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Purpose: The purpose of this study was to construct a gene signature comprising genes

related to both inflammation and pyroptosis (GRIPs) to predict the prognosis of patients

with cutaneous melanoma patients and the efficacy of immunotherapy, chemotherapy,

and targeted therapy in these patients.

Methods: Gene expression profiles were collected from The Cancer Genome Atlas.

Weighted gene co-expression network analysis was performed to identify GRIPs.

Univariable Cox regression and Lasso regression further selected key prognostic genes.

Multivariable Cox regression was used to construct a risk score, which stratified patients

into high- and low-risk groups. Areas under the ROC curves (AUCs) were calculated,

and Kaplan-Meier analyses were performed for the two groups, following validation in an

external cohort from Gene Expression Omnibus (GEO). A nomogram including the GRIP

signature and clinicopathological characteristics was developed for clinical use. Gene

set enrichment analysis illustrated differentially enriched pathways. Differences in the

tumor microenvironment (TME) between the two groups were assessed. The efficacies

of immune checkpoint inhibitors (ICIs), chemotherapeutic agents, and targeted agents

were predicted for both groups. Immunohistochemical analyses of the GRIPs between

the normal and CM tissues were performed using the Human Protein Atlas data. The

qRT-PCR experiments validated the expression of genes in CM cell lines, Hacat, and

PIG1 cell lines.

Results: A total of 185 GRIPs were identified. A novel gene signature comprising

eight GRIPs (TLR1, CCL8, EMP3, IFNGR2, CCL25, IL15, RTP4, and NLRP6) was

constructed. The signature had AUCs of 0.714 and 0.659 for predicting 3-year overall

survival (OS) in the TCGA entire and GEO validation cohorts, respectively. Kaplan-Meier

analyses revealed that the high-risk group had a poorer prognosis. Multivariable Cox

regression showed that the GRIP signature was an independent predictor of OS with

higher accuracy than traditional clinicopathological features. The nomogram showed

good accuracy and reliability in predicting 3-year OS (AUC = 0.810). GSEA and TME
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analyses showed that the high-risk group had lower levels of pyroptosis, inflammation,

and immune response, such as lower levels of CD8+ T-cell infiltration, CD4+ memory-

activated T-cell infiltration, and ICI. In addition, low-risk patients whose disease expressed

PD-1 or CTLA-4 were likely to respond better to ICIs, and several chemotherapeutic and

targeted agents. Immunohistochemical analysis confirmed the distinct expression of five

out of the eight GRIPs between normal and CM tissues.

Conclusion: Our novel 8-GRIP signature can accurately predict the prognosis of

patients with CM and the efficacies of multiple anticancer therapies. These GRIPs might

be potential prognostic biomarkers and therapeutic targets for CM.

Keywords: cutaneous melanoma, inflammatory response, immune infiltration, immune checkpoint, prognosis,

pyroptosis, tumor microenvironment

INTRODUCTION

Cutaneous melanoma (CM), the most aggressive skin cancer,
accounts for <5% of skin cancers but more than 75% of skin
cancer-related deaths (1). The incidence of CM increases at
an average rate of 1.4% per year, with 87,000 new cases in
the United States in 2017 alone (2). The 5-year survival rate
of patients with early-stage CM is 93%, but that of patients
with highly aggressive CM is <50%, and that of patients with
advanced CM is only 15–20% (3, 4). Current methods to identify
these high-risk patients are based on their clinicopathological
characteristics. Accurate prediction of prognosis for individual
patients is infeasible owing to the molecular heterogeneity and
distinct tumor microenvironment (TME). This may explain
that some patients with CM respond well to immunotherapies,
targeted therapies, and chemotherapies, whereas others have
innate and acquired resistance to these treatments. Improving
the survival rates of these patients requires novel prognostic
models and new predictivemarkers that can be used to tailor their
treatment better.

Pyroptosis is an inflammation-dependent type of
programmed cell death (5). Pyroptosis causes cell swelling
and lysis to release vesicles containing inflammatory cytokines,
such as interleukin (IL)-1 family members and high-mobility
group box protein 1, and activate an intense inflammatory
response (6). These inflammatory molecules affect the TME
and are associated with tumorigenesis, tumor invasion, and
metastasis (7, 8). Therefore, the pyroptosis-related molecules and
their upstream genes may be potential biomarkers for a more
accurate prognosis prediction for cancer patients. Indeed, recent
studies have demonstrated that pyroptosis-related genes and
long non-coding RNAs are promising prognostic predictors for
many cancers, including pancreatic ductal adenocarcinoma (9),
ovarian cancer (10), gastric cancer (11), lung cancers (12–15),
glioblastoma (16), breast cancer (17–20), colorectal cancer
(21, 22), thyroid cancer (23), bladder cancer (24, 25), head
and neck squamous cell carcinoma (26–28), renal clear cell
carcinoma (29, 30), endometrial cancer (31), and CM (32–36).
However, how the pyroptosis-triggered inflammatory response
alters the TME to affect the prognosis of patients with CM
remains unclear. Therefore, comprehensive analyses of the

