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Background and Aims: The initiation of cellular senescence in response to

protumorigenic stimuli counteracts malignant progression in (pre)malignant cells.

Besides arresting proliferation, cells entering this terminal differentiation state adopt

a characteristic senescence-associated secretory phenotype (SASP) which initiates

alterations to their microenvironment and effects immunosurveillance of tumorous

lesions. However, some effects mediated by senescent cells contribute to disease

progression. Currently, the exploration of senescent cells’ impact on the tumor

microenvironment and the evaluation of senescence as possible target in colorectal

cancer (CRC) therapy demand reliable detection of cellular senescence in vivo. Therefore,

specific immunohistochemical biomarkers are required. Our aim is to analyze the clinical

implications of senescence detection in colorectal carcinoma and to investigate the

interactions of senescent tumor cells and their immune microenvironment in vitro and

in vivo.

Methods: Senescence was induced in CRC cell lines by low-dose-etoposide treatment

and confirmed by Senescence-associated β-galactosidase (SA-β-GAL) staining and

fluorescence activated cell sorting (FACS) analysis. Co-cultures of senescent cells

and immune cells were established. Multiple cell viability assays, electron microscopy

and live cell imaging were conducted. Immunohistochemical (IHC) markers of

senescence and immune cell subtypes were studied in a cohort of CRC patients by

analyzing a tissue micro array (TMA) and performing digital image analysis. Results were

compared to disease-specific survival (DSS) and progression-free survival (PFS).

Results: Varying expression of senescence markers in tumor cells was associated with

in- or decreased survival of CRC patients. Proximity analysis of p21-positive senescent

tumor cells and cytotoxic T cells revealed a significantly better prognosis for patients
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in which these cell types have the possibility to directly interact. In vitro, NK-92 cells

(mimicking natural killer T cells) or TALL-104 cells (mimicking both cytotoxic T cells

and natural killer T cells) led to dose-dependent specific cytotoxicity in >75 % of the

senescent CRC cells but <20 % of the proliferating control CRC cells. This immune

cell-mediated senolysis seems to be facilitated via direct cell-cell contact inducing

apoptosis and granule exocytosis.

Conclusion: Counteracting tumorigenesis, cellular senescence is of significant

relevance in CRC. We show the dual role of senescence bearing both beneficial and

malignancy-promoting potential in vivo. Absence as well as exceeding expression of

senescence markers are associated with bad prognosis in CRC. The antitumorigenic

potential of senescence induction is determined by tumor micromilieu and immune

cell-mediated elimination of senescent cells.

Keywords: cellular senescence, colorectal cancer, senescence-associated secretory phenotype (SASP),

prognostic biomarker, senolysis

INTRODUCTION

Malignant neoplasia of colon and rectum are associated with
high morbidity and mortality and account for 10 % of cancer
cases and 9.4 % of cancer deaths (1). Molecular mechanisms
of colorectal carcinogenesis are increasingly understood, yet the
role of cellular senescence and its contribution to survival and
treatment outcome of cancer patients remain unclear.

One mechanism in tumor biology that only recently started
to gain more attention due to its role in carcinogenesis is
cellular senescence. Cellular senescence describes a permanent
cell cycle arrest following potentially protumorigenic DNA-
damaging incidents in premalignant cells, thereby counteracting
malignant progression (2). There is a multitude of trigger
mechanisms leading to the initiation of cellular senescence.
Eroded telomeres which occur after repetitive cell divisions
(3) or cumulative DNA erosions due to sublethal stressful
conditions such as oxidative stress (4), proliferative stress due
to oncogene-induced mitogenic hyperstimulation (5–7), loss of
tumor suppressors (8, 9) or the presence of DNA damaging
agents can induce a DNA damage response, arresting the cell
cycle of impaired cells (10). Anticancer treatment such as
chemotherapeutic agents, ionizing radiation (11–15) as well as
targeted therapies are capable of evoking cellular senescence (16–
21). Therapy-induced senescence (TIS) has been observed in
tumor cells both in vitro and in vivo (15). Apart from ceasing
proliferation, senescent transformation involves characteristic
morphological and metabolic changes (22). In vitro, senescent
cells adopt a characteristic flat, enlarged “fried egg” morphology
as well as nuclear alterations (23–26). Increased lysosomal
activity, detected by visualization of the lysosomal enzyme
Senescence-associated β-galactosidase (SA-β-GAL) at pH 6, is
a widely established biomarker of senescent cells (27). While
detection of SA-β-GAL may be used for identification of
cellular senescence in fresh or frozen cells (28, 29), the enzyme
activity-dependent assay cannot be carried out on formalin-
fixed, paraffin-embedded (FFPE) tissues (29) and therefore this
distinctive feature may not be used to study cellular senescence

