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Chromatic dispersion is a common problem to degrade the system resolution in optical

coherence tomography (OCT). This study is to develop a deep learning network for

automated dispersion compensation (ADC-Net) in OCT. The ADC-Net is based on

a modified UNet architecture which employs an encoder-decoder pipeline. The input

section encompasses partially compensated OCT B-scans with individual retinal layers

optimized. Corresponding output is a fully compensated OCT B-scan with all retinal

layers optimized. Two numeric parameters, i.e., peak signal to noise ratio (PSNR) and

structural similarity index metric computed at multiple scales (MS-SSIM), were used

for objective assessment of the ADC-Net performance and optimal values of 29.95 ±

2.52 dB and 0.97 ± 0.014 were obtained respectively. Comparative analysis of training

models, including single, three, five, seven and nine input channels were implemented.

The mode with five-input channels was observed to be optimal for ADC-Net training to

achieve robust dispersion compensation in OCT.

Keywords: dispersion compensation, deep learning, fully convolutional network (FCN), automated approach,

optical coherence tomography

INTRODUCTION

Optical coherence tomography (OCT) is a non-invasive imaging modality that can provide three-
dimensional information for clinical assessment (1, 2). By providing micrometer scale resolution
to visualize retinal neurovasculature, it has been widely used for fundamental research and clinical
management of eye conditions (3–5). Given the reciprocal relationship between the axial resolution
and bandwidth of the light source, high resolution OCT requires a broadband light source
(6, 7). However, the broadband light source induces chromatic dispersion, i.e., light wavelength
dependence of the optical pathlength difference between the sample and the reference arms. The
reference arm generally houses a reference mirror that has a uniform reflectance profile, but the
sample arm usually contains dispersive media (such as a biological tissue). Optical dispersion
induces phase shifts among different wavelength signals in OCT detection, and thus degrades
the axial resolution. Dispersion can also produce chirping noise and hence reduce the quality
of the OCT image. Both hardware and numeric methods have been developed for dispersion
compensation to enhance OCT image quality.
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The hardware-based method involves additional dispersive
media, such as water, BK7 glass (8), fused silica (9), etc. in
the reference arm to balance the dispersion in the sample
arm. Physical dispersion compensation can also be achieved by
using grating-based group and phase delay detectors (10). Faster
speed and a higher range of tunability were achieved by using
acousto-optic modulator (11) and tunable optical fiber stretchers
(12). However, hardware compensation leads to a bulky optical
system due to the need of additional components. Moreover,
the hardware compensation is typically effective only when the
sample subject is stable with a fixed dispersion.

Numerical dispersion compensation has been established as
a useful alternative to hardware-based techniques. Numeric
dispersion correction is based on the digital processing of OCT
spectrogram, providing the flexibility of adjustable correction
values of the dispersion induced phase error. Fercher et al.
(13) proposed a numeric compensation technique where a
depth-dependent kernel was correlated with the spectrogram
to compensate dispersion. However, this method relies on the
availability of information related to the dispersive characteristics
of the sample which can vary for biological tissues. Fractional
Fourier transform for dispersion compensation was introduced
by Lippok et al. (14) where the performance is dependent on
the accuracy of the value of an order parameter and acquiring
this value for biological samples can be challenging. A spectral
domain phase correction method, where the spectral density
function is multiplied with a phase term, was demonstrated by
Cense et al. (15). However, to determine the precise phase term,
isolated reflections from a reference interface with a uniform
reflectance profile, which might not be available in clinical setup,
are required. A numeric algorithm based on the optimization
of a sharpness function, which was termed to be divided by
the number of intensity points above a specified threshold, was
presented by Wojtkowski et al. (16) where a pair of dispersion
compensation coefficients were derived to compensate dispersion
in the entire B-scan. But due to the depth varying changes
in biological tissues, the dispersion effect can vary at different
depths and hence a single pair of dispersion compensation
coefficients may not be able to compensate dispersion for all
depths effectively in one B-scan.

