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Intrahepatic cholangiocarcinoma (iCCA) is an aggressive primary liver malignancy with
an increasing incidence worldwide. Recently, histopathologic classification of small duct
type and large duct type iCCA has been introduced. Both these types of tumors exhibit
differences in clinicopathological features, mutational profiles, and prognosis. Small duct
type iCCA is composed of non-mucin-producing cuboidal cells, whereas large duct type
iCCA is composed of mucin-producing columnar cells, reflecting different cells of origin.
Large duct type iCCA shows more invasive growth and poorer prognosis than small
duct type iCCA. The background liver of small duct type iCCA often shows chronic
liver disease related to hepatitis B or C viral infection, or alcoholic or non-alcoholic fatty
liver disease/steatohepatitis, in contrast to large duct type iCCA that is often related
to hepatolithiasis and liver fluke infection. Cholangiolocarcinoma is a variant of small
duct type iCCA composed of naïve-looking cuboidal cells forming cords or ductule-
like structures, and shows better prognosis than the conventional small duct type.
Fibrous tumor stroma, one of the characteristic features of iCCA, contains activated
fibroblasts intermixed with innate and adaptive immune cells. The types of stroma
(mature versus immature) are related to tumor behavior and prognosis. Low tumor-
infiltrating lymphocyte density, KRAS alteration, and chromosomal instability are related
to immune-suppressive tumor microenvironments with resistance to programmed death
1/ programmed death ligand 1 blockade. Data from recent large-scale exome analyses
have revealed the heterogeneity in the molecular profiles of iCCA, showing that small
duct type iCCA exhibit frequent BAP1, IDH1/2 hotspot mutations and FGFR2 fusion, in
contrast to frequent mutations in KRAS, TP53, and SMAD4 observed in large duct type
iCCA. Multi-omics analyses have proposed several molecular classifications of iCCA,
including inflammation class and proliferation class. The inflammation class is enriched
in inflammatory signaling pathways and expression of cytokines, while the proliferation
class has activated oncogenic growth signaling pathways. Diverse pathologic features
of iCCA and its associated multi-omics characteristics are currently under active
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investigation, thereby providing insights into precision therapeutics for patients with
iCCA. This review provides the latest knowledge on the histopathologic classification
of iCCA and its associated molecular features, ranging from tumor microenvironment to
genomic and transcriptomic research.

Keywords: intrahepatic cholangiocarcinoma, pathology, small duct, large duct, tumor microenvironment,
genomics, transcriptomics

INTRODUCTION

Cholangiocarcinomas (CCAs) include intrahepatic CCA (iCCA),
perihilar CCA, and distal CCA (1). Anatomically, iCCA, often
called as “peripheral CCA,” is defined as a tumor located in the
periphery of the second-order bile ducts, ranging from segmental
bile ducts to smaller branches of the intrahepatic biliary tree.
Perihilar CCA, also known as Klatskin tumor, is defined as a
tumor that arises at the junction where the right and left hepatic
ducts meet, with the insertion site of the cystic duct as its
distal limit. CCAs involving more of the distal area, such as the
common bile duct, is defined as distal CCA. This review mainly
focuses on iCCA.

Recent evaluation indicates that iCCA comprises
approximately 10–15% of primary liver malignancies (2, 3),
and its incidence worldwide has increased over the past decades
(4). However, changes in the nomenclature, classification,
and the disease coding system of CCA have hampered the
accurate estimation of the incidence of iCCA (5). Countries
with the highest incidence include South Korea (2.8 per 100,000
people/year), where Clonorchis sinensis infection was prevalent
in the past, and Thailand (2.2 per 100,000 people/year), which
still is an endemic area for infections due to Opisthorchis viverrini
(4, 6, 7). In other countries where parasites are not endemic, the
incidence of iCCA is low, usually below or around 1 per 100,000
people/year. Moreover, there are proposed risk factors such as
choledochal cyst, primary sclerosing cholangitis, chronic B or
C viral hepatitis, and non-alcoholic fatty liver disease caused
by obesity or metabolic syndromes. However, a significant
proportion of patients with iCCA have no known risk factors
(4, 8). Since these patients rarely present symptoms in the
early stage, they are often diagnosed with advanced disease
with a dismal prognosis and 5-year overall survival rate of
approximately 10% even in developed countries (9–11).

Intrahepatic cholangiocarcinoma is an epithelial neoplasm
with biliary differentiation, and usually presents with abundant
fibrous tumor stroma containing cancer-associated fibroblasts
(CAFs), innate and adaptive immune cells, etc. Recently, iCCAs
have been classified into two subtypes namely, small duct
type and large duct type (3, 12). Furthermore, the molecular
characteristics of iCCA are under active investigation owing

Abbreviations: CCA, cholangiocarcinoma; iCCA, intrahepatic
cholangiocarcinoma; CAFs, cancer-associated fibroblasts; TCGA, The Cancer
Genome Atlas; WHO, World Health Organization; MUC, mucin; CRP, c-reactive
protein; EBER, Epstein–Barr virus-encoded small RNA; CKs, cytokeratins; FGB,
fibrinopeptide B; CLC, cholangiolocarcinoma; HCC, hepatocellular carcinoma;
DPM, ductal plate malformation; IPNB, intraductal papillary neoplasm of the
bile duct; BilIN, biliary intraepithelial neoplasia; IPMN, intraductal papillary
mucinous neoplasm; TAMs, tumor-associated macrophages.

to technological advances in nucleotide sequencing and the
availability of massive data sources on cancer, such as The Cancer
Genome Atlas (TCGA) and cBio Cancer Genomics Portal (13,
14). The combination of histopathological and multi-omics data
have provided novel insights into understanding the molecular
pathology and thereby, developing therapeutic options for iCCA.

This review aims to provide the latest knowledge on the
histopathologic classification of iCCA based on the fifth edition
of the World Health Organization (WHO) classification of
digestive system tumors. In addition, we discuss the associated
molecular features based on tumor microenvironment, genomic
and transcriptomic research results presented so far.

PATHOLOGICAL FEATURES OF
INTRAHEPATIC
CHOLANGIOCARCINOMA

Intrahepatic cholangiocarcinoma is an adenocarcinoma arising
in the intrahepatic biliary tree. Fibrous tumor stroma is one
of the characteristic features of iCCA, and the fibrous stroma
is various in amount and distribution. The tumor center
is usually more fibrotic than the tumor periphery, showing
proliferating tumor cells invading into the surrounding liver.
Lymphovascular and perineural invasion are often detected even
at an early stage.