correlation between pyroptosis- and inflammation-related genes
in CM are required to develop new predictive biomarkers and
prognostic models for a more precise treatment.

In this study, we constructed a novel gene signature
comprising genes related to pyroptosis and inflammatory
(GRIPs) to predict the prognosis of patients with CM and
their responses to immunotherapies, chemotherapies, and
targeted agents.

MATERIALS AND METHODS

Data Acquisition and Normalization
RNA-seq data and corresponding clinical data were obtained
from The Cancer Genome Atlas (TCGA; https://tcga-data.
ncinih.gov/tcga/). The expression values of all genes were
downloaded in fragments per kilobase of transcript per million
mapped reads format. The RNA-seq data of normal skin were
downloaded from the Genotype-Tissue Expression (GTEx)
database (https://gtexportal.org/home/). The transcriptome
samples included 471 tumor samples and 1 normal sample.
Among them, 458 clinical samples were included for prognosis
analysis because 13 patients had missing survival time and
survival state. The clinical characteristics of the 458 patients
are displayed in Supplementary Table 2. The merged RNA
expression profile in TCGA-melanoma and GTEx-skin,
including 471CM samples and 234 normal samples, was
normalized. The batch effects between TCGA and GTEX
data were removed using the R software package “limma.”
TCGA and Gene Expression Omnibus (GEO) data were
normalized using R software packages “limma” and “sva”
to remove biases from different platforms. We identified 40
pyroptosis-related genes and 675 inflammatory response-related
genes (Supplementary Table 2) using the Molecular Signatures
Database (http://www.gsea-msigdb.org/gsea/msigdb/).

Identification of GRIPs
Co-expression Network Between Pyroptosis and

Inflammation Genes
We used Pearson correlation to identify inflammatory response-
related genes that are highly correlated with pyroptosis-related
genes (R2

> 0.4 and p < 0.001). We used Cytoscape software
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(version 3.8.0) to visualize co-expression networks of pyroptosis-
related genes and inflammatory response-related genes (37).

Pyroptosis Score Calculation
We used principal component analysis (PCA) (38) and gene
set variation analysis (GSVA) (39) scores to assess pyroptosis
in CM samples. PCA scores were based on the expression of
the 40 pyroptosis-related genes, and both principal components
1 and 2 were selected to act as pyroptosis scores (33, 40). We
define the pyroptosis score=

∑
PC1i + PC2i, i is the expression

of pyroptosis-related genes. GSVA, a method of gene set
enrichment analysis (GSEA), was used to estimate the variation of
the pyroptosis pathway (REACTOME PYROPTOSIS.gmt) over
single CM samples in an unsupervised manner. Both the PCA
score and GSVA score were recognized as the pyroptosis score,
which represented the pyroptosis status of each sample. Patients
with CM were divided into groups with either high or low
pyroptosis scores using a cutoff value identified using the method
of best separation in the R package survminer. Such grouping was
used to minimize the p-value of the survival curve. Kaplan-Meier
curves were depicted to compare the survival probability between
patients with high and low pyroptosis scores.

Weighted Gene Co-expression Network Analysis
The expression profiles of the 675 inflammatory response-
related genes were analyzed using weighted gene co-expression
network analysis (WGCNA) to select modules of genes that
were highly associated with pyroptosis PCA and GSVA scores.
Co-expression networks were constructed using the R package
WGCNA (41). Among the soft threshold values, the β that
showed the highest mean connectivity (β = 3) was chosen.
The module eigengene (ME) was associated with pyroptosis-
related genes, PCA pyroptosis score, and GSVA pyroptosis score.
Modules with the highest correlation were selected, and the
genes of these modules were identified as GRIPs. Finally, the
co-expression network method and the WGCNA modules genes
were intersected to screen the final GRIPs.