Entropy information of the signal acquired in the spatial
domain was utilized as the sharpness metric by Hofer et al. (17) to
compensate dispersion. However, the numeric techniques which
are based on sharpness metrics are susceptible to the prevalent
speckle noise in OCT B-scans and can lead to overestimation
or underestimation when the system lacks high sensitivity. A
depth-reliant method was proposed by Pan et al. (18) where
an analytical formula was developed to estimate the second-
order dispersion compensation coefficients in different depths
based on a linear fitting approach. But this method relies on the
accurate estimation of second order coefficients at specific depths
and the analytical formula can differ for different biological
subjects. Besides, the lower degree of freedom available in a
linear fitting method can lead to inaccurate estimation of the
coefficients at different depths. Spectroscopic analysis of A-scan’s
spectrogram was conducted to estimate and correct dispersion
by Ni et al. (19) where information entropy estimated from a

centroid image was used as a sharpness metric. However, this
technique leads to lower resolution and requires a region of
analysis without transversely oriented and regularly arranged
nanocylinder. In general, these classical numerical methods can
be computationally extensive when it comes to the widescale
application as they are usually designed based on specific
conditions and may require additional optimization for the
generalized application. Hence these methods may lead to
computational complexity in real-time application.

Deep learning has garnered popularity in medical image
processing (20–24), with demonstrated feasibility for real-
time application due to its capability to handle large datasets,
computational efficiency, high accuracy, and flexibility for
widescale application. Deep learning-based algorithms have
been used in image denoising (25, 26), segmentation (27–31),
classification (32–34), etc. In this study, we propose a deep
learning network for automated dispersion compensation (ADC-
Net) that is based on a modified UNet architecture. Input
to ADC-Net comprises OCT B-scans which are compensated
by different second-order dispersion coefficients and hence are
partially compensated for certain retinal layers only. The output
is a fully compensated OCT B-scan image optimized for all
retinal layers. We quantitatively analyzed the proposed model
using two parameters namely MS-SSIM and PSNR. Comparative
analysis of trainingmodels, including single, three, five, seven and
nine input channels were implemented. The source code along
with necessary instructions on how to implement it have been
provided here: github.com/dleninja/adcnet.

MATERIALS AND METHODS

This study has been conducted in compliance with the ethical
regulations reported in the Declaration of Helsinki and has been
authorized by the institutional review board of the University of
Illinois at Chicago.

Data Acquisition
Five healthy human subjects (mean age: 30 ± 4.18 years; mean
refractive error: −2.28 ± 1.53D) were recruited to acquire the
OCT images for training and testing the proposed ADC-Net.
These subjects had no history of ocular medical conditions. All
human subjects affirmed their willful consent before participating
in the experimental study. Moreover, two patients diagnosed
with proliferative diabetic retinopathy (DR) were recruited for
technical validation of the ADC-Net performance on OCT with
eye conditions. Patient 1 was a 58-year-old female diagnosed
with proliferative DR without macular edema. Patient 2 was
a 68-year-old male also diagnosed with proliferative DR but
with macular edema. Data were acquired from the left eye for
both the patients. For OCT imaging, the illumination power on
the cornea was 600 mW which is within the limit set by the
American National Standards Institute. The light source used
for this experiment was a near infrared (NIR) superluminescent
diode (D-840-HPI, Superlum, Cork, Ireland). A pupil camera
and a dim red light were used for localizing the retina and as
a fixation target, respectively. The purpose of the fixation target
is to minimize voluntary eye movements. Axial and lateral pixel
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resolutions were achieved as 1.5 and 5.0mm respectively. The
OCT spectrometer that was used for data recording consisted of
a line-scan CCD camera. The total number of pixels in the CCD
camera was 2,048 pixels and the line rate was 70,000Hz. The
recording speed for OCT imaging was 100 B-scans per second
with a frame resolution of 300 A-lines per B-Scan. A total of 9
OCT volumes were captured. Each OCT volume consists of 1200
B-scans. Seven of these OCT volumes (8400 B-scans) were used
for training themodel, and another two (2400 B-scans) were used
as testing set.