in vivo to a large extent. Due to the irreversible proliferation
arrest, the senescent state is strongly associated with an absence
of proliferation markers such as Ki-67 and the expression of
anti-proliferative proteins (30). The onset of the senescence
program involves cell cycle suppressors such as p53, p21, and
p16 (22). The extent to which these features are displayed may
vary (23) and none of these characteristics are exclusively linked
to cellular senescence. Consequently only a combination of
markers allows for distinctive identification of senescent cells

(31). Recently, there have been approaches to identify novel

markers of senescence (32, 33).
Although no longer proliferating, senescent cells remain

highly metabolically active and display an altered secretory

and signaling activity. Apart from autocrine enforcement of
the senescent state, senescent cells induce non-cell-autonomous

effects via direct cell-cell contact with nearby cells, paracrine

signaling, and secretion of a multitude of factors affecting
angiogenesis and immune surveillance of the tissue environment.
The SASP, adopted by arrested cells in the presence of

DNA impairment, consists of a distinct composition of

secreted molecules involving signaling factors like inflammatory

cytokines, enzymes and extracellular matrix components (34).
The SASP highly depends on the cell type (34) and enables
senescent cells to attract immune cells such as macrophages, NK
cells and T cells to the site of a tumorous lesion, activating them
to specifically eliminate senescent cells and thus promoting the
immunosurveillance of the tumor (35, 36). While some senescent
cells remain in the tissue for years (29, 37, 38) and eventually

contribute to age-related diseases (39, 40), there are settings

where the SASP signaling activates an immediate immune
response, resulting in the installation of a proinflammatory

micromilieu and eventually the removal of the senescent cells

(41, 42), termed “senolysis.” This immune cell driven clearance of

senescent cells involves the innate (41, 42) as well as the adaptive

immune cells (43, 44). There is evidence that senescent cells

under senescence surveillance are eliminated by macrophages

(45) or NK cell-mediated induction of granule exocytosis (46, 47).
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Cellular senescence has been linked to colorectal
carcinogenesis (40). The silencing of the senescence-regulating
cell cycle suppressors p16 and p53 typically involved in cellular
senescence induction (22) is a crucial step to overcome cellular
senescence in colorectal carcinogenesis (48, 49). There is first
evidence that measurement of cellular senescence might be
a predictive parameter in CRC patients (50) but the clinical
implications of the contribution of cellular senescence to
colorectal carcinogenesis have not yet been studied in a large
patient cohort. Since TIS occurs during various CRC therapies,
the influence of this biomechanism on disease progression in
CRC needs to be investigated in a clinical setting. Furthermore,
it might be a promising approach in colorectal cancer therapy to
use the potential of the senescence-induced immunosurveillance
to counteract malignant progression (51). Evaluating the impact
of cellular senescence and the potential of therapy-induced
senescence in CRC demands reliable detection methods and
biomarkers applicable to FFPE tissue to explore this key
mechanism in colorectal carcinogenesis in vivo. We further
explored the potential of senescence-associated molecules as
prognostic and predictive biomarkers in CRC and conducted
both in vitro and in vivo studies to gain a better understanding
of the functional role of the interaction between senescent
colorectal tumor cells and the immune system.

MATERIALS AND METHODS

Material
A list of antibodies and inhibitors used in this study can be found
in Supplementary Table 1.

CRC Cell Culture
After preliminary experiments with various CRC cell lines, Caco-
2 cells were cultivated in MEM (+15 % fetal bovine serum +

1 % pyruvate, 1 % NEAA, 1 % glutamine, 1 % penicillin, 1%
streptomycin) at 37◦C and 5%CO2 on 12-well-plates. Senescence
was induced by low dose (5µM) Etoposide treatment. 24 h after
seeding, the growth mediumwas replaced by medium containing
5µM Etoposide. Cells treated with equal volumes of Dimethyl
Sulfoxide (DMSO) were used as negative control. After 48 h the
medium was replaced by growth medium, and cells were allowed
to recover. Analyses were performed after 72 h.

Cytoblocks of Etoposide-treated and control cells were
generated after harvesting using Accutase (Sigma Aldrich)
treatment, formalin (Sigma Aldrich) fixation and embedding in
1 % Agarose. For following analyses, samples were transferred
to paraffin and standard sectioning (2µm) and subsequent
staining was performed according to standard protocols
used for routine pathology or as published previously (52).
Furthermore, transmission electron microscopy (TEM) was
performed according to protocols established for routine
diagnostics at our institute (53).