Gross Features of Intrahepatic
Cholangiocarcinoma
Macroscopically, iCCAs can be classified into three types: mass-
forming, periductal infiltrating, and intraductal growing. Based
on gross appearance, the mass-forming type is most common,
and often exhibits mixed features (Figure 1) (15). The mass-
forming type shows a definite round tumor mass with invasive
border. The cut surface is usually white, pale tan or yellowish in
color with firm consistency due to fibrous tumor stroma. The
periductal infiltrating type shows a growth pattern that extends
along the bile duct, exhibiting a whitish fibrotic and thickened
bile duct wall. The intraductal growing type grows into the lumen
of the bile duct, forming single or multiple soft papillary masses
attached to the bile duct wall. The tumor mass and resultant
obstruction often dilate the bile duct and make the tumor
symptomatic. Since most of the intraductal growing type iCCA
cases are now being considered as malignant transformations
of intraductal papillary neoplasm of the bile duct (IPNB), in
the latest fifth edition of WHO classification, gross morphologic
types of iCCA include mass forming, periductal infiltrating and
mixed type of these two (3, 16).
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FIGURE 1 | Macroscopic types of intrahepatic cholangiocarcinoma.
(A) Mass-forming (MF) type showing a whitish tan tumor mass invading
adjacent liver parenchyma. (B) Periductal infiltrating (PI) type showing a
whitish periductal tumor growth along the bile duct branches. (C) Mixed type
of MF and PI showing a solid tumor of MF type (white arrow) and a periductal
growth of PI type (black arrow). (D) Intraductal growing type showing a friable
tumor mass in the dilated bile duct (white arrow). This type of tumor is
re-classified as intraductal papillary neoplasm of bile duct.

Classification of Small Duct Type and
Large Duct Type
Conventional iCCA can be further classified into two
histopathological types according to the level or size of the
affected duct. Recently, small duct type and large duct type
iCCA have been introduced in the WHO classification (3).

Small duct type iCCA, which has been reported as a peripheral,
ductular, and cholangiolar type, accounts for 36–84% of iCCA
(12, 17–19). Small duct type iCCA shows small-sized tubular
growth of cuboidal or low-columnar tumor epithelial cells. There
is little or no mucin production, and occasional areas of growth
exhibit a pattern resembling ductular reaction with slit-like
glandular lumen (Figures 2A,B). Background liver of small duct
type iCCA often shows chronic liver disease related to B viral
hepatitis, C viral hepatitis, alcoholic hepatitis, and non-alcoholic
steatohepatitis (12, 17, 20).

Large duct type iCCA, which has been reported as bile duct
type or perihilar type, arises in large intrahepatic bile ducts and
comprises 8–60% of iCCA cases (12, 17–19). Large duct type
iCCA is composed of mucin-producing columnar cells forming
irregular shaped-and-sized tubules or gland-like structures. This
type usually shows a highly invasive growth pattern accompanied
by a desmoplastic reaction (Figures 2D,E) (3). Pathological
examination of the background liver of large duct type iCCA
often reveals chronic bile duct injury due to hepatolithiasis,
parasitic infection in bile ducts, or primary sclerosing cholangitis
(8, 20).

Furthermore, histopathological features of small duct type and
large duct type iCCA are related to their gross appearance. The
periductal infiltrative type of iCCA is exclusively large duct type,
whereas the mass-forming type is more heterogeneous, including
small duct and large duct types (17, 21). Mass-forming type iCCA
with small duct type histology showed better prognosis than other
types (17).

Putative Cells of Origin
Small duct type iCCA occurs in smaller intrahepatic bile ducts
compared to large duct type. Canals of Hering, which are
histological structures that link hepatic canaliculi and the biliary
tree, cuboidal cholangiocytes of bile ductules, and interlobular
bile ducts are considered as the putative cells of origin (22,
23). In contrast, large duct type iCCA might be derived from
columnar biliary epithelium producing mucin or peribiliary
glands around them (8, 20). However, the cellular origin of iCCA
is still controversial, since various lineage tracing animal studies
showed mixed results indicating hepatic stem or progenitor cells,
cholangiocytes or hepatocytes as the cells of origin of iCCA (24,
25). Further research is required to conclusively define the origin
of small duct and large duct type iCCAs.

Immunohistochemical Markers for Small Duct Type
and Large Duct Type Intrahepatic
Cholangiocarcinoma
Examination of a panel of immunohistochemical (IHC) markers
is useful to differentiate small duct type and large duct type.
In large duct type iCCAs, high expression of mucin (MUC)
core protein 5AC, MUC6, and S100 calcium-binding protein P
(S100P) has been reported (26, 27), whereas neural cell adhesion
molecule (NCAM, also known as CD56) and N-cadherin have
been found to be highly expressed in the small duct type. NCAM
and N-cadherin are normally expressed in cholangioles (28,
29). Intra- and/or extracellular mucin, detected by mucicarmine
or Alcian blue staining, is abundant in the large duct type
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in contrast to its scarcity or absence in the small duct
type. Examining a panel of these markers, including S100P,
N-cadherin, NCAM, and Alcian blue, has been reported to be
more effective in differentiating small duct and large duct types
(12). Additionally, c-reactive protein (CRP) was recently found to
be an effective marker for the diagnosis of small duct type iCCA
(30) (Figures 2C,F). Biliary cytokeratins (CKs) such as CK7 and
CK19 are useful for confirming biliary differentiation or biliary
origin. However, their ability to differentiate between small duct
type and large duct type iCCA is limited (31, 32).

Histopathological features of hematoxylin and eosin-
stained slides usually provide insight to distinguish small
duct and large duct type iCCA. In addition, application of
immunohistochemical (IHC) markers (S100P, NCAM, and
N-cadherin) and special stain for mucin is useful to support
the diagnosis of iCCA subtypes, especially when the tissue is
limited in biopsies.

Comparison of Prognosis and Treatment Response
Between Small Duct Type and Large Duct Type
Intrahepatic Cholangiocarcinoma
The prognosis of small duct type iCCA is generally favorable
compared to that of large duct type iCCA (12, 17, 33,
34). Accordingly, inflammation-related markers [CRP and
fibrinopeptide B (FGB)] and proliferation-related markers
[extracellular signal-regulated kinases (ERK) 1/2 and Ki-67]
are highly expressed in small duct type iCCA and large duct
type iCCA, respectively (17). It has also been reported that the
response to conventional chemotherapy is better with small duct
type than with large duct type iCCA (35).