Dispersion Compensation
The signal acquisition in OCT involves recording the
spectrogram obtained by interfering back-reflected light
from different interfaces of the sample with the back-reflected
light from the reference mirror. The fringe pattern generated
by this interference signal is detected by the spectrometer and
corresponding OCT signal can be represented by the following
equation (18):
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Where βn represents dispersion coefficient, while a2 and a3 are
second and third order dispersion compensation coefficients.
While nn is the sample’s n-th layer’s refractive index, nn,g
is the effective group refractive index. Numeric dispersion
compensation can be done by modifying the phase term through
the addition of a phase correction term which eliminates the
dispersive phase. The following equation shows second and third
order dispersion compensation phase correction:
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Where a2 and a3 can be adjusted to compensate second-order
group velocity and third-order phase dispersion. However, since
dispersion in biological tissue is different at different depths,
dispersion compensation using a single pair of second and
third-order coefficients might not be sufficient for all depths.
Numerically estimating and applying different compensation

coefficients for different depths can be computationally
extensive for widescale application. In following Section
Model Architecture, we present ADC-Net, a deep learning-
based dispersion compensation algorithm for automated
implementation of full depth compensation. Input to ADC-Net
can be of single or multiple channels of partially compensated
B-scans. These partially compensated B-scans can be obtained
by using the phase correction method in Equation (3). For
simplicity, we have compensated the B-scans using second
order compensation only. All depth dispersion compensated
ground truth data were also crafted from an array of partially
compensated B-scans and the detailed procedure is elaborated in
Section Data Pre-Processing.

Model Architecture
The ADC-Net is a fully convolutional network (FCN) based on a
modified UNet algorithm, which consists of an encoder-decoder
architecture (Figure 1). The input to the ADC-Net can be of a
single channel or a multichannel system. Each input is an OCT
B-scan image which was compensated by different second-order
dispersion compensation coefficients and hence the B-scans in
each channel are optimally compensated at different layers or
depths. The output is dispersion compensated OCT B-scans
where all layers in different depths are compensated effectively.

The encoder segment is a combination of convolutional, max
pooling, dense, and transitional blocks. The primary function
of the decoder segment is to deduce useful features from the
image. To ensure precise feature localization and mapping for
generating output images, bridging between the encoder and the
decoder is established. The convolution blocks, which perform
summing operations, constitute the dense blocks. The skip
connections, which alleviate the vanishing gradient problem,
are used to link each subsequent block to previous blocks. A
transition block is connected to each dense block, which is to
reduce the dimension of output feature map.

The decoder segment consists of up-sampling operations
along with the decoder blocks. Using the decoder block,
the outputs obtained from the convolution operation of the
fitting transition blocks and the up-sampling operations are
concatenated. Image features can then be localized precisely by
convolving the generated feature maps.

In the ADC-Net, two types of functions, namely batch
normalization function and ReLU activation function trail all the
convolution operations. On the other hand, a SoftMax activation
function follows the terminal convolutional layer.

Moreover, transfer learning is employed to avoid overfitting
errors by utilizing the ImageNet dataset. The ImageNet dataset
is a visual database that consists of millions of everyday images.
These images differ from the OCT B-scans but facilitate in
training the CNN model to learn about simple features such as
edges, color codes, geometric shapes, etc. in the primary layers
and complex features in the deeper layers by utilizing CNN’s
bottom-up hierarchical learning structure. Transfer learning can
then facilitate the network to relay these simple features to learn
complex features which are related to the OCT B-scans. A fully
connected layer that consists of 1,000 neurons along with a
SoftMax activation function exists in the pre-trained encoder
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FIGURE 1 | Overview of the ADC-Net architecture. Conv stands for convolution operation. The input section is comprised of OCT B-scans compensated by different

second order coefficients (n = 3, 5, 7, and 9 for three, five, seven, and nine input channel models. A single image is used as input for the single input channel model).

The output image is a corresponding fully compensated OCT B-scan.

network model. When the pre-training was concluded (after
achieving about 75% classification accuracy on the ImageNet
validation dataset), the fully connected layer was removed. The
decoder network was then fed with transitional outputs from the
encoder network. Adam optimizer which had a learning rate of
0.0001 was used to train the FCN model along with a dice loss
function. The proposed network has a deeper layer and utilizes
lesser parameters compared to the classical UNet model which
ensures higher learning capability with reduced computational
burden and thusmakes it more robust. It is similar to a previously
reported model (33) where it has been shown that this network
can generate higher mean IOU and F1 scores when compared to
classical UNet architecture.