Immune and CRC Cell Culture
NK-92 cells were cultivated in α-MEM + 12.5% fetal bovine
serum + 12.5% horse serum + 1% penicillin + 1% streptomycin
+ 100–200 U/ml IL-2 (48 h)/ 5 ng/ml IL-2 (every 48 h) at 37◦C

and 5% CO2. TALL-104 cells were cultivated in Iscove’s Modified
Dulbecco’s Medium (ATCC) + 20% fetal bovine serum, 2.5
µg /ml human albumin, 0.5µg/ml D-manitol + 50–100 U/ml
recombinant human IL-2 (48 h) at 37◦C and 5% CO2. For co-
culture experiments, Caco-2 cells were cultivated on 6-well-plates
and senescence was induced as according to 3.1. After 72 h
of recovery, the growth medium was replaced by immune cell
growth medium containing immune cells in different target-
to-effector ratios. Cells were co-cultivated for up to 180min.
Following 120min of co-incubation, cells were washed, and non-
adherent cells (immune cells and non-vital Caco-2 cells) were
removed. The quantity of remaining adherent Caco-2 cells after
Co-culture wasmeasured using cell viability assays such as crystal
violet (CRV) staining of the remaining adherent cells.

Senescence and Cell Viability Assays
Cellular senescence was detected by SA-β-Gal staining using
the Senescence β-Galactosidase Staining kit according to the
manufacturer’s instructions (Cell Signaling). In addition, cells
were subjected to FACS analysis using the cellular senescence live
cell analysis assay (Enzo) and a Becton Dickinson FACScalibur
cytometer and Cell Quest Software (BD Bioscience). For viability
analysis, Caco-2 cells were treated as described. At the indicated
times, cells were washed with PBS, fixed with methanol:ethanol
(2:1) and stained with 0.1 % crystal violet for 30min. The
plates were washed in running tap water and air dried for 24 h.
Crystal violet was solubilized using 33 % acetic acid for 30min.
The absorbance was measured at 600 nm using a microplate
reader (Tecan).

Live Cell Imaging
Immune cells were added to Etoposide-treated Caco-2 cells as
described above. Cells were incubated at 32◦C for 180min. Cell-
cell interactions were observed using a Jenoptik GRYPHAX
SUBRA camera system in 100 x magnification. Pictures of
representative areas were taken with a 30 s interval.

Patient Cohort
The patient cohort consisted of up to 598 patients diagnosed
with primary colorectal carcinoma at the Institute of Pathology
of the University Medical Center, Mainz. These patients had
not received neoadjuvant treatment prior to their surgery and
were treated according to national and WHO guidelines in
place at the time. Patients with a hereditary cancer syndrome
or history of inflammatory bowel disease were not included in
this study. Retrospective use of these and other patients’ data as
well as material for research purposes was approved by the ethical
committee of the medical association of the State of Rhineland-
Palatinate [ref. no. 837.075.16 (10394)]. All experiments were in
accordance with the Declaration of Helsinki. Characteristics of
the patients can be found in Supplementary Table 2.

Human Tissue Analyses
From each patient, FFPE tissue samples containing tissue of
the primary tumor and non-cancerous tissue were obtained
from routine procession of the surgery specimens. Clinical data
such as age, DSS, PFS, localization and stage of the tumor
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were obtained. Representative areas of tumor center, invasive
margin and non-cancerous epithelium were identified by review
of hematoxylin and eosin (H&E)-stained sections from each
sample and cores of 1mm in diameter were obtained using the
TMArrayer (PathologyDevices, SanDiego, USA) and included in
the TMA. From each patient, 3 samples containing representative
areas of the primary tumor were included. TMA sections
were stained for various senescence-associated molecules and
other cell types. Staining of the slides was carried out using
an automated staining system (Agilent Technologies) and its
respective reagents. IHC-stained TMA sections were digitalised
using a Hamamatsu Nanozoomer Series scanner (Hamamatsu
Photonics, Hamamatsu, Japan) at 20 x magnification. Slides were
thoroughly annotated by a pathology expert, thereby cancerous
epithelium and stroma were marked. Digital image analysis
was performed using HALO (Indica Labs, Albuquerque, USA).
A random forest classifier was trained to discern (cancerous)
epithelium and stroma. The percentage of positive cells within
the classified tumor cells was obtained. Consecutive sequential
TMA sections were co-registered for additional comprehensive
morphometric analyses such as distance-measurements.