Identification of Differentially Expressed
GRIPs
To identify differentially expressed GRIPs (DEGs), we analyzed
the gene transcription data of the TCGA and Genotype-
Tissue Expression (GTEx) datasets using the R package limma
(42) with a false discovery rate < 0.05 and log2FC > 1.
Heatmaps were conducted by using the R package “pheatmap.”
Analyses of the Gene Ontology (GO) database (which includes
biological process, cellular component, and molecular function
information) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) database were used to evaluate the pathways associated
with DEGs.

Construction and Validation of a
Prognostic GRIP Signature
To obtain a prognostic GRIP signature, we first performed
univariable Cox regression to determine the association between
DEGs and overall survival (OS). DEGs found to be correlated
with OS (p < 0.05) in the univariable Cox regression were then

selected for Lasso regression to further identify the key GRIPs
according to dynamic coefficient profiling and lambda. Finally,
we performed multivariable Cox regression analysis, including
these key Lasso genes, to construct an optimal risk score. We
used a heatmap to evaluate the relevance of the risk score and
clinicopathological features.

The risk score was calculated as follows: risk score =
∑n

i=1βi
∗ (expression of GRIPs), where n is the number of key GRIPs
and β is the regression coefficient. The risk score for each CM
patient was calculated, and patients were classified as either low-
risk or high-risk using the median risk score as the cutoff. All
TCGA samples were randomly divided into a training dataset
and a testing dataset at a 1:1 ratio. The GEO dataset GSE65904
was used as an external validation cohort. The validity of the risk
score was verified in the training, testing, and entire cohort, as
well as the external cohort using receiver operating characteristic
(ROC) curves, risk plots, and survival analysis.

Independent Predictor Identification and
Nomogram Construction
To determine whether the risk score was an independent
predictor of OS, we performed univariable andmultivariable Cox
regression analyses, which included the risk score, patient age,
patient sex, melanoma stage, and TNM stage (T: tumor size; N:
lymph node involvement; M: metastasis), in the entire cohort.
Hazard ratios (HRs) and 95% confidence intervals (CIs) for each
predictor were calculated.

The R packages “rgplot,” “survival,” and “rms” were used
to construct nomograms (43) predictive of the 1-, 3-, and 5-
year OS rates of patients with CM. The calibration curves of
the nomograms in predicting 1-, 3-, and 5-year OS rates were
constructed using the R package rms. The areas under the ROC
curves (AUCs) for 3-year OS were predicted with independent
predictors, and the nomogram was calculated to evaluate the
predictive values of the GRIP signature and the nomogram.

Gene Set Enrichment Analysis
We performed GSEA to identify the biological processes
and pathways that were significantly alerted between the
high-risk and low-risk subgroups based on the KEGG
gene set “c2.cp.kegg.v7.4.symbols.gmt,” the Hallmark gene
set “h.all.v7.4.symbols.gmt,” and other inflammation- and
pyroptosis-related gene set. The TCGA gene expression was used
as a phenotype label (44). The normalized enrichment score
(NES) was calculated for each gene set. A nominal p-value of
<0.05 and a NES of >1.5 were used to identify significantly
enriched pathways.

Tumor Microenvironment Analysis
We used the CIBERSORT (45, 46), ESTIMATE (47, 48),
MCPcounter (49, 50), single-sample GSEA (51), and TIMER
algorithms (52) to compare the cellular components and immune
responses between the high- and low-risk groups. Heatmaps were
used to detect the differences in the immune response under
different algorithms. In addition, ssGSEA was used to assess
immune cell infiltration and function. Immune-related survival
analysis was performed based on ssGSEA.

Frontiers in Medicine | www.frontiersin.org 3 April 2022 | Volume 9 | Article 841568

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Xu et al. Inflammation and Pyroptosis

FIGURE 1 | Identification of GRIPs. (A) The co-expression network of pyroptosis-related genes and inflammation-related genes. Oval: pyroptosis genes; horn:

inflammatory genes. (B) CM had higher PCA pyroptosis scores than normal samples. (C) Visualization of high and low PCA pyroptosis scores. (D) Kaplan-Meier

analysis showed that patients with high PCA pyroptosis scores had a higher survival probability. (E) CM had a higher GSVA pyroptosis score than normal samples. (F)

Kaplan-Meier analysis showed that patients with high GSVA pyroptosis scores had a higher survival probability. (G–J) WGCNA identified pyroptotic inflammatory

modules (ME blue and ME turquoise) based on the PCA and GSVA pyroptosis scores. (K) A Venn diagram illustrates that the co-expression network analysis and

WGCNA have 185 overlapped genes, which are candidate GRIPs for constructing gene signature.
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Efficacies of Immune Checkpoint Inhibitors
We systematically identified 36 immune checkpoint-related
genes that might be correlated with immune checkpoint
inhibitors’ (ICIs) response from previous studies. To compare the
effect of ICI between the high- and low-risk groups, we assessed
the programmed death 1 (PD-1) and cytotoxic T-lymphocyte
antigen 4 (CTLA-4) using data from The Cancer Immunome
Atlas (https://tcia.at/). TIDE algorithm was used to calculate
the TIDE and Dysfunction scores to assess responsiveness to
immunotherapy and level of immune dysfunction (http://tide.
dfci.harvard.edu/) (53).