The hardware environment used for implementing the
proposed ADC-Net had Windows 10 operating system equipped
with NVIDIA Quadro RTX Graphics Processing Unit (GPU).
The software model was written on Python (v3.7.1) utilizing
Keras (v2.2.4) with Tensorflow (v1.31.1) backend.

Data Pre-processing
Figure 2 briefly illustrates the ground truth preparation method
for a single B-scan. Raw OCT data were acquired using the
SD-OCT system described in Section Data Acquisition. An
array of B-scans ranging from I1 to IN (In this study, N = 5)
were reconstructed from the same raw data frame using the
usual procedure that involves background subtraction, k-space
linearization, dispersion compensation, FFT, etc. However, each
of the B-scans were compensated with different second order
dispersion compensation coefficients ranging from C1 to CN

(N = 5). Technical rationale of numeric compensation has been
explained in Section Dispersion Compensation. Since the tissue
structure in a biological subject differ at different depths, the
dispersion effect also varies accordingly and thus a single second
order coefficient can effectively compensate dispersion errors
at a specific layer only. Thus, required values of second order

dispersion compensation co-efficient, ranging from C1 to CN ,
were selected empirically so that dispersion at all depths were
compensated optimally. In I1, the region demarcated by the red
box along the inner retina had been dispersion compensated
and optimized using C1. However, as we move further away
from the inner layers the dispersion effects appear to be more
prominent due to ineffective compensation. Image IN on the
contrary has the region demarcated by the yellow box at the
outer retina optimized and well compensated. To prepare the
ground truth B-scan, the red and yellow demarcated region from
I1 and IN were extracted and stitched in proper sequence to
obtain dispersion compensated layers at the inner and outer
retina. Similarly, the remaining layers acquired from I2 to IN−1

which were compensated by C2 to CN−1 respectively. Optimally
compensated layers were extracted and stitched sequentially
to obtain the all-depth compensated ground truth B-scan. To
prepare the training and test data for the single, three, five,
seven, and nine input channel models, 1, 3, 5, 7, and 9 arrays of
B-scans were re-constructed respectively from each raw volume
while each array were compensated with different second order
dispersion compensation coefficients. These coefficients were
selected in equal intervals between C1 to CN . To acquire the
OCT data and for digital image processing, LabView (National
Instruments) and MATLAB 2021 software environments were
used, respectively.

Quantitative Parameters
Two parameters, namely peak signal to noise ratio (PSNR) and
structural similarity index metric at multiple scales (MS-SSIM)
were used for quantitative analysis and objective assessment of
our proposedmethod. The two parameters are defined as follows:

Peak Signal to Nose Ratio
PSNR can be defined as the ratio of maximum signal strength to
the corrupting background noise which was computed using the
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FIGURE 2 | Ground truth preparation. An array of images ranging from I1 to IN were utilized to prepare the ground truth image. Each image was compensated by a

single second order co-efficient ranging from C1 to CN. Well compensated layers from each image were extracted and stitched together to form the ground truth

image. In I1 the inner retinal segment (demarcated by the dashed red box) is better compensated compared to the inner retinal segment in IN. On the other hand, the

outer retinal segment in IN (demarcated by the dashed yellow box) is better compensated compared to that of I1. The ground truth was prepared by stitching the inner

retinal segment S1 from I1 and outer retinal segment SN from IN. The adjacent layers were similarly extracted and stitched from the subsequent images between I1 and

IN.

following equation (35):

PSNR = 10log10

(

s2

MSE(f , g)

)

(4)

Where s is the maximum pixel intensity value in the
reconstructed image. Mean squared error (MSE) between the
reference image f (ground truth) and reconstructed image g
(output) can be defined by the following equation:

MSE(f , g) =
1

MN

∑M

i=1

∑N

j=1
(fij −gij)

2 (5)

Where M, N denotes the number of rows and columns while
(fij − gij) denote the pixel-wise error difference between f and g.

Structural Similarity Index Metric at Multiple Scale
MS-SSIM was computed to quantify the structural similarities
between the ground truth and the corresponding output images
obtained from the ADC-Net when implemented with different
input channels models. MS-SSIM utilizes three visual perception
parameters namely the luminance, contrast and structural
parameters when calculated at multiple scales and thus it
incorporates detailed image information at different resolutions

and visual perceptions which make it a robust and accurate
quality metric.

