasia. This complication can cause postoperative refraction
regression and seriously affect the operation effect. Ectasia
occurs due to biomechanical decompensation of the stroma,
which may be related to pre-existing biomechanical weakening
(e.g., keratoconus, subclinical keratoconus, and forme fruste
keratoconus) or a severe impact on the corneal structure (e.g.,
an attempted treatment for high myopia) (48). Screening before
refractive surgeries is extremely important to identify candidates
at high risk of iatrogenic ectasia. Xie et al. (49) combined

a DL algorithm with corneal tomographic scans to develop
the Pentacam InceptionResNetV2 Screening System to screen
potential candidates for refractive surgery. They reported a
sensitivity of 80% for identifying ectasia suspects, 90% for
diagnosing early keratoconus, and an overall diagnostic accuracy
of 95% with an AUC of 0.99. To train and develop more accurate
AI-based algorithms for identifying candidates at high risk of
iatrogenic ectasia, it is necessary to have a longitudinal follow-
up and collect more clinical data to train and validate the
AI models.

Guiding the Formulation of a Surgical Plan
AI technology can guide a surgeon in selecting the best
corneal refractive surgery method to perform on a specific
patient. Yoo et al. (50) developed an expert-level multiclass
ML model for selecting refractive surgery options for patients.
They classified patients into LASEK, LASIK, SMILE and
contraindication groups. Using data from 18,480 subjects
who intended to undergo refractive surgery, the model was
trained to select the optimal refractive surgery type for
patients with accuracies of 81 and 78.9% on the internal
and external validation datasets, respectively. Cui et al. (51)
developed an ML model to recommend a nomogram for
SMILE surgery to achieve the optimal postoperative visual
outcome. They reported that the efficacy index in the ML
group (1.48 ± 1.08) was significantly higher than that in
the surgeon group (1.3 ± 0.27) (t = −2.17, P < 0.05).
For high myopia patients who intend to undergo PIOL
surgery, which involves the insertion of an additional lens in
the anterior segment, it is essential to have correct anterior
chamber depth (ACD) measurement (52). ACD measurement is
usually obtained with conventional A-scan ultrasound. However,
these machines are expensive and cumbersome and may not
be available in remote areas. Chen et al. (53) developed a
new method for predicting central ACD using a portable
smartphone slit lamp device aided by ML. This novel device
may provide a new perspective to increase the convenience of
ACD measurement.

IOL Power Calculation Related to Myopia
For patients who intend to undergo PIOL implantation or
cataract surgery to correct refractive error, accurate IOL power
is the key to improving their postoperative visual quality.
Ongoing developments in IOL power calculation incorporate
new technology and data science to improve the accuracy of IOL
selection (54). Compared with the second- and third-generation
formulas, fourth-generation formulas, such as the Olsen formula
(based on ray tracing) and Barrett Universal II (BUII), show
good accuracy and fewer refractive accidents (55). A recent
study developed a new XGBoost ML-based calculator for highly
myopic eyes, which incorporated the BUII formula results and
showed a significant improvement in the percentage of eyes
achieving ±0.25 D of the prediction error compared with the
BUII formula alone (18). To date, for high axial myopia, AI-based
IOL formulas seem to demonstrate higher levels of accuracy,
including the Hill-radial basis function (RBF) calculator and
the Kane formula (56–59). The Hill-RBF calculator uses AI
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and regression analysis with a very large database of actual
postsurgical refractive outcomes to predict IOL power (59). Hill-
RBF is based mainly on empirical data; thus, its accuracy is
limited by the type of data and eye characteristics from which
it is derived (54). To overcome this limitation, Hill-RBF 2.0
expanded the database and improved IOL power prediction for
a wider range of eye characteristics, such as high axial myopia,
by continuously collecting various eye characteristics and surgical
results (57). In September 2020, Hill-RBF 3.0 was released. With
the expansion of the Hill-RBF database, the calculator is more
likely to obtain a better accuracy in IOL power prediction. The
other promising method for IOL calculation is the Kane formula,
which incorporates AI with theoretical optics to predict IOL
power (54). Studies have shown that the Kane formula has a
smaller absolute error than the BUII, Olsen, and Hill-RBF 2.0
formulas (60, 61). In a study of 10,930 eyes in Britain, the Kane
formula had the lowest mean absolute prediction error for all
ranges of ALs and obtained the smallest absolute error for long
eyes (AL>26.0mm) (60).

