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Peripheral neuropathy is the main cause of physical disability in leprosy patients.

Importantly, the extension and pattern of peripheral damage has been linked to how the

host cell will respond against Mycobacterium leprae (M. leprae) infection, in particular,

how the pathogen will establish infection in Schwann cells. Interestingly, viable and

dead M. leprae have been linked to neuropathology of leprosy by distinct mechanisms.

While viable M. leprae promotes transcriptional modifications that allow the bacteria

to survive through the use of the host cell’s internal machinery and the subvert of

host metabolites, components of the dead bacteria are associated with the generation

of a harmful nerve microenvironment. Therefore, understanding the pathognomonic

characteristicsmediated by viable and deadM. leprae are essential for elucidating leprosy

disease and its associated reactional episodes. Moreover, the impact of the viable and

dead bacteria in Schwann cells is largely unknown and their gene signature profiling

has, as yet, been poorly explored. In this study, we analyzed the early differences in

the expression profile of genes involved in peripheral neuropathy, dedifferentiation and

plasticity, neural regeneration, and inflammation in human Schwann cells challenged

with viable and dead M. leprae. We substantiated our findings by analyzing this genetic

profiling in human nerve biopsies of leprosy and non-leprosy patients, with accompanied

histopathological analysis. We observed that viable and dead bacteria distinctly modulate

Schwann cell genes, with emphasis to viable bacilli upregulating transcripts related to glial

cell plasticity, dedifferentiation and anti-inflammatory profile, while dead bacteria affected

genes involved in neuropathy and pro-inflammatory response. In addition, dead bacteria

also upregulated genes associated with nerve support, which expression profile was

similar to those obtained from leprosy nerve biopsies. These findings suggest that early

exposure to viable and dead bacteria may provoke Schwann cells to behave differentially,

with far-reaching implications for the ongoing neuropathy seen in leprosy patients, where

a mixture of active and non-active bacteria are found in the nerve microenvironment.
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INTRODUCTION

Leprosy neuropathy is a chronic neurological condition,
caused by the infection of the nerve by its etiologic agents,
Mycobacterium leprae andMycobacterium lepromatosis (1–5).M.
leprae infection provokes early pathological changes in the host
cell that are, to some extent, associated with the late degenerative
appearance of the infected nerves (6, 7). Schwann cells, the
glial cells of the peripheral nervous system, are the preferable
host for M. leprae entry, persistence, and replication within the
nerve (8–11). Therefore, much attention has been given to the
molecular and cellular alterations driven by leprosy bacilli once
inside Schwann cells in order to identify the underlying reasons
that culminate in the severe neuropathy seen in patients.

The immune response elicited in the nerve microenvironment
against the bacilli is a key component that may lead to the distinct
clinical manifestations (4). Infected Schwann cells produce a
broad panel of inflammatory chemokines and cytokines, that
accompanied with cell-mediated immune response, have been
linked to the manifestation of neural pain and leprosy neuritis
in patients (12–15). Of importance, this immunomodulation
profile seen in infected Schwann cells was reported to occur
before the reprogramming of the Schwann cells to the immature
phenotype, highlighting the crucial role of the immune signaling
network in the context of the early stages of M. leprae infection
(16, 17). Additionally, M. leprae infection of Schwann cells
has been associated with alterations in the glucose/lactate
metabolic pathway (18, 19), lipid/cholesterol accumulation (20,
21), mitochondrial dysfunction (11), and myelin dismantling
(22–24). Some of these changes were also confirmed in leprosy
patients, and are suggested to cause the ongoing neuropathy
and the observed tissue fibrosis and loss of nerve function
experienced by leprosy individuals (14, 25). However, while these
events may arise from modifications of the host Schwann cell’s
supportive function of the nerve, the accompanying changes in
gene expression profile are largely unknown.