Differential Diagnosis of Intrahepatic
Cholangiocarcinoma in a Biopsied Tissue
For liver primary tumors, diagnosis of iCCA
requires differentiation from combined hepatocellular-
cholangiocarcinoma (cHCC-CC), since both components
of cHCC-CC may not clearly present due to the limitations of the
biopsied tissue. Application of IHC markers for hepatocellular
carcinoma (HCC) is helpful to identify portions of hepatocytic
differentiation. Hepatocyte paraffin-1 (Hep Par 1) and arginase-1
(ARG1) are highly sensitive and specific (both exceeding 80%)
markers, and addition of glypican-3 (GPC) is shown to be useful
for the diagnosis of poorly differentiated areas of hepatocytic
differentiation with sensitivity over 80% (36).

Since an iCCA is histopathologically an adenocarcinoma, it
is necessary to differentiate it from metastatic adenocarcinoma
from other organs. Application of the following IHC markers
is helpful. Caudal-type homeobox 2 (CDX2) is a widely used
marker for the diagnosis of metastatic colorectal adenocarcinoma
with sensitivity over 90%. Since its specificity is relatively
low (70%) (37), combination with CK7 and CK20, which are
usually negative and positive in colorectal adenocarcinoma,
respectively, is recommended (32). Adenocarcinoma of the lung
and ductal carcinoma of the breast, which can be differentiated
by IHC staining with antibodies of thyroid transcription factor-
1 (TTF-1; 75% sensitivity and specificity) (38, 39) and GATA
binding protein 3 (GATA-3; over 90% sensitivity and specificity),

respectively (38, 40, 41). Paired box 8 (PAX8) is a sensitive
marker for ovarian and endometrial carcinomas, as well as
for renal cell carcinomas with sensitivity approaching 90%
(40). Metastatic prostate adenocarcinoma is usually positive
for the antibodies against prostate specific antigen (PSA) and
prostate specific acid phosphatase (PSAP), with sensitivity and
specificity exceeding 95% (40, 42). However, in cases of metastatic
adenocarcinomas originating from organs adjacent to the liver
including gallbladder, pancreas, and stomach, etc., it is difficult to
differentiate iCCA from these tumors, due to the lack of specific
IHC marker. Some potentially promising markers have been
introduced, and filamin A was reported to show high positivity
(63%) by immunohistochemistry on iCCA (43). Recently, an
in situ hybridization assay for albumin RNA was reported to show
90% sensitivity and 100% specificity for iCCA, particularly for the
differentiation of small duct type iCCA and metastatic tumors
(44–46).

Variants of Intrahepatic
Cholangiocarcinoma
Cholangiolocarcinoma
Cholangiolocarcinoma (CLC) is a variant of iCCA that belongs to
the small duct type. It is defined as an iCCA with more than 80%
of the tumor area showing cholangiolocellular differentiation
without hepatocellular differentiation. The prefix “cholangiolo”
implies histopathological similarity to the cholangiole or canals
of Hering (47). CLCs show small cuboidal cells forming cords
or tubular structures with antler-like growth resembling the
ductular reaction of non-tumorous liver (48). Often, the lumina
of tumor cords are inconspicuous, the atypia or pleomorphism
of tumor epithelial cells is minimal, and regularly spaced
intervening stroma is also a characteristic feature (Figure 3A).

CLC is thought to arise at the bile ductule, containing
hepatic stem or progenitor cells, and canals of Hering. It was
previously classified as a subtype of combined hepatocellular-
cholangiocarcinoma (49), however, molecular profiling studies
favor the classification of CLC as part of iCCA (50). According
to the current WHO classification, CLC without components of
HCC or intermediate carcinoma is an iCCA and is not considered
as combined hepatocellular-cholangiocarcinoma.

CLC is distinguished from conventional small duct type
iCCAs based on its excellent outcome, which shows significantly
higher overall and disease-free survival (49, 51). Even iCCAs
with cholangiolocellular differentiation (>10% of the tumor area)
were found to have a better prognosis than those without (17,
52). A transcriptomic profiling study reported that iCCA with
cholangiolocellular differentiation correlated with inflammation
class, while iCCA without cholangiolocellular differentiation
correlated with proliferation class (the molecular classification
is discussed in more detail later in the genomic-transcriptomic
profiles section) (52, 53).

Intrahepatic Cholangiocarcinoma With Ductal Plate
Malformation Pattern
Ductal plate malformation (DPM) refers to a developmental
anomaly characterized by pathologically existing embryonic
bile duct structures (“ductal plates”). The percentage of iCCAs
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FIGURE 2 | Representative microscopic images of small duct type and large duct type intrahepatic cholangiocarcinoma (iCCA). (A–C) Small duct type iCCA. (A) A
low-power view showing uniform-shaped tumor glands replacing hepatocellular trabeculae at the border (indicated by dashed line). (B) A higher magnification image
showing the growth of cuboidal cells forming cords and small glandular structures, without intra- or extracellular mucin. (C) Microscopic images of special and
immunohistochemical panel staining for small duct type iCCA; positive expression of NCAM, N-cadherin and CRP, negative expression of S100P, and absence of
mucin in the Alcian blue staining is characteristic. (D–F) Large duct type iCCA. (D) A low magnification image shows infiltrative growth of adenocarcinoma with rich
fibrous stroma. (E) A higher magnification image showing columnar cells with intracellular mucin forming irregular glandular spaces. (F) Microscopic images of
special and immunohistochemical panel staining for large duct type iCCA; positive expression of S100P, presence of mucin in the Alcian blue staining, and negative
expression of NCAM, N-cadherin, and CRP is characteristic. Original magnification: 40× for (A,D), 100× for (B,E), 200× for (C,F). S100P, S100 calcium-binding
protein P; NCAM, neural cell adhesion molecule; CRP, c-reactive protein; PAS, periodic acid–Schiff.
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FIGURE 3 | Variants of intrahepatic cholangiocarcinoma (iCCA). (A) Cholangiolocarcinoma. Bland-looking small cuboidal tumor epithelial cells are forming cords or
ductules, with antler-like branching pattern. (B) iCCA with ductal plate malformation pattern. Cuboidal tumor cells are forming irregularly dilated and coalesced
spaces, resembling developmental anomaly of ductal plate. (C) Adenosquamous carcinoma showing both of gland-forming portion and portions with squamous
differentiation. (D) Mucinous carcinoma. Mucin-producing tumor cell clusters are floating in mucin pools. (E) Clear cell carcinoma. Tumor cells have large clear
cytoplasm with eccentric nuclei. (F) Mucoepidermoid carcinoma showing squamoid tumor cells intermixed with mucin-producing cells. (G) Lymphoepithelioma-like
carcinoma showing marked lymphocytic infiltration into tumor epithelial component. Tumor epithelial cells are positive for Epstein–Barr virus (EBV), detected by in situ
hybridization of EBV-encoded small RNA (inset). (H) Sarcomatous iCCA showing mainly pleomorphic spindle cells, with adenocarcinoma components in the upper
left corner. Original magnification: 100×.