If x and y denote two image patches which are to be compared,
the luminance parameter is defined by (36):

l
(

x, y
)

=
2µxµy + C1

µ2
x +µ2

y +C1
(6)

The contrast parameter is defined by:

c
(

x, y
)

=
2σxσy + C2

σ 2
x +σ 2

y +C2
(7)

The structural parameter is defined by:

s
(

x, y
)

=
σxy + C3

σxσy +C3
(8)

Where µx and µy represent the mean, σxy represents the co-
variance, σx and σy represent the standard deviation of x and y
respectively. The constants C1, C2, and C3 can be obtained by:

C1 = (K1 L)
2 , C2 = (K2L)

2 and C3 = C2/2 (9)
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Where, L is the pixel dynamic image range and K1 (0.01) and K2

(0.03) are two scalar constants. Thus, SSIM can be defined as:
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[α = β = γ = 1] (10)

In order to obtain multi scale SSIM, an iterative approach is
employed where the reference and the output images are scaled
M-1 times and down sampled by a factor of 2 after each iteration.
The contrast and structural parameter are calculated at each
scale while the luminance parameter is computed only at the
M-th scale. The final quantitative parameter is obtained by
the combining the values obtained at all the scales using the
following relation:

MSSSIM
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(11)

RESULTS

Qualitative Assessment
Figure 3A shows representative OCT B-scan images obtained
from different input channels models along with a raw
uncompensated OCT B-scan. For better visualization, 6
neighboring B-scans at the macula region of a human retina
were averaged and the images are displayed on a logarithmic
scale. Figure 3A1 represents the uncompensated image and
due to the dispersion effect, the B-scan suffers from low axial
resolution and the different retinal layers appear to be blurry
and overlapping as the detailed structural information is lost.
Figures 3A2–A6 illustrate the representative OCT B-scans
obtained from single to nine input channels models respectively.
In Figure 3A2, which was obtained from the single input channel
model, even though the inner retinal layer appears to be well
compensated, the central and outer bands suffer from blurring
and the dispersion effect is not optimally compensated. When
the input was increased to 3, 5, 7, and 9 B-scans, the quality of the
output image was enhanced. As shown in Figures 3A3–A6, both
the inner and outer layers were better compensated compared to
single input channel model and showed sharp microstructural
information. As described in Section Data Acquisition, input
models with 3, 5, 7, and 9 input channels had input B-
scans with both inner and outer retinal layers compensated.
However, 5, 7, and 9 input channels performed slightly better
compensation compared to the model with 3 input channels and
this improvement can be better visualized in Figure 3B which
were generated for a detailed illustration of the differences in
performance of the different models. To generate these images,
pixel-wise, intensity difference between the corresponding
ground truth and Figures 3A1–A6 were computed, and the
resultant intensity differential images were displayed in a jet
colourmap. Here, the bright regions indicate higher differences
in intensity while the darker blue region indicates lower to no
difference. These images serve two purposes. First, the pixel
wise extent of dissimilarity between each of the images and the

ground truth can be observed. The lesser difference with the
ground truth means higher similarity and thus indicates better
performance. Second, the detailed differences in performance
between the different input models and the uncompensated
image can be better visualized using the difference between
these images and the ground truth as a qualitative metric.
Figure 3B1 shows that the uncompensated image depicts more
difference from the compensated ground truth due to lack of
dispersion compensation.While Figure 3B2 shows slightly better
performance but more bright regions at the outer retina depict
that the single input model could not compensate dispersion
properly at the lower depths. Figure 3B3 illustrates that the
model with three input channels performed better than the single
input channel model. However, Figures 3B4–B6 show almost
similar performance and the least amount of difference with the
ground truth and thus the higher performance than the other
two models.