Studies have shown that the phenolic glycolipid 1 (PGL-
1), a major M. leprae cell wall pathogenic component, is
essential for M. leprae internalization into Schwann cells and
has also been extensively attributed to induce pathology in
vitro and in experimental infectious models (10, 23, 26). The
understanding of the immunopathogenic mechanisms related to
nerve damage in leprosy patients is pivotal for the development
of new therapeutic strategies to control leprosy neuropathy. The
treatment of nerve damage with steroids is effective but at least
40% of patients relapse and require a further course of steroids
(27, 28).

Because leprosy neuropathy is an intricate complex disease,
in which both viable and dead M. leprae may have a detrimental
role for disease progression, it is necessary to fully understand
and decipher the contribution of viable and dead bacteria in
altering Schwann cell biology. For example, it was suggested
that dead bacilli, unlike viable M. leprae, make Schwann cells
susceptible to attack by killer cells (29). Moreover, dead bacteria
and its components, such as lipoarabinomannan (LAM), were
also reported to cause neural damage via modulation of the
autophagic flux (30) and the complement attack of the nerve (31).

Despite these observations, the early effects of viable and dead
M. leprae on the global Schwann cell gene expression profile that
may be linked to primary neural leprosy are still largely unknown.
Therefore, in the present study, we analyzed the expression
profile of transcripts involved in neuropathy, glial cell plasticity,
nerve repair, and the inflammatory network in leprosy and non-
leprosy nerve biopsies and after challenging Schwann cells with
viable and deadM. leprae independently. Our utmost goal was to
provide novel evidence of how viable and dead bacteria modulate
Schwann cell gene expression responses along with a detailed
statistical correspondence to several histopathological findings
commonly observed in nerve biopsies from leprosy and non-
leprosy patients.

MATERIALS AND METHODS

Human Nerve Biopsy
Nerve biopsy specimens from eight patients diagnosed with pure
neural leprosy (PNL) were obtained from volunteers recruited at
the Souza Araujo Outpatient Unit (Leprosy Laboratory, Oswaldo
Cruz Institute, Oswaldo Cruz Foundation) (Table 1). Nerve
biopsy fragments, as well their nerve sections, were available
for histopathological staining and PCR analysis. For the present
study, patients with PNL were selected who did not present
any sign of nerve endoneurial fibrosis to ensure the chosen
nerve specimens were in the early stages of leprosy neuropathy
progression. This selection was made after analyzing the nerve
section stained with the hematoxylin and eosin and Gomori
trichrome stains under a light microscope following previously
published protocol (6). Exclusion criteria were patients with
coinfection, metabolic comorbidities such as diabetes, and signs
of endoneurial fibrosis, pregnant women and patients under 18
years. For the control group, nerve biopsy specimens from three
individuals who underwent brachial plexus surgery were kindly
donated by the University Hospital Clementino Fraga Filho
(HUCFF-UFRJ). This study was approved by the Oswaldo Cruz
Foundation Ethics Committee (number of purports: 2.227.887).

Schwann Cell Culture
The human Schwann cell line, ST88-14, was used in the
present study for the in vitro assays. Prior to the assays, cells
were cultured in RPMI media (Gibco BRL, Grand Island,
NY, USA) supplemented with 1% penicillin, 1% streptomycin,
2mM L-glutamine, and 10% fetal bovine serum. The cells were
maintained in a controlled environment at 37◦C and 5% CO2.
For the assays, ST88-14 cells were suspended in culture medium
without penicillin-streptomycin and cultured at a density of
5 × 105 cells/well on six-well culture plates. The cell culture
was infected with viable M. leprae, gently donated by Lauro de
Souza Lima Institute (Sao-Paulo, Brazil) or stimulated with dead
(gamma-irradiated) M. leprae, obtained through BEI Resources
(#NR-19326), at a multiplicity of infection (MOI) of 50 bacilli/cell
(50:1). After 24 h of incubation, supernatants were harvested
and kept frozen at −20◦C until quantification of inflammatory
chemokines and cytokines. Additionally, Schwann cell cultures
were subjected to total RNA extraction procedures.
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TABLE 1 | Clinical data from PNL patients included in the present study (n = 8).