that are diagnosed as iCCAs with DPM pattern is very small,
approximately 2.9% of cases in a cohort of 175 resected iCCAs
(54). Histopathologically, the tumor epithelial cell lining is

usually benign-looking cuboidal cells without mucin production,
and they form glandular structures that are elongated, tortuous,
and coalesced, mimicking ductal plates (Figure 3B) (55). Genetic
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alterations in iCCA with DPM pattern include point mutations
in FGFR2, PTPRT, ARID1A, and CDKN2A, and fusion of FGFR2
(54, 56). Patient survival seems better than that of conventional
small duct type iCCAs (54).

Adenosquamous Carcinoma/Squamous Carcinoma
Adenosquamous carcinoma of the liver has both squamous
epithelial and glandular components (Figure 3C), and its
incidence is rare (57). Squamous carcinoma, showing squamous
differentiation in the entire tumor is extremely rare. This type of
variant iCCA is reported to be correlated with chronic cholangitis
caused by liver flukes or hepatolithiasis (58). The prognosis of
adenosquamous carcinoma of the liver is usually poor, with a
median survival of approximately 6 months (57).

Mucinous Carcinoma/Signet Ring Cell Carcinoma
Mucinous carcinoma is a variant that belongs to large duct
type iCCA. It contains an overwhelming amount of extracellular
mucin in the luminal space of tumor glands, usually over 50% of
the total tumor volume by convention (59), often causing tumor
epithelial cells to float in the mucin pool (Figure 3D). This type
of tumor usually occurs due to the malignant transformation of
the IPNB. Signet ring cell carcinoma occasionally presents as a
mucinous carcinoma with varying distribution; however, pure
signet ring cell carcinoma of the liver is extremely rare. The
absence of ovarian-like stroma differentiates this variant of iCCA
from mucinous cystic neoplasm (60).

Clear Cell Carcinoma
Clear cell carcinoma is characterized by bulky cytoplasmic
clearing and eccentrically located nuclei in most tumor epithelial
cells with glandular and trabecular growth patterns (Figure 3E)
(58, 61). Primary clear cell carcinoma of the liver can be
differentiated from HCC with clear cell change, metastatic
clear cell carcinoma of the kidney, and metastasis from other
gastrointestinal tract tumors by IHC staining for hepatocyte
paraffin 1 (HepPar-1), CD10, and CK20, respectively (62).

Mucoepidermoid Carcinoma
Primary mucoepidermoid carcinoma of the liver shows features
similar to those in other organs, including the salivary glands.
It reveals a more intimate mixture of epidermoid or squamous
and mucin-secreting elements, compared to adenosquamous
carcinoma where mucin-secreting cells and foci of squamous
differentiation exist separately (Figure 3F) (63). There have
been only a few reports, and most of them have shown a poor
prognosis (64).

Lymphoepithelioma-Like Carcinoma
Lymphoepithelioma-like carcinoma is characterized by dense
lymphoid stroma around the tumor epithelial cells, often
forming lymphoid follicles. Tumor epithelial cells show an
undifferentiated or gland-forming pattern, rarely with well-
differentiated or bland-looking glands (Figure 3G). Almost all
cases are Epstein–Barr virus-encoded small RNA (EBER) positive
and usually have favorable outcomes (65, 66).

Sarcomatous Intrahepatic Cholangiocarcinoma
Sarcomatous iCCA usually shows mixed features of conventional
iCCA and undifferentiated components of cells with spindle
or rhabdoid features (Figure 3H). When a conventional iCCA
component is not present, a definite diagnosis is difficult, since
the sarcomatoid component is often negative for epithelial
markers by IHC staining (67). Sarcomatous iCCA usually has a
worse prognosis than conventional iCCAs (68).

Precursor Lesions
Biliary Intraepithelial Neoplasia
Biliary intraepithelial neoplasia (BilIN), a precursor lesion of
CCA, occurs at the epithelium of intra- and extrahepatic bile
ducts and in the peribiliary glands. Large duct type iCCA, but
not small duct type, is often accompanied by BilIN (17, 21). BilIN
is virtually invisible upon gross examination, although it may
be associated with subtle changes such as mucosal thickening.
Microscopically, BilIN consists of flat or micropapillary (less than
3 mm in height) epithelial lesions that are graded as low-grade
or high-grade (carcinoma in situ) based on the highest degree
of cytoarchitectural atypia (69, 70). This two-tiered classification
replaces the former three-tiered classification, wherein the former
BilIN-1 and BilIN-2 are now classified as low-grade, and the
former BilIN-3 is now classified as high-grade.

Low-grade BilIN shows mild cytoarchitectural atypia,
including flat pseudopapillary and/or micropapillary growth
pattern, nuclear stratification, hyperchromatic nuclei, and
increased nuclear-cytoplasmic ratio; however, nuclear polarity
is preserved. High-grade BilIN is characterized by moderate to
severe cytoarchitectural atypia, including more complex patterns,
complete loss of polarity, marked nuclear atypia, and frequent
mitosis. While IHC staining for p53 is usually negative in low-
grade BilIN, it is often overexpressed in high-grade BilIN (71).
The expression of p16 is relatively preserved in low-grade BilIN
and decreased in high-grade BilIN (72). A notable mutation
in BilIN lesions is alterations in KRAS, which is reported to be
approximately 30% (73) (Figures 4A,B).

Differentiating BilIN from reactive epithelial atypia may be
difficult, especially in biopsy samples. Reactive atypia shows
overlapping attenuated basophilic cells with nuclei having fine
and diffuse chromatin. The nucleoli are small or conspicuous.
Mitotic activity may be prominent. Reactive epithelial atypia
usually shows a gradual transition from uninvolved epithelium,
in contrast to the abrupt change usually seen in BilIN. The
IHC detection of S100P was shown to be useful, being mostly
negative in reactive epithelial atypia. However, its expression
increased sequentially from low-grade BilIN to high-grade BilIN
and subsequently in iCCA (74).