Sensitivity Analysis of Chemotherapeutic
and Targeted Agents
We used the “pRRophetic” package in R to evaluate the
half-maximal inhibitory concentration (IC50) of common
chemotherapy and molecular drugs to estimate the predictive
role of the GRIP signature for CM treatment, such as rapamycin,
docetaxel, and imatinib (54, 55).

Verification of the Protein Expression of
GRIPs
The protein expression levels of the GRIPs in normal and
tumor tissues were verified using semiquantitative analysis of the
immunohistochemical data extracted from The Human Protein
Atlas (https://www.proteinatlas.org/), a database that includes
immunohistochemistry-based expression data for ∼20 of the
most common types of cancers (56).

Cell Culture
Human melanoma cell line: A375 was purchased from American
Type Culture Collection (ATCC, America); SK-MEL-28 cell
line was purchased from National Infrastructure of Cell Line
Resource. Human immortalized keratinocytes cell line (Hacat)
and human skin melanocyte cell line (PIG1) were purchased
from Shanghai Guandao Biological Engineering Company with
STR certifications. All cells were cultured in Dulbecco’s modified
Eagle’s medium (Gibco) + 10% fetal bovine serum 10% fetal
bovine serum under a humidified atmosphere of 37◦C and
5% CO2.

FIGURE 2 | Identification of differentially expressed GRIPs. (A) Heatmap of differentially expressed GRIPs. (B) Volcano plot of differentially expressed GRIPs. (C) GO

enrichment analysis of differentially expressed GRIPs. (D) KEGG enrichment analysis of differentially expressed GRIPs.
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Real-Time Polymerase Chain Reaction
(RT-PCR)
The real-time quantitative PCR (qRT-PCR) was performed to
determine the relative expression levels of the genes. Total
RNA was extracted using TRIzol reagent from two melanoma
cells (A375, SK-MEL-28) and two control cells (Hacat, PIG1).
The concentration of RNA was determined by ultraviolet
spectrophotometry. Then, RNAs were reverse transcribed into
cDNAs using the PrimerScript RT Master Mix. Finally, SYBR
(Takara, Japan) was used to evaluate the mRNA expression
levels. The mRNA expression levels of TLR1, IFNGR2, CCL25,
IL15, CCL8, NLRP6, EMP3, and RTP4 were normalized by
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) that was
used as the internal reference. The primer sequences of GAPDH
and the eight genes are listed in Supplementary Table 3.

Statistical Analysis
All statistical analyses were performed using R software (version
4.0.2). Cox regression and Lasso regression analyses were used to
assess the predictive value of the GRIP signature. The Kaplan-
Meier method was used to assess the survival of CM patients.
The AUCwas calculated from the ROC curve to assess prediction
accuracy. Normally and nonnormally distributed variables were

analyzed using the unpaired Student’s t-test and the Wilcoxon
test. All statistical tests were two-sided with p ≤ 0.05 being
statistically significant.

RESULTS

Identification of GRIPs
The co-expression network first identified 206 inflammatory
response-related genes that were highly correlated with
pyroptosis-related genes (Figure 1A). Using PCA pyroptosis
scores, we found that the pyroptosis level of CM tissue was
significantly higher than that of normal tissue (Figure 1B).
Patients with CM were divided into high and low pyroptosis
score groups (Figure 1C). The OS rate of patients with high
pyroptosis scores was significantly higher than patients with
low pyroptosis scores (Figure 1D). Similarly, GSVA showed
that CM tissue had a higher pyroptosis level than normal
tissue (Figure 1E) and patients with CM and high GSVA
pyroptosis scores had higher OS rates than those with low GSVA
pyroptosis scores (Figure 1F). WGCNA of the 675 inflammatory
response-related genes identified 473 genes in the ME blue
and ME turquoise modules that were highly related to PCA
and GSVA pyroptosis scores (Figures 1G–J). The 206 genes

FIGURE 3 | Construction of the GRIP signature. (A) Forest map of 83 prognostic GRIPs identified by univariable Cox regression. (B,C) Lasso regression lambda.min

and lambda.1se criteria, parameter. (D) Multivariable Cox regression model. (E) A Sankey diagram shows the relationship between GRIPs and the risk type (risk or

protect). (F) The heatmap illustrates the association between the eight GRIPs and clinicopathological characteristics.
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obtained in the co-expression network and the 473 module genes
obtained by WGCNA were intersected to identify 185 GRIPs
(Figure 1K).