Age (years) Gender Leprosy clinical form Leprosy reaction Multidrug therapy Physical disability level

67 female PNL RR + Neuritis No 0

26 male PNL RR + Neuritis No 0

34 female PNL No No 0

48 male PNL RR + Neuritis No 0

47 female PNL RR No 2

22 male PNL RR No 2

22 female PNL No No 0

48 female PNL No No 0

PNL, Pure Neural Leprosy; RR, Reverse Reaction.

RNA Extraction and RT-qPCR Array
Schwann cell cultures and nerve biopsy fragments were
mechanically grinded and resuspended in 1mL TRIzol (Gibco
BRL) and RNA was obtained following the manufacturer’s
orientations and stored at −70◦C until use. After, 10 ng of total
RNA was reverse-transcribed to cDNAs using the Superscript
III kit (Invitrogen, Carlsbad, CA, USA) and then amplified
using the SYBR Green PCR Master Mix (Applied Biosystems,
Foster City, CA, USA) or TaqMan assays (ThermoScientific).
The GeneQueryTM Human Schwann cell PCR Primer library
array kit (Realtime Primers, Elkins Park, PA, USA #GK096) was
used to profile total gene expression in Schwann cells and human
nerve biopsies. The full list of genes is available on https://
www.sciencellonline.com/genequerytm-human-schwann-cell-
biology-qpcr-array-kit.html” (accessed on 27th Jan 2022).
The TaqMan Fast Universal PCR Master Mix and Human
TaqMAn MGB-Probe assays (ThermoScientific), were used
to determine mRNA expression of TNF (HS-99999043_m1),
IL-23A (HS-0037334324_m1), CCL2 (HS-00234140_m1) and
CXCL10 (HS-0017042_m1). The RT-qPCR array was performed
in triplicate, and the amplifications were carried out in the ViiA7
Real-Time PCR System (Thermo Fisher Scientific Inc., Waltham,
MA, USA). The 11CT method (32) was used to analyze the
obtained data after normalization using the endogenous control
of the housekeeping gene RPL13, for SYBR Green analysis,
or normalized using the housekeeping gene glyceraldehyde-
3-phosphate dehydrogenase (GAPDH; HS-02758991_g1), for
TaqMan assays.

Enzyme-Linked Immunosorbent Assay
For cytokine/chemokine release evaluation, the supernatants
from control ST88-14 cultures and M. leprae (viable or dead)
infected ST88-14 cultures were harvested after 24 h and stored
at −20◦C until use. The following inflammatory mediators
(TNF, TGF-β, IL-6, IL-8, IL-12, IL-10, MCP-1/CCL2, and IP-
10/CXCL10) were quantified by ELISA technique following
the manufacturer’s orientations (R&D Systems, Minneapolis,
MN, USA).

Statistical Analysis
Analyses of the experiments were performed by unpaired t-
test, Kruskal-Wallis test or one-way ANOVA. For all statistical

analyses the value of p ≤ 0.05 was considered significant.
Statistical analyses were performed using the GraphPad Prism
version 8.0 software (GraphPad Software, San Diego, CA, USA).
Alternatively, a correlogram graph was generated to evaluate
the correlation between histopathological characteristics in nerve
fragments and the pattern of gene expression. A Pearson’s
correlation was applied to each pair of variables present in
the data. The correlation value varies between −1 and 1, with
negative values implying the existence of negative correlation and
positive values implying positive correlation. The strength of the
correlation is measured by the proximity of the value to 1 or
−1, with values closer to these suggesting stronger correlation.
Each regression was performed using the gene expression as the
response variable and initially both PCR and Acid Fast Bacilli
(AFB) as covariates. Each coefficient had its statistical significance
tested by the t-test for regression coefficients. In the cases where
one of the variables was not statistically significant, the model
was fitted again using only the statistically significant covariate.
Finally, the model’s goodness of fit was evaluated using R², a
statistical measure that evaluates how much of the variation on
the response variable is explained by the covariates.