Quantitative Assessment
The two quantitative parameters described in Section
Quantitative Parameterswere calculated from the resultant
images obtained from different input channels models along
with the corresponding uncompensated images to perform
a quantitative assessment of the proposed ADC-Net. Before
computing the quantitative parameters, the four repetitive
B-scans at the same locations were averaged. MS-SSIM and
PSNR were calculated, and the result is graphically represented
in Figure 4. Mean values with standard deviation were
used for representative purpose. In Figure 4, UC represents
uncompensated images while M1, M3, M5, M7, and M9
represent the output obtained from single, three, five, seven,
and nine input channels models respectively. In Figure 4A,
we can observe that the lowest mean MS-SSIM score was
obtained for UC (0.85 ± 0.025) which depicts the least similarity
with the ground truth image. Due to the dispersion effect the
image quality degrades significantly without compensation. The
MS-SSIM score obtained from the single input channel model
(M1) is 0.94 ± 0.021 which shows an improved performance
in terms of dispersion compensation compared to the raw
uncompensated image. The similarity score for three (M3) and
five (M5) input channels models show a gradual improvement in
performance with MS-SSIM values of 0.95 ± 0.018 and 0.97 ±

0.016 respectively. However, the graph flattens after M5 as seven
(M7) and nine (M9) input channels models show a similarity
score of 0.97 ± 0.014 and 0.97 ± 0.014 which are within the
1 standard deviation range of the five-input channels model.
We can observe a similar trend in Figure 4B which depicts the
mean PSNR. Highest PSNR of 29.95 ± 2.52 dB was calculated
for the five input channels model (M5) while seven and nine
input channels model had a mean PSNR of 29.91 ± 2.134 dB
and 29.64 ± 2.259 dB respectively. Output from the three input
channels model recorded a slightly lower PSNR value of 27.49
± 1.606 dB and the downward slope continued for the single
input channel model (M1) with a mean value of 25.86 ± 1.677
dB and the least PSNR of 20.99 ± 0.021 dB was observed for the
uncompensated B-scans.
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FIGURE 3 | (A) Representative OCT of a human retina with no dispersion compensation (A1), and dispersion compensated by single (A2), three (A3), five (A4), seven

(A5), and nine (A6) input channel models. (B) Corresponding differential intensity images which were generated by computing the pixel-to-pixel intensity differences

between the ground truth image and the images in (A1–A6), respectively.

FIGURE 4 | Quantitative evaluation of MS-SSIM (A) and PSNR (B). Average values are used for the graphical representation. UC represents the uncompensated

images; M1, M3, M5, M7, and M9 represent the images acquired from ADC-Net with the single, three, five, seven, and nine input channel models.

Intensity Profile Analysis
Figure 5 illustrates comparative reflectance intensity profile
analysis of the outer retina. The yellow vertical line in Figure 5A

shows the retinal region for OCT intensity profile analysis
(Figure 5B). Figure 5B illustrates axial intensity profiles at
the parafovea and encompasses the outer retinal bands. Six
neighboring B-scans were averaged and 5 adjacent A-lines
at the region of interest were averaged from the averaged
B-scan before generating the intensity profiles. Figure 5A is
displayed in logarithmic scale for enhanced visualization, but the
intensity profile analysis in Figure 5B is shown in linear scale.
The intensity profiles are depicted in Figure 5 where GT and
UC represent the intensity profiles obtained from the ground
truth and the uncompensated images, respectively. Whereas
M1, M3, M5, M7, and M9 stand for the intensity profiles
obtained from single, three, five, seven, and nine input channels
models respectively.

The ELM band profile is known to reflect the point spread
function (PSF), i.e., the axial resolution. FromGT we can observe

a sharper and narrower PSF at the ELM layer when compared
to UC and M1, where the PSF is flat and wider. The ELM
band profile becomes slightly better for M3, but M5, M7, and
M9 depict thinner and analogous band profile to GT. Blurred
RPE band profiles can also be observed for UC and M1 at the
RPE which overlaps with the Bruch’s Membrane (BM) region
(37). On the contrary, GT, M3, M5, M7, and M9 show sharper
peaks which can be distinguished separately. This means that the
RPE and Bruch’s membrane can be observed separately from the
reconstructed images. The IS/OS and OPR bands in UC have
distinguishable peaks but still depict thicker profiles, compared
to GT. M1 and M3 show slightly thinner IS/OS and OPR bands,
compared to UC. On the other hand, GT, M5, M7, andM9 depict
sharper and thinner OCT band profiles.