Intraductal Papillary Neoplasm of the Bile Duct
Intraductal papillary neoplasm of the bile duct (IPNB) is defined
as a grossly visible premalignant neoplasm showing intraductal
papillary or villous growth of biliary-type epithelium (70). It
is considered to be a counterpart of a similar tumor arising
in the pancreas, the so-called intraductal papillary mucinous
neoplasm (IPMN). IPNB is divided into low-grade and high-
grade based on the highest degree of cytoarchitectural atypia.
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FIGURE 4 | Precursor lesions of intrahepatic cholangiocarcinoma. (A,B) Biliary
intraepithelial neoplasia (BilIN). (A) Low-grade BilIN composed of columnar
cells with intact nuclear polarity and minimal atypia. (B) High-grade BilIN
showing stratification of cells with marked nuclear atypia and loss of polarity.
(C,D) Intraductal papillary neoplasm of the bile ducts (IPNB). (C) Low-grade
IPNB showing a papillary growth of columnar biliary type epithelial cells with
mild pleomorphism and preserved nuclear polarity. (D) High-grade IPNB
showing irregular papillary projections, composed of highly pleomorphic and
stratified cells with increased nuclear-cytoplasmic ratio. Original magnification:
100× for (A,B), 40× for (C,D), 200× for inset images.

When invasive carcinoma develops in this lesion, it is diagnosed
as IPNB with associated invasive carcinoma. High-grade IPNBs
are often associated with stromal invasive carcinoma, usually
consisting of tubular adenocarcinoma and occasionally mucinous
carcinoma (75).

Grossly, IPNBs appear as polypoid masses with dilatation
of the bile ducts. These are usually isolated papillary lesions,
whereas some IPNBs appear as multiple contiguous papillary
or polypoid lesions. Some IPNBs are characterized by mucus
hypersecretion, forming mucin-containing fusiform dilatation or
cysts, similar to those observed in IPMNs (76). Microscopically,
IPNBs form papillary structures with fine fibrovascular cores
(Figures 4C,D). Four histological subtypes are generally accepted
based on cytological appearance and immunophenotype,
namely, – pancreatobiliary, intestinal, gastric, and oncocytic.
Immunohistochemically, MUC1 is mostly expressed in the
pancreatobiliary type. Gastric type usually express MUC5AC and
MUC6, and the intestinal type frequently express MUC2. CK20 is
positive in the intestinal type, but not in the gastric and oncocytic
types (70, 77). The presence of two or more histopathological
types is common in IPNB, therefore these tumors are diagnosed
based on the most prevalent histopathological type. The
pancreatobiliary type is most common, with higher prevalence in
western countries than in Asia. In contrast, intestinal type is more
common in Asian populations than in western populations, while
oncocytic and gastric types are least frequent (78). Although
the clinical implications of histopathologic subtypes are still
controversial, the pancreatobiliary type is reported to be linked
with a higher frequency of associated invasive carcinoma,
frequent lymph node metastasis, and recurrence (77).

A recent consensus has proposed a different classification for
IPNBs of type 1 and type 2 (79, 80). Type 1 IPNB shows more
homogeneous appearance than type 2 IPNB, and is composed of
regular villous, papillary, or tubular structures usually with low-
grade dysplasia, but may present with high-grade dysplasia with
foci of low-grade dysplasia. Mucin overproduction is frequently
observed, whereas stromal invasion is uncommon. This is
most commonly found in intrahepatic bile ducts. Histological
similarity with IPMN of the pancreas is also characteristic. Type
2 IPNB exhibits heterogenous appearance composed of irregular
and complicated villous, papillary or tubular structures. This is
usually composed of high-grade dysplasia, and foci of low-grade
dysplasia are absent or minimal. Invasive carcinoma is more
frequently associated with type 2 IPNB than type 1 IPNB. Mucin
overproduction is not common. Type 2 IPNB arises throughout
the biliary tree, including intrahepatic and extrahepatic bile ducts.

The mutational profile studies on IPNB have reported
that diverse cancer driver mutations are frequently observed,
including KRAS, TP53, STK11, CTNNB1, APC, SMAD4, and
GNAS. Type 1 IPNBs show higher mutation rates of KRAS,
GNAS, and RNF43, whereas type 2 IPNBs have higher TP53 and
SMAD4 mutation rates (81, 82).

Although IPNBs present papillary morphology, sometimes
tubular growth pattern of epithelial components with less mucin
production is predominantly observed, similar to intraductal
tubulopapillary neoplasm (ITPN) of the pancreas (83). Such
cases have been described as intraductal tubular neoplasms
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or ITPNs. Recently, ITPN has been reported to show more
frequent intrahepatic occurrence in contrast to IPNB, which
favors both intra- and extrahepatic locations. Furthermore, IPNB
and ITPN differ in their genomic and epigenomic profiles.
Recently, IPNB has been reported to share mutational profiles
with extrahepatic CCA, including mutations in TP53, SMAD4,
and KRAS and deletions on chromosomes 9q, 17p, and 18q.
However, ITPN shows low overall mutational burden, and
distinct DNA methylation pattern that clustered together with
iCCA rather than extrahepatic CCA, suggesting that IPNB and
ITPN are distinct entities (84).

TUMOR MICROENVIRONMENT OF
INTRAHEPATIC
CHOLANGIOCARCINOMA

One of the characteristics of iCCA is the abundance of fibrous
stroma (85). The amount of fibrous stroma has been reported
to be associated with poor prognosis (86). Furthermore, so-
called “scirrhous type” iCCA, which is defined as iCCA having
scirrhous area (where the amount of fibrous stromal component
is at least equal to the area of epithelial component) more than
70% of the largest cut surface, has been reported to show worse
prognosis than conventional iCCAs (87). More recently, the
characteristics of immature and mature fibrous tumor stroma
have been reported to be related to tumor behavior (88, 89).
Immature stroma is composed of myxoid stroma with randomly
oriented short keloid-like collagen bundles. In contrast, mature
stroma shows multilayered mature collagen fibers (Figure 5).
Accordingly, iCCAs with immature stroma have been reported to
show poorer prognosis compared to iCCAs with mature stroma
(88, 89).

Activated CAFs, one of the major components of the tumor
microenvironment, have been demonstrated to facilitate tumor
growth and progression, and promote immunosuppression in
tumors (90). CAFs are thought to be recruited from hepatic
stellate cells, portal fibroblasts, or circulating mesenchymal cells,
but the exact source is currently unknown (91). Transforming
growth factor β (TGF-β) and platelet-derived growth factor
D (PDGF-D) secreted by tumor epithelial cells recruit CAFs.
Recruited CAFs not only promote desmoplastic reaction by
collagen and matrix metalloproteinases, but also cause tumor
epithelial cells to proliferate, invade, and resist antitumor
mechanisms by secreting growth factors such as PDGF-B and
epidermal growth factors (92, 93). Patients with iCCA with a high
proportion of activated CAFs were reported to have a shorter
survival rate than patients with low CAF proportion (94).