AI AND MONITORING DEVICES IN THE
BEHAVIORAL INTERVENTION OF MYOPIA

Effective behavioral intervention is as important as early
detection to prevent myopia or limit myopia progression. To
understand behaviors related to myopic onset and progression,
a wearable device named Vivior Monitor (Vivior AG, Zurich,
Switzerland) was developed to investigate the visual behavior
of children with myopia (6–16 years old) (62). Using ML
algorithms, Vivior Monitor identified types of visual activities,
such as viewing handheld media, desktop work, and computer
work. This research reported that older children spent less time
viewing objects at distances, more time using a computer and
less time engaging in physical movement. There is no doubt
that outdoor activity is the main protective factor against myopia
(63, 64). Wearable devices in combination with internet or social
network apps aimed at encouraging children to spend more time
outdoors are now being developed. The Singapore Eye Research
Institute developed a novel wearable fitness tracker (FitSight),
which comprises a smartwatch (Sony Smartwatch 3; Sony Corp.,
Minato, Tokyo, Japan) with a light sensor and an accompanying
smartphone app that logs time spent outdoors and sends
feedback to parents and children (65). In addition, excessive near-
work behavior is one of the most commonly known unhealthy
visual behaviors related to myopia, and many studies have shown
that it can speed the occurrence and development of myopia
(66, 67). Clouclip (Glasson Technology Co. Ltd., Hangzhou,
China), a cloud-based sensor device that attaches to the sides
of spectacles, can objectively and dynamically monitor the
wearer’s near-work distance and duration (68, 69). This device
can provide a vibration alert when it detects risky near-work-
related behaviors, such as particularly short viewing distances
or prolonged continuous near-work behavior. Cao et al. (68)
collected data from 67 subjects who were assigned to wear
Clouclip all day (except for bathing and sleeping) during the
experiment; they found that the device can significantly modify

near-work behaviors in school-age children and that its effects
can last a certain period of time.

AI IN MYOPIA GENETICS

The mechanism of myopia is extremely complex. Nature
(genetics and heredity) and nurture (environment and lifestyle)
are all factors leading to myopia (19). In recent years, studies
on the genetics of myopia have also received considerable
attention. By linkage analysis, candidate gene analysis, genome-
wide association study (GWAS) and next-generation sequencing
(NGS), more than 100 genes and over 20 chromosomal loci
have been identified to be associated with myopia or related
quantitative traits (70–72). However, the current knowledge
about the genetic contributions of the loci and genes to myopia
remains limited (73).

To date, studies using big data for genetic analysis and
phenotyping correlation have achieved significant progress in
variousmedical fields (74, 75). Genomic readouts, combinedwith
advanced AI, could be a powerful approach for risk prediction in
multifactorial diseases such as myopia. At present, both CNNs
and RNNs have shown considerable potential in a variety of
clinical genomics applications, such as variant calling, genome
annotation, and functional impact prediction (76). Given the
diversity of myopia with regard to its environmental burden,
geographic patterns, and affiliations with different ethnicities and
cultural groups worldwide (73), further AI research with larger
multiethnic genetic samples from various research institutes will
be essential to drive the discovery of new insights into the
genetic aspects of myopia and advance AI-genomic applications
in managing childhood myopia (77).

NEW MODEL FOR MYOPIA
MANAGEMENT: TELEMEDICINE

Telemedicine is a new service model in the medical field that
aims to solve the problem of healthcare for people in remote
and underdeveloped areas by providing remote medical services
(78). The global COVID-19 pandemic is bringing telemedicine
to the forefront of ophthalmic medical services (79, 80). With
the development of AI technology and the expansion of 5G
communication network coverage, AI-integrated telemedicine
platforms will gradually become the new normal of post-COVID-
19 ophthalmic care. In the clinical application of myopia,
AI-integrated telemedicine platforms should mainly focus on
the following aspects: reducing the manpower requirements of
ophthalmic clinics, reducing the risk of direct physical contact
between patients and doctors, and personalizing management
throughout the whole process.

Devices based on AI enable non-ophthalmologist health
care workers, such as optometrists, nurses and technicians, to
perform several tasks, such as assessments of refractive error and
measurements of ACDs, individually instead of patients moving
through a number of different clinical staff, each performing a
specific task. In addition, telemedicine can not only reduce the
direct physical contact between patients and doctors but also
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prolong the distance of ophthalmic examination. For example,
the portable slit lamp examination distance has increased from
18 cm to 55 cm. The examination distance increased from 5 cm
for the direct ophthalmoscope to 47 cm for the Glasgow Retinal
Imaging Adaptor (Medical Devices Unit, NHS Greater Glasgow
& Clyde, UK) (81). These changes can not only satisfy the need
for regular and repeated follow-up to monitor and document
the refractive status of myopia with high efficiency but also limit
exposure risks.