Identifying the Differentially Expressed
GRIPs
Of the 185 GRIPs, 134 were differentially expressed between
tumor and normal tissue samples. In the tumor samples,
106 of these genes were upregulated compared with those
in the normal tissue samples and 28 were downregulated
(Figures 2A,B). GO analysis of the 134 DEGs showed that
positive regulation of cytokine production, T-cell activation,
leukocyte cell-cell adhesion, and regulation of T-cell activation
was enriched in tumor samples (Figure 2C). KEGG analysis
showed that cytokine-cytokine receptor interaction, chemokine
signaling, Th17 cell differentiation, Toll-like receptor (TLR)
signaling, PD-L1 expression, and PD-1 checkpoint pathways
were significantly enriched in tumor samples (Figure 2D).

Construction of a Prognostic GRIP
Signature
Univariable Cox regression revealed that 83 of the 134 DEGs
were correlated with OS (Figure 3A). Lasso regression identified
nine prognostic GRIPs based on the optimal lambda value
(Figures 3B,C). Then, the multivariate Cox regression finally

identified eight GRIPs (EMP3, TLR1, IFNGR2, IL15, × CCL8,
× NLRP6, CCL25, RTP4) for construction of the prognostic
signature (Figure 3D). The risk score was calculated as Risk score
= 0.003 × EMP3 exp-0.065 × TLR1 exp-0.012 × IFNGR2 exp-
0.288 × IL15 exp-0.057 × CCL8 exp-0.633 × NLRP6 exp-0.329
× CCL25 exp-0.024 × RTP4 exp. The Sankey diagram showed
the prognostic co-expression relationship between the pyroptosis
genes and the GRIP signature (Figure 3E). A heatmap of the
association between the risk signature and clinicopathological
characteristics demonstrated that low immune scores were
associated with higher risk scores (Figure 3F).

Validation of the GRIP Signature
The GRIP signature had an AUC of 0.776, 0.776, and 0.713 for
predicting 1-, 2-, 3-year OS in the training cohort (Figure 4A).
The risk plots showed that the OS rates of patients gradually
decreased as their risk scores gradually increased (Figures 4B,C).
The patients in the training cohort were divided into high- and
low-risk groups using the median risk score as a cutoff, and PCA
showed the two groups to be well distinguished (Figure 4D).
In the training cohort, the OS rate of the high-risk group was
significantly lower than that of the low-risk group (Figure 4E).
The prognostic GRIP signature was validated in the testing
cohort and entire cohort (Figures 4F–O). External verification
of the GRIP signature using the GEO dataset showed that the

FIGURE 4 | The GRIP signature has prognostic significance in patients with CM. (A) ROC curve in the TCGA training cohort. (B,C) The risk scores and statuses in the

TCGA training cohort. (D) PCA of the TCGA training cohort. (E) Kaplan-Meier survival curves of the high- and low-risk groups in the TCGA training cohort. (F–I) The

risk signature was verified in the TCGA testing cohort. (J) Kaplan-Meier survival curve of the patients in the TCGA testing cohort. (K–O) The risk signature was verified

in the TCGA entire cohort. (P–T) The GEO dataset GSE65904 was used as an external validation dataset to verify the risk signature.
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FIGURE 5 | The risk score and nomogram have independent prognostic values. (A) Univariate Cox regression analyses of OS in the entire TCGA cohort. (B)

Multivariate Cox regression analyses of OS in the entire TCGA cohort. (C) The nomogram, including clinical features and the risk score, for predicting outcomes in

patients with CM. (D) The calibration curve analysis showed that the actual and the predicted 1-, 3-, 5-year survival times were consistent compared with the

reference line. (E) A decision curve showed net benefits for patients with CM. (F,G) ROC curves for the nomopoints, risk scores, and clinical features. (H) ROC curves

for the risk score and existing CM signature.

model had a fair ability to predict patient prognosis with an AUC
of 0.638, 0.660, and 0.659 in predicting 1-, 2-, and 3-year ROC
curve (Figures 4P–T).