RESULTS

Gene Profiling Analysis of Leprosy and
Non-leprosy Nerve Biopsies
In order to identify the molecular pathways related to primary
neural leprosy (PNL), a Schwann cell biology PCR array
was performed comparing gene expression in nerve fragments
from PNL patients and non-leprosy controls. As illustrated in
Figure 1A, differentially expressed patterns of genes related to
peripheral neuropathy, Schwann cell plasticity/reprogramming,
and nerve support could be observed. Regarding neuropathy-
related genes, some targets were statistically elevated in nerves
from PNL patients, such as HLA-DRB1, APOB, and WNK,
while others were downregulated, including HLA-DQB1 and
PLP1. Interestingly,HLA-DRB1, previously reported to influence
leprosy susceptibility (33), was upregulated 60-times more in
leprosy nerves when compared to non-leprosy nerves. APOB and
WNK were also augmented in leprosy nerves, by 10- and 4-times
more, respectively.
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FIGURE 1 | Expression pattern of genes involved in Schwann cell biology. Gene expression profile analysis of upregulated and downregulated mRNA transcripts from

signaling pathways related to peripheral neuropathy, Schwann cell plasticity and regeneration support. Analysis were performed in human nerve biopsies from leprosy

(A, black bars) and non-leprosy individuals (A, horizontal line) and in human Schwann cells (B-D) infected with dead M. leprae (white bars) and viable M. leprae (black

bars); results are presented as mean ± SD from three to eight normalized independent biological replicates; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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By examining the mRNA profile involved in Schwann cell
dedifferentiation, we observed that cJUN, GDNF, and MAPK14
were statistically upregulated, while ERBB2, GJA1, BDNF, and
MAPK3 were significantly decreased in nerves from PNL
patients. Although neurotrophins, such as BDNF, are required for
axon regeneration, here we found that BDNF was downregulated
in PNL patients, which is in agreement with a previous
report that investigated neurotrophin expression in leprosy
infection (34).

In summary, our PCR array analysis remarkably showed
that most genes involved in nerve regeneration were
significantly increased in leprosy nerve biopsies, possibly
suggesting a continuous balance of nerve degeneration
and an attempt to regrow during the course of infection
in vivo.

Viable and Dead M. leprae Distinctly
Modulate Schwann Cell Functional Genes
Neural damage in leprosy has been associated with the role
played by viable and dead bacteria after being in contact with
Schwann cells (10, 35). Therefore, we were interested in exploring
the early effect of M. leprae infection on Schwann cell biology
genes. For that, we infected human Schwann cells with viable
and dead M. leprae and screened changes in the mRNA levels
after 24 h of infection using the Schwann cell biology PCR
array. As observed in Figures 1B-D, dead M. leprae increased
the expression of WNK, IFNB, IKBKA, and HLA-DQA1 (genes
related to neuropathy), in addition to GJA1 and RAF1 (for
Schwann cell reprogramming) and KCNJ10, OLIG1, SHH, and
SOSTDC1 (for neural regeneration). Interestingly, viable M.
leprae appeared to modulate genes related to Schwann cell

plasticity and dedifferentiation, such as BDNF, cJUN, SOX10,
ERBB2, and MAPK11. In summary, this first set of analysis
points to the notion that dead M. leprae induces greater
expression of peripheral neuropathy and nerve regeneration
support genes whereas viable M. leprae acts by modulating
genes related to Schwann cell plasticity and dedifferentiation.
We have summarized this gene intersection in a Venn diagram
(Figure 2).