Immune cells, including tumor-associated macrophages
(TAMs) and tumor-infiltrating lymphocytes, are also main
components of the tumor microenvironment. The hepatic
macrophage population consists of activated macrophages
derived from Kupffer cells or bone marrow-derived macrophages
(95), and activated macrophages can be classified as M1-
(classical) and M2 (alternative)-polarized types (96). The M2
phenotype forms the majority of TAM population in iCCA,
having anti-inflammatory and pro-tumor functions mediated by

FIGURE 5 | Stromal features of intrahepatic cholangiocarcinoma.
(A) Immature stroma showing pale basophilic myxoid appearance. Activated
fibroblasts are the main components of the stroma. Collagen fibers are
incomplete and thin. (B) Mature stroma showing thick collagen bundles,
making its eosinophilic color. Original magnification: 100×.

the secretion of anti-inflammatory cytokines, including IL-4, IL-
10, IL-13, and TGF-β (97). These cells also promote intratumoral
angiogenesis, which is vital for tumor survival and metastasis
(85, 98). A high proportion of M2 TAMs in iCCA is correlated
with increased invasiveness of tumor cells and poor disease-free
survival (97, 99). In contrast, M1 TAMs have been reported to
exert pro-inflammatory functions, including secretion of pro-
inflammatory cytokines such as TNF-α, interleukin (IL)-6, and
IL-1β (99).

Tumor-infiltrating lymphocytes include B cells (CD20+),
helper T cells (CD4+), cytotoxic T cells (CD8+), and regulatory
T cells (Tregs, FOXP3+). The major proportion of tumor-
infiltrating lymphocytes comprises T cells rather than B cells
(100). The distribution and proportion of CD4+ and CD8+ T
cells varies among iCCAs, and increased population of these cells
is correlated with better prognosis (8, 85). In addition, iCCAs
with B cell infiltration have been reported to be associated with
better survival than iCCAs without B cells (101). Treg cells are a
subset of CD4+ T cells that suppress innate and adaptive immune
responses mainly by secreting IL-10 and TGF-β, which are known
to promote tumor progression by inhibiting antitumor immune
response. Regarding iCCA, while there are a few studies on
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the clinical aspects of the presence of Treg cells, there is no
sufficient evidence to draw a conclusion. Therefore, additional
investigation is required (101–103).

With the advent of immune checkpoint blockade therapeutics,
the expression status of cell surface proteins with immune
escape mechanisms is currently under active investigation.
Cytotoxic T-lymphocyte antigen-4 (CTLA-4), expressed on the
surface of Treg cells, suppresses cytotoxic T cell activity by
binding to CD80 of antigen-presenting cells (85). High CTLA-4
expression has been reported to be related to worse relapse-
free survival of patients with CCA, raising the possibility of
effective immunotherapy targeting CTLA-4 (104). Programmed
death 1 (PD-1), expressed on T cells, and its ligand programmed
death ligand 1 (PD-L1), on tumor epithelial cells, are other
major immune checkpoints of interest. Binding of PD-L1 to PD-
1 diminishes the immunological function of cytotoxic T cells.
Approximately 9–30% of iCCA has been reported to be PD-
L1 positive as observed by IHC staining (105–107). Recently,
our group reported that KRAS alteration and chromosomal
instability were associated with resistance to PD-1/PD-L1
blockade immunotherapy, whereas high intratumoral tumor-
infiltrating lymphocyte density was associated with a favorable
immunotherapy response in patients with CCA (35). Many
clinical trials for iCCA using immune checkpoint inhibitors are
ongoing based on the expression status of markers, including PD-
1, PD-L1, and CTLA-4, with expectations of promising results in
the near future (108).

MULTI-OMICS FEATURES OF
INTRAHEPATIC
CHOLANGIOCARCINOMA

Germline and Somatic Mutational Profile
of Intrahepatic Cholangiocarcinoma
Germline Predisposition
There are a few germline predispositions for cancers, including
proto-oncogenes and tumor suppressor genes, either by
inheritance from parents or de novo mutation at the zygote
level. Approximately 8–12% of iCCAs have been reported
to have known pathogenic or possibly deleterious germline
mutations, and the most commonly found germline-mutated
genes are BRCA1 and BRCA2, which are associated with DNA
repair mechanism and hereditary cancer syndromes (109–
112) (Table 1). Other germline variants linked with iCCA
include APC, an antagonist of the Wnt signaling pathway,
BAP1, which mediates deubiquitination, and mismatch repair
mechanism-related genes, namely MLH1 and MSH2 (109, 111,
113). However, evidence regarding the association between
known hereditary cancer syndromes and iCCA is currently not
fully established and requires further investigation.

Somatic Short Mutations, Structural Variations, and
Copy Number Aberrations
Among somatic mutations identified in iCCA, the most well-
known and frequent variants are at exons 5–8 of TP53 and

TABLE 1 | Summary of germline mutations reported in intrahepatic
cholangiocarcinoma.

Gene Frequency of occurrence (%) References

BRCA1 1–3 (109–111)

BRCA2 1–3 (109–111)

MLH1 2 (109)

MSH2 2 (109)

MUTYH 2 (111)

BAP1 1 (111)

PMS2 1 (111)

APC 1 (111)

hotspots at codons 12/13 of KRAS, which are involved in
cell cycle arrest/DNA repair and mitogen-activated protein
kinase (MAPK) signaling pathway, respectively (114–116). Other
MAPK pathway genes such as NRAS and BRAF are also
frequently mutated in iCCA (117). Owing to the advancement
and wide use of massive parallel sequencing techniques, many
other driver gene mutations have been discovered in the last
decade. Single-nucleotide variants of chromatin remodeling-
related genes such as ARID1A, BAP1, and PBRM1 have
been reported with frequencies ranging from 6 to over 30%
(115, 118–120). Moreover, mutations in IDH1/2, which acts
as an epigenetic regulator, are most frequently observed,
with an average incidence of approximately 15% (115, 121–
124). Other somatic short mutations include Akt signaling
pathway-associated genes such as PTEN, PIK3CA, and PIK3C2A,
and SMAD4, a TGF-β signaling pathway gene (115, 118,
125, 126).