Dispersion can also shift the location of the interfaces in a
multilayered sample which can affect the depth measurement
of different layers (38). We comparatively evaluate the peak
locations of the ELM, IS/OS, OPR, and RPE in the intensity
profiles demonstrated in Figure 5 to assess the performance of
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FIGURE 5 | Intensity profile analysis of the outer retinal bands. (A) OCT B-scan of a human retina at the macula region with different retinal layers labeled accordingly.

The bright orange line represents the A-line segment of the outer retina at the parafovea region where the intensity profiles in (B) were computed. (B) Intensity profiles

generated from different image models. GT, ground truth; UC, uncompensated; M1, single input channel; M3, three input channels; M5, five input channels; M7,

seven input channels; M9, nine input channels; NFL, nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform

layer; INL, outer nuclear layer; ELM, external limiting membrane; IS/OS, inner segment/outer segment junction; OPR, outer plexiform layer; RPE, retinal pigment

epithelium; BM, bruch’s membrane.

our proposed method in terms of depth measurement where the
GT was taken as the reference of assessment. The GT’s peak
location at the ELM and IS/OS layer aligns with M3, M5, M7,
andM9. However, the peak location for M3 shifts at the OPR and
RPE when compared to the peak location of the GT where M5,
M7, andM9 demonstrate aligned peaks with the GT. For M1 and
UC, the peaks observed at ELM and RPE are flat and overlapping
while the peaks are shifted at the IS/OS and OPR layer.

Automated Dispersion Compensation in
3D Volume OCT
Figure 6 illustrated the performance of the ADC-Net model for
automated processing of 3D volume OCT. Figure 6A shows an
OCT enface image. For 3D volumetric OCT, with the model
of five input channels, the ADC-Net was used to compensate
for individual B-scans sequentially. Figures 6B,C show three
representative B-scans before (Figure 6B) and after (Figure 6C)
dispersion compensation. Figures 6C1–C3 have higher contrast,
sharpness and retain better structural integrity when compared
to the uncompensated images in Figures 6B1–B3.

Performance Validation With OCT Images
of DR
Performance of the proposed ADC-Net was also assessed
using OCT images with eye conditions. Two OCT volumes
acquired from two different subjects diagnosed with DR were
used for this technical validation. Patient details have been
discussed in Section Data Acquisition. and the representative
B-scans have been illustrated in Figure 7. Figures 7A1,B1

depicts the raw uncompensated images obtained from patient 1
and 2, respectively. Figures 7A2,B2 depicts the corresponding
compensated B-scans obtained from our proposed ADC-Net
when implemented using 5 input channels. Compared to the

uncompensated B-scans, Figures 7A2,B2 depict better contrast
and signal quality, and the retinal layers are sharper and can be
visualized more effectively. The distortion in retinal layers can
also be depicted from the compensated images.

DISCUSSION

Dispersion compensation is necessary to obtain high axial
resolution and retain detailed structural information in OCT.
Traditional numeric dispersion compensation approaches can be
computationally expensive. Numerically devised methods also
require optimization based on specific contexts, and thus may
lack flexibility for generalized application. The demonstrated
ADC-Net can be automated for real-time implementation due
to its higher computational flexibility and simplicity. Once
trained with the optimum number of input channels and
well-crafted ground truth data, ADC-Net can automatically
compensate dispersion effectively and generate OCT B-scans
with high quality. We made the proposed ADC-Net available
through an open-source platform (github.com/dleninja/adcnet-)
for easy accessibility to a robust and automated dispersion
compensation algorithm.

The performance of ADC-Net peaked when employed using
five, seven, and nine input channels models. While a single input
channel model performed better than a raw uncompensated
image in terms of image resolution, the output images still
depicted blurring effects. The output obtained from the three
input channels model was better than the single input channel
model but slightly worse than the five, seven, and nine
input channels.

Since the proposed FCN is built on a modified UNet
structure and follows an encoder-decoder pipeline, the model
trains itself by acquiring features from the input and the
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FIGURE 6 | Automated processing of 3D volume OCT dataset. (A) Depicts an enface image with the horizontal lines, line 1 (blue), line 2 (yellow), and line 3 (red),

demarcating the regions from where representative B-scans were extracted. The corresponding B-scans are shown in (B,C). The compensated B-scans (C1–C3)

demonstrate higher sharpness, contrast and better visibility of structural layers when compared to the raw uncompensated B-scans (B1–B3).