Independent Prognostic Value of the Risk
Score and Nomogram
Univariable and multivariable Cox regressions showed that the
risk score, age, T, and n were independent predictors for the OS
of patients with CM (Figures 5A,B). The nomogram (Figure 5C)
incorporating clinicopathological characteristics and the risk
score was accurate in predicting the 1-, 3-, and 5-year OS rates of
patients with CM (Figure 5D). A decision curve analysis proved
that the signature and nomogram had a greater predictive ability

than other traditional clinicopathological features for patients
with CM net benefits (Figure 5E). The nomogram had an AUC
of 0.810, showing a good predictive ability for the outcomes
of patients with CM, which might be applied in the clinical
management of patients with CM (Figures 5F,G). Compared
with existing signatures for CM, the risk signature showed its
performance better (Figure 5H).

Gene Set Enrichment Analysis
The KEGG analysis indicated that RNA polymerase, aminoacyl
tRNA biosynthesis, base excision repair, lysine degradation,
pyrimidine metabolism, and oxidative phosphorylation were
significantly activated in the high-risk group (Figure 6A),
whereas the chemokine signaling pathway, apoptosis, JAK-STAT
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FIGURE 6 | GSEA. (A) KEGG pathways of the signature in the high-risk group. (B) KEGG pathways of the signature in the low-risk group. (C,D) Hallmark pathway

analysis revealed pathways enriched in the high-risk group (C) and low-risk group (D). (E) Enrichment analysis of pyroptosis, immune-related, and inflammatory

response-related pathways in the low-risk group.

signaling pathway, natural killer cell, Toll-like receptor signaling
pathway, cytokine-cytokine receptor interaction, T-cell receptor
signaling pathway, and antigen processing and presentation
were significantly activated in the low-risk group (Figure 6B).
The Hallmark pathway analysis showed that DNA repair, E2F
targets, MYC targets v1 and v2, and oxidative phosphorylation
were upregulated in the high-risk group (Figure 6C), whereas
IL2-STAT5 signaling, IL6-JAK-STAT3 signaling, inflammatory
response, complement signaling, apoptosis, interferon α

response, and TNFA signaling were upregulated in the low-risk
group (Figure 6D). In addition, the inflammation pathway,
T-cell receptor pathway, immune response, immune system
process, inflammasomes, PD-1 signaling, and pyroptosis were
upregulated in the low-risk group (Figure 6E). These results
suggest that a pyroptosis-mediated inflammatory response
upregulated the immune microenvironment and activated an
inflammatory response in the low-risk group.

Tumor Microenvironment Analysis
The analysis of immunocyte infiltration indicated that immune
cell subpopulations were highly enriched in the low-risk group
compared to the high-risk group (Figure 7A). The ssGSEA
of immune cells and functions showed that, compared with
the high-risk group, the low-risk group had higher levels
of immune checkpoints, cytolysis, human leukocyte antigens,
inflammation, T-cell co-stimulation, T-cell co-inhibition, CD8+
T cells, T helper cells, and tumor-infiltrating lymphocytes (TILs)
(Figures 7B,C). Differences in these factors, especially immune
checkpoints, CD8+ T cells, B cells, inflammation, TILs, NK
cells, T helper cells, and immune cells functions, had important
impacts on the survival of patients (Figures 7D–O).

Immune Checkpoints
A total of 36 immune checkpoints, including PD-L1, PD-1, and
CTLA-4, were found to be differentially expressed between the

low- and high-risk groups (Figure 8A). Compared with high-
risk patients, low-risk patients had better responses to anti-
PD-1 and anti-CTLA-4 immunotherapy (Figures 8B–E). The
TIDE and dysfunction analyses confirmed that low-risk patients
were more sensitive to immunotherapy (Figures 8F,G). The
prognostic performance in immunotherapy cohorts showed that
the patients with CM and a low-risk and high immunotherapy
score had significant elevations in prognosis (Figures 8H–M).

Drug Sensitivity Analysis
The estimated IC50 values for 17 common targeted drugs, such as
afatinib, sorafenib, and refametinib, differed significantly between
the two risk groups (Figure 9A). In addition, the low- and high-
risk groups had significantly different sensitivity to 12 common
chemotherapeutic drugs, such as docetaxel, rapamycin, cisplatin,
and DMOG, and differed significantly between the two risk
groups (Figure 9B). These results suggest that the GRIP signature
can regulate sensitivity to chemotherapeutic and targeted drugs
and that the risk model might be used to identify the potential
biomarkers for chemotherapy and targeted therapy sensitivity.