Inflammatory Network Analysis Suggests
That Dead and Viable M. leprae Increase
CCL2 Expression
We next aimed to analyze the inflammatory network profile
in leprosy and non-leprosy nerve biopsies, as well as in
vitro, using Schwann cells challenged with viable and dead
bacteria. The human nerve analysis indicated that IL23,
TNF, CXCL10, and CCL2 were increased in PNL patients
when compared with control biopsies (Figure 3A). In
addition, when we analyzed changes in Schwann cells in
vitro, we observed that dead M. leprae induced a higher
expression of TNF, CXCL10, and IL6 in Schwann cells
when compared with those infected with viable bacilli
(Figure 3B). Furthermore, cells infected with viable M.
leprae increased IL23 and CCL2 expression when compared
to non-stimulated cultures. These results support the notion
that dead bacteria are likely involved in the induction of a pro-
inflammatory profile, suggesting that such pro-inflammatory
mediators, in the context of neural involvement shown by
the biopsies, are induced by dead bacteria present at the site
of infection.

FIGURE 2 | The Venn diagram of differentially upregulated genes related to Schwann cell biology genetic signature in leprosy. The Venn diagram was used to identify

clusters of overlapping and non-overlapping mRNA transcripts, upregulated in leprosy nerve biopsies and in Schwann cells infected with viable and dead M. leprae.
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FIGURE 3 | Analysis of inflammatory network in leprosy infection. Fold-change measurement of inflammatory cytokines/chemokines mRNA transcripts in human

nerve biopsies from leprosy (A, black bars) and non-leprosy patients (A, horizontal line) and in human Schwann cells (B) infected with dead M. leprae (white bars) and

viable M. leprae (black bars); results are presented as mean ± SD from three to eight normalized independent biological replicates; *p < 0.05, ****p < 0.0001.

Viable and Dead M. leprae Promote a
Distinct Inflammatory Response in
Schwann Cells
We substantiated our transcriptional analysis by evaluating the
cytokine network production in Schwann cells challenged with
viable and dead bacilli. For that, we performed analysis of
cytokine levels in 24-h supernatants, and found that dead M.
leprae caused an increase in the TNF, IL-8, MCP-1/CCL-2,
and CXCL-10 levels in comparison to non-stimulated control
cultures (Figure 4). Conversely, viable M. leprae infection led to
increased TGF-β, IL-8, IL-6, IL-10, MCP-1/CCL2, and CXCL-
10 in comparison to non-stimulated controls. We also observed
a statistical reduction in TNF levels after viable M. leprae
infection when compared to dead stimulated cultures and
controls. Together, these results suggest that dead M. leprae
induces pro-inflammatory mediators in human Schwann cells,
whereas viable M. leprae preferably promote anti-inflammatory
cytokines like IL-10 and TGF-β and reduced TNF production
(Figure 4).

CCL2 Correlates With Decreased Fiber in
Histopathology, AFB and PCR From Nerve
Fragments
We next applied a correlation matrix to analyze a potential
relationship of histopathological findings and changes in gene
profiling of Schwann cells in order to evaluate top molecular
signature candidates during the early stages of nerve damage in
leprosy patients. The overall nerve pathological findings are listed
on the y-axis of Figure 5. Using this correlogram, we observed
that, onion bulb axons, axonal regeneration, demyelination,
and Schwann cell proliferation were positively correlated with
SHH, TYRP1, ERBB2, and MAPK14 genes. With regards
to remyelination appearance, this was positively correlated
with NTN1, OLIG1, and UNC5B genes. Foamy macrophages
correlated with IL6 and granulomas were positively correlated
with GDNF, GJA1, and SHH (Figure 5). CCL2 was negatively
correlated with lymphocytic, perineurial, and epineurial infiltrate
and positively correlated with decreased fibers and Schwann cell
proliferation (Figure 5).
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FIGURE 4 | Differentially pattern of cytokine/chemokine release after viable and dead M. leprae infection in human Schwann cells. Two-side sandwich ELISA showing

the pattern secretion of pro- and anti-inflammatory cytokines and chemokines, in human Schwann cells control (gray bars) and after infection with dead M. leprae