FIGURE 7 | Representative OCT B-scans of proliferative diabetic retinopathy

(DR) patients without (A) and with (B) macular edema (blue arrowheads). The

compensated B-scans (A2,B2) obtained from the proposed ADC-Net illustrate

higher contrast and sharpness compared to the raw uncompensated B-scans

(A1,B1).

ground truth data to reconstruct dispersion compensated
images. For a single input channel model, the input B-
scans were compensated by a single second-order dispersion
compensation co-efficient which can optimize dispersion in a
specific retinal layer only. For our experiment, the second-
order dispersion compensation parameter was selected close to
C1 and thus the input B-scans had optimum compensation
along with the inner retinal layer only. Consequently, the
output B-scans had the inner retinal layer optimized only.
The input model with three input channels had three
arrays of B-scans and each array was compensated by
different second-order dispersion compensation coefficients

which were selected equally spaced between C1 to CN . The
three input channels thus provided more information related
to more layers being compensated and thus the model
performed better compared to the single input channel model.
Similarly, for five, seven, and nine input channels models,
the input channels had more B-scans with more layers being
compensated which in terms provided more features to the
model to train itself better. Hence the performance was
better compared to single and three input channels models.
However, quantitative analysis revealed that five, seven, and
nine input channels models depict similar performance, and
thus optimum all-depth dispersion can be obtained using five
input channels.

The dispersion effect broadens OCT band profiles and thus
degrade the axial resolution. In a well-compensated OCT image,
such as the ground truth image, this blur effect would be
minimized, corresponding to thinner and sharper band profiles.
On the other hand, as illustrated in the intensity profile obtained
from the uncompensated image, the band profiles would be
thicker due to dispersion effect which in terms would affect the
image resolution. This would impact the thickness measurement
of the retinal bands as they would appear to be thicker than
the actual value. From our proposed ADC-Net we obtained
sharp and thin OCT band profiles from input models with
five, seven, and nine channels which were analogous to the
intensity profile obtained from the ground truth image. The
peaks for the outer retinal layers were also aligned which
shows the promise for accurate depth measurement. Hence the
proposed ADC-Net demonstrates its capability to generate B-
scans with high resolution that can retain intricate structural
information. Implementation of this automated process can be
beneficial in clinical assessment and ophthalmic research by
providing accurate retinal thickness and depth measurement
in healthy and diagnosed patients. Artificial intelligence may
reduce the technical complexities and streamlining tasks in a
clinical setting.
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The major challenge of our proposed ADC-Net is the
availability of finetuned ground truth data which requires
all depth compensation. However, once the required
values of the coefficients for different depths and ranges
are obtained for one volume, it can be applied to other
volumes directly. Thus, for one OCT system, calibrating the
system once would be enough. Once our proposed ADC-
Net is trained with all depth compensated ground truth, it
can automatically generate fully compensated B-scans with
retinal layers optimized. Therefore, this ADC-Net process
can be effectively implemented for real-time application. The
performance of the ADC-Net has been validated with OCT
images acquired from both healthy and diseased eyes. We are
aware that the OCT image quality of diseased eyes in Figure 7

was relatively poor, compared to that of healthy subjects.
However, the feasibility of automatically generating dispersion
compensated images from diseased eyes has been validated with
the ADC-Net.

In conclusion, a deep learning network ADC-Net has
been validated for automated dispersion compensation
in OCT. The ADC-Net is based on a redesigned UNet
architecture which employs an encoder-decoder pipeline.
With input of partially compensated OCT B-scans with
individual retinal layers optimized, the ADC-Net can
output a fully compensated OCT B-scans with all retinal
layers optimized. The partially compensated OCT B-scans
can be produced automatically, after a system calibration
to estimate the dispersion range. Comparative analysis of
training models, including single, three, five, seven and nine
input channels were implemented. The five-input channels
implementation was observed to be sufficient for ADC-
Net training to achieve robust dispersion compensation
in OCT.
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