To provide personalized management for myopia patients
throughout the whole process, we first need to realize the
integration of hospital-community-family health management.
Recently, Wu et al. (82) proposed an AI-integrated telemedicine
platform to screen and refer patients with cataracts. According to
the authors, this telemedicine platform involves self-monitoring
at home, primary healthcare and specialized hospital services.
Inspired by this platform, we propose a new management model
for myopia (Figure 2). First, considering that myopia develops
primarily during childhood and early adulthood, large-scale
refractive error screening of the target population will be carried
out regularly with portable devices and technologies based on
AI, and the examination data will be stored and documented on
telemedicine platforms. Second, AI analysis will be conducted
on the collected clinical data, images and potential genomic
data to classify the risk of myopia progression in clinically
identified individuals and formulate personalized management
plans, including visual behavioral interventions for patients
with wearable devices (77). Third, home monitoring (using
ocular appearance images taken by family members with cell
phones and visual acuity tests) can be implemented for patients
without myopia-related complications. Home monitoring and
community-based primary healthcare institutions (where retinal
fundus photographs or OCT scans are captured and used in
the telemedicine platform with AI analysis) can be used by
myopia patients with non-blinding myopia complications. If
the above patients develop pathological myopia or myopia with
blinding complications, they can be referred to the specialized
hospital via a fast tract notification system. Patients initially
diagnosed with pathological myopia or blinding complications
should be directly transferred to tertiary medical institutions.
After treatment, the patient returned home and continued home
monitoring. Fourth, for patients requiring surgical treatment, AI-
integrated telemedicine can be applied to preoperative screening
to determine the risk of ectasia following LASIK and guide the
formulation of a surgical plan and IOL power calculation.

CURRENT CHALLENGES AND FUTURE
DIRECTIONS

Despite the reported successful clinical applications of AI in
myopia, challenges and hurdles are still present. Critical technical
and clinical limitations must be surmounted prior to the
widespread implementation of AI in myopia.

Standardization of Datasets
Image-based AI technology has made some progress in the
application of refractive error assessment, screening, diagnosis

and treatment of myopia. However, image-based AI requires
large, standardized, labeled data, and ophthalmic open datasets
are very small compared to ImageNet’s tens of millions of
images (13). Obtaining large-scale and high-quality images in
a real clinical environment is a great challenge. Technically,
more advanced data enhancement methods should be utilized,
such as programming simulated lesions to be integrated
into normal image data (83) or incorporating real lesions
into other locations in normal or abnormal images (84).
Recent studies have proposed alternative training methods
that can learn from less data. For example, some studies
synthesize a large number of random and diverse medical
images by generative adversarial networks and report that
these images can be used as CNN training datasets in
the future (85–87). However, these new methods have not
achieved significant success thus far, and their effectiveness
needs to be further proven (88). In addition to the amount
of data, the quality of images also plays a great part
in the performance of AI models (5, 89). Research has
reported that poor-quality fundus images that were not
removed from the dataset were found to decrease the AUC
by 0.1 (90). To surmount this challenge, Wu et al. (23)
proposed a quality assessment system for images to select
high-quality images. The feasibility of this method needs
further study.

Attitude Toward AI
As DL is an end-to-end learning method, that is, inputting
original data and outputting results directly without manual
coding, DL lacks the ability to explain the detection results
and cannot provide an exact judgment basis for the results;
this is called the “black box phenomenon.” This could reduce
the acceptance of test results by ophthalmologists and patients
(91). With the development of DL, several approaches are
currently available to help improve the interpretability of
the results, including occlusion tests (92) and saliency maps
(93). However, there is no consensus on which saliency
map generation method is most appropriate for ophthalmic
imaging data (93). In addition, it is unclear how one
should interpret non-traditional features identified by saliency
analysis, that is, whether they should be treated as novel
biomarkers or erroneous correlations “learned” during training.
Processes need to be in place to address such disagreements,
such as an independent third party from a multidisciplinary
team, as would occur where there is clinical uncertainty
(36). Apart from that, education on the implementation and
appraisal of AI systems should be included in medical school
programs and hospital training to prepare for its adoption
when the technology reaches maturation for ophthalmology
clinical practice.

Ethical, Legal, and Regulatory Issues
With the increasing use of AI, security and privacy have become
issues of concern and involve ethical, legal and regulatory
issues (94). For example, an AI algorithm, similar to a human
ophthalmologist, is definitely prone to errors. Who is responsible
for bearing the legal consequences of an undesirable outcome due
to an erroneous judgment made by an AI algorithm? Is it the
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FIGURE 2 | The workflow of AI-integrated telemedicine platform for myopia. (A) is the workflow of initial grouping, including myopia screening, files establishing, AI

analysis and progression risk stratification for myopia patients. (B) is the workflow of continuous management involving self-monitoring at home, primary healthcare

and specialized hospital services.

company that develops the algorithm, the individual physician
who utilizes the algorithm, or the healthcare organization under
which the physician is employed (95)? In addition, protocols and
laws aimed at guaranteeing training data and testing data security
in AI need to be continually established and improved.

CONCLUSIONS

Given the rapid increases in the prevalence of all levels of
myopia in the past three decades and the non-linear rapid

COVID-19 disease expansion, there is a need to revolutionize
healthcare systems worldwide. Three main areas are the targets
for such revolutions: improving efficiency, limiting exposure
risk, and providing individualized management for myopic
patients. AI is among the most promising solutions to address
these issues. Prior to the mass adoption of AI in myopia,
AI models need to be further optimized to improve their
interpretability, human–machine interactions, generalization
abilities, and robustness. It is also necessary to develop relevant
clinical standards, integrate large-scale clinical datasets, and
develop a standard evaluation framework for AI models in
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clinical practice. Moreover, relevant laws and regulations need to
be constantly improved to achieve comprehensive supervision of
practical applications.
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