(white bars) and viable M. leprae (black bars), at 24 h after stimuli in vitro, results are shown as mean ± SD from three to eight normalized independent biological

replicates; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

FIGURE 5 | Correlation matrix between leprosy histopathological alterations and gene expression profile in PNL patients. The y-axis indicates major nerve

histopathological alterations observed in leprosy patients; the x-axis shows Schwann cell genes evaluated in PNL patients. The green color (closer to 1 value) means

stronger correlation while the red color (closer to −1 value) means weaker correlation between the gene expression and the specific histopathological alteration,

respectively.

Acid Fast Bacilli (AFB) staining in nerve lesions and positive
PCR are two commonly used tools for diagnosing PNL at
clinics. Thus, we next searched for a potential association
between the presence of the bacilli in nerve and changes

in gene expression. It was statistically relevant that the
expression of CCL2 and CDH1 positively correlated with AFB,
while, CCL2 and GDNF expression negatively correlated with
PCR (Table 2).
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TABLE 2 | Linear regression between M. leprae PCR and AFB values against the

global gene expression.

Variable Estimative Standard deviation P-value

CCL2

Intercept 0.622 1.112 0.5998

FAB 5.247 1.435 0.0147*

PCR −4.445 1.284 0.0180*

R² 0.778

CDH1

Intercept 0.108 0.253 0.6818

BFAB 1.014 0.412 0.0493*

R² 0.502

GDNF

Intercept 3.119 0.503 0.000815***

PCR −1.596 0.581 0.033469*

R² 0.557

Among all the genes evaluated, CCL2, CDH1, and GDNF presented a statistical

significance with AFB and/or PCR. *p < 0.05, ***p < 0.001.

DISCUSSION

The comprehension of Schwann cell-M. leprae pathological
interactions is vital to fully understand disease progression in
experimental models as well as in leprosy patients. Moreover,
how viable and dead bacteria affect Schwann cell biology is largely
unknown and poorly explored in the field. Therefore, in the
present work, we used the in vitro host-pathogen interaction
model to determine how viable and dead bacteria modify the
global gene expression profile as soon as the bacteria comes in
contact with the Schwann cells. Furthermore, we extended these
early changes in the Schwann cell gene profile in response to
infection to the analysis of patient nerve biopsies, establishing
a potential link to the early response pattern during the disease
progression in leprosy individuals.

We initially performed an exploratory, broad gene expression
analysis of Schwann cells challenged with viable or dead bacteria,
along with data obtained from nerve biopsies. The following
families of genes involved in the nerve response to injury
were investigated: (i) peripheral neuropathy, (ii) inflammatory
network, (iii) Schwann cell plasticity/dedifferentiation, and (iv)
nerve regeneration support.

Among the global gene expression, HLA-DRB1, MAPK14,
GAP43, FABP7, NTN1, and LRRTM4 were upregulated in nerve
biopsies from PNL patients and in viable and dead M. leprae-
infected Schwann cells, in comparison with the respective control
groups (Figure 2). It has been described that human leukocyte
antigen (HLA) alleles affect the host immune response against
M. leprae (36, 37). HLA-DRB1 is one of the most upregulated
genes in multiple sclerosis, having a special role in inducing
demyelination (38). Moreover, this transcript is consistently
related to the tuberculoid leprosy (T-Lep) clinical form, while
HLA-DQB1 has a strong relation with the L-Lep clinical form
(39). In the present study,HLA-DQB1was downregulated in PNL
patients, in comparison with the uninfected nerve specimens

(Figure 1A). Additionally, receptors for the axon guidance
molecule, netrin-1 (NTN1), are expressed by Schwann cells and
play a role in peripheral regeneration and induce the regeneration
phenotype (40).