Verification of the MRNA and Protein
Expression of Genes
Immunohistochemical images of IFNGR2, CCL25, IL15, RTP4,
and NLRP6 were obtained from The Human Protein Atlas
database, and semiquantitative analysis confirmed the expression
of these proteins in CM tissues (Figure 10). Then, the expression
levels of the eight genes were validated in CM cell lines by
qRT-PCR (Figure 11). The results showed that the expressions
of TLR1, CCL8, EMP3, IFNGR2, CCL25, and IL15 were
upregulated in A375 and SK-MEL-28 cell lines compared with
Hacat and PIG1 cell lines. Although the expression of RTP4 and
NLRP6 showed no statistical difference between PIG1 cells, A375
and SK-MEL-28 cell lines, the two genes were upregulated in
A375 and SK-MEL-28 cell lines compared with Hacat cell.
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FIGURE 7 | TME. (A) Immunocyte infiltration according to analyses with the CIBERSORT, ESTIMATE, MCPcounter, EPIC, XCELL, and TIMER algorithms. (B,C) The

immune cells and functions identified with ssGSEAs. (D–O) The survival of patients is grouped by levels of immune checkpoints, CD8+ T cells, inflammation, TILs,

and T helper cells. ns, not significant; **p < 0.01; ***p < 0.001.

DISCUSSION

Major Findings
Our findings demonstrate that pyroptosis has antitumor activity

and improves patient survival. Recent studies have shown
that the antitumor effects of pyroptosis mainly depend on a

strong inflammatory response and that pyroptosis changes the
surrounding TME by triggering the release of inflammatory
mediators (57, 58). Thus, we constructed a co-expression
network and performed WGCNA to identify GRIPs and
investigate their role in CM. Overall, our analyses identified
134 differentially expressed GRIPs. Our GO and KEGG analyses
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FIGURE 8 | Immune checkpoint blockade. (A) A total of 36 immune checkpoints, including PD-L1, PD-1, and CTLA-4, were differentially expressed between high-

and low-risk patients. (B–E) Immunotherapeutic effect of anti-PD-1 and anti-CTLA-4 antibodies in high- and low-risk patients. (F) TIDE evaluation. (G) Dysfunction

evaluation. (H–M) The prognostic performance of immunotherapy cohorts. ns, not significant; *p < 0.05; ***p < 0.001.

further showed that differentially expressed GRIPs were enriched
in T-cell activation, cytokine and chemokine activity, and
inflammatory response-related signaling pathways, such as the
cytokine-cytokine receptor interaction, TLR, TNF, JAK-STAT,
nuclear factor (NF)-κB, and NOD-like receptor (NLR) signaling
pathways. After univariable Cox and Lasso regression analysis,
we also constructed a GRIP risk signature, which we verified in
the TCGA and GEO cohorts, and a nomogram scoring system
for predicting the prognosis of patients with CM. Next, In
addition, our GSEA showed that pyroptosis and inflammatory
response have potential antitumor effects in patients with CM.
Furthermore, our results also provide evidence of a complicated
relationship among CM, the pyroptosis-mediated inflammatory

response, and immunocyte infiltration in the TME. Drug
sensitivity analysis indicated that GRIP signature might be
used to identify potential biomarkers for chemotherapy and
targeted therapy sensitivity. The immunohistochemical images
of IFNGR2, CCL25, IL15, RTP4, and NLRP6 in both normal
skin tissue and melanoma tissue confirmed the expression of
the GRIPs in CM. Finally, the qRT-PCR experiments validated
the expressions of our risk genes in Hacat, PIG1, A375, and
SK-MEL-28 cell lines.

GRIP Signature and Nomogram
Many kinds of pyroptosis or inflammation signatures have
shown value in CM (32–36); however, there is almost no record
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FIGURE 9 | The GRIP signature is associated with chemotherapy and targeted therapy sensitivity. (A) The risk score was related to higher IC50 values of targeted

agents. (B) The risk score was related to higher IC50 values of chemotherapeutic agents.