The most frequently found structural variation in iCCA is
FGFR gene fusion, notably FGFR2, which has been reported in
6–14% of iCCAs (127, 128). The most common fusion partner is
BICC1; however, several other genes were also found, including
AHCYL1 and PPHLN1 (128–130). Driver gene amplification was
found in ERBB2 (2–12%), MDM2 (0–13%), EGFR (1–16%), and
CCND1 (10–13%). Deletion of 9p21.3, or the locus including
genes CDKN2A and CDKN2B is found in 10–20% of iCCA (13,
126, 127, 131).

Microsatellite instability-high cases are usually determined by
three methods namely, observing the size change in more than
three out of five marker loci by polymerase chain reaction, IHC
for mismatch repair proteins including, MLH1, MSH2, MSH6,
and PMS2, or estimation of tumor mutation burden by NGS.
Such cases are known to be rare (around 1%) in iCCA (126, 132–
134). The mutational characteristics of iCCA are summarized in
Table 2.

Genetic alterations are also correlated with pathological
features. Hotspot mutations in KRAS have been reported in
periductal infiltrating type, but not in mass-forming type (135).
Histopathologically, small duct type has been reported to have
more frequent BAP1 and IDH1/2 hotspot mutations and FGFR2
fusion, and lower incidence of KRAS mutation than large duct
type (12, 26, 51, 122, 136, 137). On the contrary, large duct type
is known to have frequent mutations in TP53, KRAS and some
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TABLE 2 | Major somatic variants and reported incidence in intrahepatic cholangiocarcinoma.

Groups Gene or locus Frequency of
occurrence (range, %)

References

Small nucleotide variants DNA repair TP53 2.5–39.3 (13, 35, 115, 120, 123, 125, 126, 131)

Chromatin remodeling ARID1A 7–36 (13, 35, 115, 120, 123, 126, 131)

BAP1 6–16 (13, 35, 116, 121, 123, 126, 131)

PBRM1 9–14.3 (13, 35, 116, 119, 121, 123, 126, 131)

MAPK signaling pathway KRAS 2–30.3 (13, 35, 115, 121, 123, 125, 126, 131)

NRAS 3–9.3 (13, 115, 117, 119, 125, 126, 131)

BRAF 3–5 (13, 35, 117, 125, 126, 131)

Epigenetic regulator IDH1 5–36 (13, 35, 115, 126, 131)

IDH2 3.7–36 (13, 115, 117, 119, 121, 126, 131)

TGF-β signaling pathway SMAD4 0–9 (13, 35, 115, 126, 131)

Akt signaling Pathway PTEN 0.6–11 (13, 115, 117, 125, 126, 131)

PIK3CA 3–7 (13, 35, 115, 117, 119, 120, 125, 126, 131)

PIK3C2A 0–7.1 (117)

Structural variation Translocation FGFR2 6–14 (13, 127, 128, 131)

Amplification CCND1 10–13 (13, 35, 131)

EGFR 1–16 (126, 131)

ERBB2 2–12 (35, 126, 131)

MDM2 0–13 (131)

Deletion 9p21.3 (CDKN2A/B) 10–20 (126, 131)

Microsatellite instability ∼1 (126, 131, 133)

TGF-β pathway genes, including SMAD4, TGFBR2, FBXW7, and
MYC (35).

From an etiological point of view, liver fluke O. viverrini
infection-related iCCA had a higher TP53 mutation rate, while
BAP1 and IDH1/2 mutations were more frequently found in non-
fluke-related cases (131, 138). TP53 mutation was also found to
be significantly correlated with hepatitis B virus (HBV) infection
(127, 139). Regarding patient outcome, worse overall survival
of patients with mutated TP53, KRAS, and TERT or deleted
CDKN2A has been reported (126).

Genomic-Transcriptomic Profiles:
Molecular Classification of Intrahepatic
Cholangiocarcinoma
Several multi-omics approaches have been reported in the past
decade, and several molecular classifications of iCCA have been
presented (Table 3).

Inflammation/Proliferation Class
Integrated gene expression and mutational analyses performed by
Sia et al. revealed two classes (inflammation and proliferation) of
iCCA (53). The inflammation class accounted for approximately
40% of iCCA, and it was characterized by activation of
immune response-related pathways, including dendritic
cell signature and cytokines such as IL-4 and IL-10. The
proliferation class showed activation of several oncogenic
pathways including receptor tyrosine kinase pathway genes,
such as EGF, RAS, AKT, MET, and other growth factor genes.
Patient outcomes were worse in the proliferation class than in
the inflammation class.

Prognosis-Based Classes
Transcriptomic profiling of iCCA and perihilar CCA by
Andersen et al. revealed two prognostic groups (C1 and C2)
with 5-year survival rate. The group with poor prognosis (C2)
indicated increased activation of VEGF/ERBB, CTNNB1/MYC,
and TNF signaling network and KRAS mutation, whereas
these characteristics were not seen in the group with good
prognosis (C1) (140). Recently, the gene expression pattern
of iCCAs with cholangiolocellular differentiation trait, having
favorable prognosis, was reported to be similar to that of
C1, and has a signature including upregulated expression
of inflammation-related genes and downregulated expression
of proliferation-related genes based on Gene Ontology terms
(52, 141).

Tumor Microenvironment-Based Classes
A recent study on the classification of iCCA according to its
tumor microenvironment presented four subtypes based on gene
signature analysis: “immunogenic,” which shows high innate
and adaptive immune cell infiltration, “myeloid-rich,” which has
strong macrophage and myeloid signatures, “mesenchymal,” with
strong activated fibroblast signature, and “immune-desert,” which
is characterized by lowest expression of all signatures (142).
The immunogenic subtype had the best outcome, whereas the
mesenchymal subtype had the worst outcome, in agreement with
the prognostic features of the tumor microenvironment of iCCA
discussed previously.

Other Classifications
Multi-omics data from TCGA project revealed that IDH1/2-
and PBRM1-mutant subgroups showed upregulation of
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TABLE 3 | Notable classification of intrahepatic cholangiocarcinoma from multi-omics studies.