When evaluating the set of genes related to Schwann cell
plasticity and dedifferentiation, some serine/threonine kinases,
such as mitogen-activated protein kinase 14 (MAPK14), widely
known for its role at the inflammasome pathways in the
neuroglia (41), were found to be upregulated in PNL patients.
However, there is a lack of information regarding MAPK14 in
leprosy. GAP43, the major protein of the axon growth-cone
that plays a role in axon growth (42) and regeneration was
also upregulated, which suggests a tentative role for axonal
regrowth in the injured infected nerve. SHH,WNK, and KCNJ10
were upregulated in leprosy nerve biopsies and in dead M.
leprae-infected Schwann cells (Figure 2). The sonic hedgehog
gene (SHH), which has been previously reported in nerve
damage (43, 44), may also trigger regeneration and induce
Schwann cell proliferation, as an attempt to counteract the
harm caused by the bacilli (44). KCNJ10 encodes the inward-
rectifying potassium channel (Kir4.1). Alteration of KCNJ10
gene expression is related to neuropathies, such as Huntington’s
disease East/SeSAME syndrome, by elevating the extracellular
K(+), which consequently leads to abnormal neuron excitability
(45, 46). It was demonstrated in mice that inflammation can
silence (Kir4.1) channels, leading to hyperalgesia and trigeminal
pain (47). Despite the absence of studies relating theKCNJ10 gene
andM. leprae infection, it seems this may be a potential pathway
to be explored for leprosy neuritis in the future. cJUN was the
only gene statistically upregulated in PNL biopsies and viable
M. leprae-infected Schwann cells in comparison to the respective
controls (Figure 2). cJUN is a master Schwann cell regulator
involved in the transition of a differentiated phenotype toward
a progenitor/stem-cell like stage (48) and has also previously
been reported to be upregulated, among other developmental and
neural crest genes, duringM. leprae infection in mouse Schwann
cells (35).

PLP1, SOSTDC1, RAF1, ARTN, OLIG1, MAPK1, IFNB, and
TYRP1 were upregulated in viable and dead M. leprae-infected
Schwann cells, but not in the PNL biopsies. The tyrosinase-
related protein 1 (TYRP1) plays a role in themelanin biosynthetic
pathway, being mostly expressed by melanocytes (49). It has
been documented that leprosy patients may present hyper or
de-pigmented lesions due to a defective transfer of melanin
(50). The melanocytes have been recently associated with the
innate immune response, by producing inflammatory cytokines,
such as IL-1β (50). But the role of the TYRP1 pathway
in the peripheral nerve requires further investigation. It was
documented that interferon beta (IFNB) is increased during
cell stress conditions, but the lack of this protein leads to
neuroinflammation (51, 52). IFNB is essential to start the
cell fate pathway driven by NUPR1, a gene signature that
contributes to a progressive infection in human cells (53).
Oligodendrocyte transcription factor 1 (OLIG1) is an important
protein of the remyelination phenotype, usually upregulated
after a disturbance in the cell microenvironment (54). It is well
described that during diabetic neuropathy, the lack of insulin
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leads to the demyelination phenotype due to a downregulation
of OLIG1 (54). On the other hand, in this study, some genes
like MAPK3 (ERK1), an important extracellular signal-regulated
kinase and Schwann cell migration and proliferation molecule
(55) was downregulated in PNL patients. Likewise, ErbB2, a
well-known demyelination inducer and Connexin43—GJA1—
were also significantly reduced in PNL patients. Despite the lack
of information about GJA1 in leprosy, this has been described
in neural impairment, like in the pathogenesis of Alzheimer’s
disease, where GJA1 downregulation leads to reduced levels of
ApoE (56, 57).

While we know that the polarity of leprosy can result
from the host’s inflammatory response profile, multiple features
of neurological involvement may also occur. For example,
polymorphisms in certain genes such as IL10, ninjurin 1 and TNF
have been associated with leprosy susceptibility (58–60).