about the genes both related to inflammation and pyroptosis
models in CM prognosis and anticancer therapies. Our signature
comprising eight GRIPs (TLR1, IFNGR2, CCL25, IL15, CCL8,
NLRP6, EMP3, and RTP4) was superior to Lin‘s inflammation
signature, an inflammatory response-related signature predicted
the 3-year OS of patients with hepatocellular carcinoma with an
AUC of 0.705 (59) and other researches’ pyroptosis signature
(10, 35) at 0.662 to 0.70. Our nomogram scoring system with
an ROC curve of AUCs as 0.810 was higher than a recent study
about signature nomogram in CM (60–65). In addition, all eight
GRIPs we identified directly or indirectly play vital regulatory
roles in molecular mechanisms. For example, Hu et al. have

confirmed that the expression of TLR4 was related to prognosis
and positively correlated with the infiltration of B cells, CD4 and
CD8T cells, neutrophils, macrophages, and dendritic cells in CM
(66). Goto et al. showed that TLR2, TLR3, and TLR4 are highly
expressed in human melanoma cells and that downstream signal
transduction factors, such as NF-κB, and inflammatory response-
related factors are activated in these cells (67). In another study,
Sun et al. showed that NLR signaling pathways also play an
important role in the inflammatory activity of the TLR4/NF-κB
pathway and are associated with pyroptosis and the expression
of downstream proinflammatory cytokines such as caspase-1, IL-
1β, and IL-18 (68). The TLR4 we identified in GRIP signature
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FIGURE 10 | Verification of the protein expression of genes in the GRIP signature. Images from the Human Protein Atlas show the protein expression of IFNGR2,

CCL25, IL15, NLRP6, and RTP4 in CM tissues and normal tissues. **p < 0.01.

FIGURE 11 | Validation of the expression of GRIPs in qRT-PCR. ns, not significant; *p < 0.05; **p < 0.01.

was similar to those reported previously in patients with CM.
In addition, IL15, CCL25, and CCL8 are associated with the
inflammasome, which is a multiprotein complex whose assembly
and activation are responsible for the recruitment and activation
of caspases-1 and−5 that play an essential role in pyroptosis
(68–70). EMP3 belongs to the peripheral myelin protein 22-
kDa (PMP22) gene family as novel therapeutic targets in human
cancer, which is the most important indicator of progression-
free and metastasis-free survival for patients with urothelial
carcinoma of the upper urinary tract (71). Therefore, our results
suggested that the eight GRIPs might regulate pyroptosis by

producing inflammation response. The functional enrichments
we identified in CM were similar to those reported previously.

Genes Related to Both Inflammation and
Pyroptosis Signature in TME and
Anticancer Therapies
In the TME, pyroptosis and the inflammatory response may
enhance immune surveillance and antitumor immunity by
recruiting TILs such as CD4+ and CD8+ T cells (72–74),
and high levels of immune cell infiltration are associated with
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favorable outcomes (75). Our results further provide evidence of
a complicated relationship among CM, the pyroptosis-mediated
inflammatory response, and immunocyte infiltration in the TME.
For instance, our signature mainly had a significantly positive
correlation with the infiltration of neutrophils, CD8+ T cells,
CD4+ T cells, and dendritic cells, which also had high expression
levels of pyroptosis-related genes. Some studies have indicated
that the level of immune infiltration in the TME (particularly
that of immune cell subpopulations such as CD8+ T cells)
is a crucial factor in the assessment of melanoma prognosis
(76). Ahmadzadeh et al. reported that CD8+ T cells stimulate
granulocytes and “produce perforin” or “produce granulocyte
colony-stimulating factor and perforin” to kill tumor cells and
that melanoma with high CD8+ T cell infiltration is more likely
to respond to anti-PD-1/PD-L1 therapy (77). Similarly, we found
that the GRIP signature was also highly correlated with PD-
1 and CTLA-4 expression and with enhanced ICI efficacy and
chemotherapeutic and targeted drug sensitivity in patients with
CM. Thus, regulating the expression of GRIPs may increase the
efficacy of ICB in melanoma, and our results also revealed the
potential value of the GRIP signature to enhance the effect of
immunotherapeutic, chemotherapeutic, and targeted drugs.

CONCLUSION

The 8-GRIP prognostic signature we identified may be an
independent prognostic factor for patients with CM. Our
analyses of functional enrichments, the TME, ICI, and drug
sensitivity verified that pyroptosis and inflammatory response
play crucial roles in predicting the prognosis and immunotherapy
response of CM. Finally, the qRT-PCR validated the expression
of the eight genes in tumor cells. These findings may provide
potential therapeutic targets in CM.

Limitation
Although this study presents encouraging results, there are
still several limitations in our study. First, the model was

constructed and validated in open data source (TCGA and GEO).
It would be better if its prognostic value was tested in another
independent patient cohort. Second, our study lacked validation
of clinical samples. Future studies are required to investigate the
underlying mechanisms of GRIPs in mediating CM progression
and immune microenvironment. We will continue to work on
this in further studies.
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