Base of classification Number of cases Molecular classification and characteristics References

Inflammation versus
proliferation signature

149 • Inflammation class
- Enriched in immune response-related pathways
- Overexpression of IL-4 and IL-10 (Th2 marker)
- Favorable prognosis

• Proliferation class
- Enriched in oncogenic pathways including RTK and angiogenic

pathways, increased expression of EGF, RAS, AKT, MET, and growth
factors

- Worse outcome compared to inflammation class

Sia et al. (53)

Prognosis 104* • Cluster 1 (group with good prognosis)
- No KRAS

mutation
- Absence or weak expression of HER2 and MET

• Cluster 2 (group with poor prognosis)
- Enriched VEGF/ERBB, CTNNB1/MYC, and TNF pathway and KRAS

mutation

Andersen et al. (140)

Tumor
microenvironment

78 • Immune desert subtype
- Minimal expression of all TME signatures

• Immunogenic subtype
- High innate and adaptive immune cell presence
- Strong activation of fibroblasts and inflammatory and immune

checkpoint pathways
- Best outcome

• Myeloid-rich subtype
- Strong monocyte-derived myeloid cell signatures
- Low lymphoid signatures

• Mesenchymal subtype
- Strong active fibroblast signatures
- Worst outcome

Job et al. (142)

TCGA project 32 • IDH-mutant cluster
- IDH1/2 mutation
- Enriched mitochondrial gene expression
- Loss of function of ARID1A and PBRM1

• CCND1 amplification cluster
- Highly methylated
- BAP1/FGFR cluster

• BAP1 mutation or FGFR2 fusion
• Survival difference is not significant between clusters

Farshidfar et al. (13)

Etiologic
factor-associated

69 • Cluster 1
- Liver fluke-related
- ARID1A, BRCA1/2, and TP53 mutations
- ERBB2 amplification
- CpG island hypermethylation

• Cluster 2
- Partly liver-fluke-related
- TP53 mutation
- High expression of CTNNB1, WNT5B and AKT1

• Cluster 3
- High CNA burden
- Enriched immune-related pathways

• Cluster 4
- Associated with viral hepatitis
- BAP1 or IDH1/2 mutation
- High expression of FGFR family proteins
- CpG shore hypermethylation
- Favorable prognosis

Jusakul et al. (131)

*Whether only intrahepatic cholangiocarcinoma was included is not certain.
CNA, copy number aberration; HCC, hepatocellular carcinoma; IL, interleukin; RTK, receptor tyrosine kinase; TCGA-CHOL, The Cancer Genome Atlas-
Cholangiocarcinoma Consortium; TME, tumor microenvironment.

mitochondrial genes and downregulation of chromatin-
modifying genes such as ARID1A and ARID1B due to
hypermethylation of the promoter CpG region, while cases with

FGFR2 fusion showed downregulation of mitochondrial genes
(13). Furthermore, another study has proposed a classification
based on the correlation of multi-omics features with etiologic
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FIGURE 6 | Clinico-pathologic and molecular summary of intrahepatic cholangiocarcinoma (iCCA). Macro and microscopic, immunohistochemical, mutational, and
clinical overview of iCCA. HBV, hepatitis B virus; HCV, hepatitis C virus; PSC, primary sclerosing cholangitis; S100P, S100 calcium-binding protein P; NCAM, neural
cell adhesion molecule; CRP, c-reactive protein. *Based on the classification by Sia et al. (53).

background, showing that liver fluke-associated clusters 1 and
2, which harbor TP53 mutation and ERBB2 amplification in
common, can be differentiated based on hypermethylated CpG
island (for cluster 1). Furthermore, liver fluke-negative clusters
3 and 4 can be subdivided based on immune-related pathway
enrichment (for cluster 3), and IDH1/2 mutations, FGFR2 fusion,
and hypermethylated CpG promoter shores associated with viral
hepatitis (for cluster 4) (131).

Moleculo-Pathological Correlation
The two major pathological types, small duct type and large
duct type iCCA differ in their molecular characteristics. Small
duct type iCCAs frequently have BAP1, IDH1/2, and FGFR
mutations, while large duct type iCCAs more commonly show
KRAS, TP53, and SMAD4 mutations. Interestingly, iCCA with
cholangiolocellular differentiation trait, which belongs to the
small duct type, has been reported to be correlated with
inflammation class and group with good prognosis (C1) (52, 53,
140). The pathological, clinical, and molecular characteristics of
iCCA based on currently available evidence are summarized in
Figure 6.

Perspectives on Targeted Therapies
Large-scale genomic analyses have identified target molecules
for chemotherapy of patients with iCCA. Thus far, use of
fibroblast growth factor receptor (FGFR) inhibitors and isocitrate
dehydrogenase (IDH) 1 and 2 inhibitors are promising strategies
against iCCA (130, 143).

Fibroblast growth factor receptor family proteins are localized
on the cell membrane and transfer extracellular growth signals
through intracellular tyrosine kinase domains. Pemigatinib,
an oral inhibitor of FGFR1-3, has been approved by the
United States Food and Drug Administration (FDA) for the
treatment of patients with refractory advanced CCA with FGFR2
fusion (130).

Isocitrate dehydrogenase 1 and 2 proteins are essential
components of the tricarboxylic acid cycle, that normally
generate NADPH via conversion of isocitrate into α-
ketoglutarate. Mutant IDH1/2 proteins accelerate this
process, resulting in excess production of the byproduct, 2-
hydroxyglutarate, which acts as an oncometabolite by interfering
with histone and DNA methylation regulation (143). A recent
phase 3 clinical trial of the IDH1 inhibitor ivosidenib in patients
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with advanced iCCA has shown promising results in increasing
overall survival, and the FDA has approved its use in previously
treated IDH1-mutated iCCA patients (143, 144).

Even though there is hope for these approved target agents,
application is limited to those who harbor specific mutations, and
antitumor efficacy is limited by intratumoral heterogeneity and
drug resistance. Other targeted protein inhibitor molecules are in
active clinical trials, including other inhibitors of FGFR family;
multi-kinase inhibitors that act on epidermal growth factor
receptor, vascular endothelial growth factor receptor and platelet-
derived growth factor receptor; specific tyrosine kinase inhibitors
targeting HER2, BRAF inhibitors, and immune checkpoint
inhibitors (145, 146). To detect a variety of potential actionable
mutations, the European Society for Medical Oncology has
recommended routine use of NGS in patients with advanced
cholangiocarcinoma (147).

CONCLUSION

Intrahepatic cholangiocarcinoma is a very heterogenous
malignancy with respect to histomorphology and molecular
perspectives. The tumor microenvironment of iCCA also
varies significantly depending on the type of immune cell
infiltration and tumor stromal characteristics. Histopathological
classification of small duct and large duct types shows differences

in etiology, molecular features, and clinical outcomes. Analyses
of NGS and multi-omics studies have suggested molecular
classifications of iCCA and identified FGFR2 fusion and
IDH1/2 mutations as indications for targeted drugs. Further
studies are needed for better pathological-molecular correlation
and marker development for targeted therapy as well as
immunotherapy to improve the treatment efficacy of patients
with iCCA.
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