In the present work, we were able to correlate the pattern
of histopathological impairments with alteration in the
gene expression profile induced by M. leprae infection.
The correlogram analysis demonstrated, for the first time,
a statistically significant correlation between the gene
signature from the early stages—before fibrosis—and the
histopathological alterations of the nerve damage in leprosy
neuropathy. Regarding the histopathological features, TYRP1,
SHH, and MAPK14 expression were strongly correlated to
onion bulb axons, axon regeneration, demyelination, and
Schwann cell proliferation, while MCP1/CCL2 was strongly
negatively correlated with nerve inflammatory infiltrates:
epineurial, endoneurial, perineurial, and lymphocytic infiltrates.
It is important to realize that the weak correlation with
endoneurial, perineurial, and epineurial fibrosis was due to the
inclusion criteria for this study, which selected patients with no
signs of fibrosis.

The biserial correlation demonstrated that the monocyte
chemoattractant protein 1 (MCP1/CCL2) was positively
correlated with AFB and negatively correlated with PCR,
which strongly indicates the correlation of increased expression
of this gene by viable bacteria. This finding corroborates a
previous study by our group, which showed activation of the
ESX-1 mycobacterial system by the viable M. leprae, leading to
the activation of the OASL gene and the induction of CCL2,
impairing the host bactericidal response, which was not observed
with dead M. leprae stimuli in THP-1 cells (61). More than that,
independently, Schwann cells are responsible for the triggering
response of nerve damage through initiating the clearance of the
debris by myelinophagy, followed by macrophage recruitment,
which is especially regulated by CCL2 (62). In this sense, we see
the relevance of CCL2 gene activation not only as a protective
mechanism in the maintenance of mycobacterial viability, but
also as a biological marker indicative of positive AFB. CCL2 has
been described as one of the innate immunity genes immediately
activated in the context of infection in vitro (35). Thus, despite
the relevant findings, there is still a way to go in terms of
understanding the role of this chemokine in infection and nerve
damage during leprosy.

To strengthen the data obtained from the gene signature of
M. leprae infection, we evaluated the immunomodulatory profile

secreted by Schwann cells without infection and challenged with
viable and dead M. leprae. We observed a pro-inflammatory
profile elicited by the dead bacilli, while an anti-inflammatory
microenvironment appeared to be promoted by infection with
the viable bacteria. Studies have shown thatmacrophage infection
by viable M. leprae leads to a regulatory T cell response rather
than a cytotoxic T cell response, which contributes to the
persistence of the infection in the host (63, 64). This characteristic
is already well demonstrated in patients with L-lep, which leads
to a high bacillary load. In the present work, we demonstrated
that Schwann cells also behave in a way to induce the anti- or
pro-inflammatory phenotype according to the bacilli viability.
Since in reactional episodes there is a mixture of viable and dead
bacilli, it is interesting to point out the role of the Schwann
cells, and not only the macrophages, as modulators of the
reaction process in the nerve, which can even lead to leprosy
neuritis (14).

CONCLUSION

In the present study, we identified the early impact of
viable and dead bacteria, independently, on modifying the
gene expression profile of human Schwann cells in vitro.
We also described a molecular signature associated with
neural damage in early stages of pure neural leprosy from
patients (i.e., HLA-DRB1, MAPK14, GAP43, FABP7, NTN1,
and LRRTM4). Leprosy is a complex intricate disease and the
identification of this genetic profiling may contribute for the
fully understanding of leprosy neuropathy pathogenesis with the
long-term goal of identifying these pathways as targets for the
development of effective therapeutic strategies. We acknowledge
the relatively limited number of human nerve samples, as in
our experimental design we narrowed our analysis to nerve
biopsies of leprosy patients with no signs of neural fibrosis
and at the initial stages of neural damage. Therefore, future
work with additional nerve samples from leprosy individuals,
at distinct clinical stages, are important to advance this host-
pathogen interactions and associated genetic analysis in larger
cohorts. In summary, these results open new perspectives for the
understanding of the genetic signature of neural commitment in
leprosy disease.
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