Statistical Analyses
Statistical analyses were carried out using GraphPad Prism
version 9. Cell viability data was compared with the control
group using t-test or ordinary one-way ANOVA. Dunnett T3 test
(statistical hypothesis testing) was used to correct for multiple
testing. For each marker, the values’ distribution was analyzed,
and cutoff values were chosen to represent meaningful biological
groups, while at the same time finding optimal cutoff values.
This was done similar to the method proposed by Budczies
et al. where “[t]he optimal cutoff is defined as the point with
the most significant (log-rank test) split.” These authors have
implemented their approach as open source software named
the Charité Cutoff Finder (54). Additionally, we also applied
the surv_cutpoint capability of the R survminer package which
functions in a similar fashion (54). Cutoff values can be found in
Supplementary Table 3. Survival analyses were performed using
Kaplan-Meier-plots, differences in survival were calculated by
performing log-rank Mantel-Cox test.

RESULTS

Low dose Etoposide treatment induces senescence-related
morphological changes and SA-ß-Gal activity. Morphological
changes commonly found in senescent cells such as enlarged
size and vacuolation could be detected in cells treated with
Etoposide using white light microscopy and electron microscopy
(Figure 1A). Increased SA-β-GAL activity was observed in 71.9
% of Etoposide-treated Caco-2 cells but only 1.1 % of control
cells (p < 0.0001) (Figure 1B). Senescence induced by Etoposide
treatment was also confirmed by FACS analysis (Figure 1C).

To assess the prognostic potential of senescence-associated
molecules suggested by previous studies (32, 33) in a clinical
setting, we evaluated various markers in our cohort of CRC
patients immunohistochemically (Figure 2A) and observed
mixed effects. For NTAL, ARMCX3, p21, and EBP50 the

percentage of positive tumor cells showed a statistically
significant prognostic effect. High expression of NTAL was
linked to a better DSS and PFS (Supplementary Figure 1).
A high expression of p21 was linked to a higher PFS
(Supplementary Figure 1), underlining the important role
of p21-mediated senescence in tumor defense. Evaluating
expression of ARMCX3 and EBP50 (Supplementary Figure 1),
we found that a high expression was associated with a
decreased DSS compared to the group of patients with
lower expression levels. This surprising finding led us to
try a three-tier cutoff system into excessive, moderate, and
low expression (Figures 2B–F, cutoffs on the right and
in Supplementary Table 3). Interestingly, for all markers
(including gH2AX), using this approach showed that moderate
expression was associated with the best prognosis, while both
low and excessive expression showed a worse prognosis. This
was statistically significant for NTAL, ARMCX3, and EBP50
(Figures 2B–E, Supplementary Figure 1). Taken together, this
highlights the dual role of cellular senescence, with both low and
excessive expression of senescence-associated markers showing
worse DSS and PFS.

In search of an explanation for this plurivalent effect we
hypothesized that the negative prognosis in patients with large
numbers of senescent cells might result from a defective
interaction between senescent cells and the tumor micromilieu.
The excessive numbers of senescent cells in patients with
a negative prognosis might reflect accumulation of these
cells within the tumor tissue due to an ineffective tumor
immunosurveillance and a failure of the immune system to
clear of senescent cells. To investigate the immunosurveillance of
senescent cells in our clinical cohort and analyse immune cells
targeting senescent cells, we visualized the spatial relationship
of senescent cells and cytotoxic T cell as stained by CD8
(Figure 3A). Using digital image analysis, consecutive sections
with cores of one patient stained for different molecules were
co-registered and corresponding tissue areas on the different
sections were identified. The average distance between these
two cell populations as well as the percentage of CD8-positive
cells within 100µm of p21-positive cells were determined
(Figure 3C). To identify a possible impact on survival, proximity
data was correlated with DSS and PFS. Interestingly, both a lower
average distance between these two cell populations as well as a
higher percentage of CD8-postive cells within 100µm of p21-
positive cells were linked to a significantly increased DSS and PFS
(Figures 3B,D). This suggests that a closer immunosurveillance
of the lesion improves the prognosis of CRC patients.

To explore the senescence-induced immunosurveillance of
colonic cancer cells in depth, we conducted a series of co-
culture experiments. After 2 h of co-incubation, the number
of adherent senescent Caco-2 cells decreased depending on
the ratio of immune cells that was added. Addition of NK-
92 (displaying properties of natural killer cells) or TALL-104
cells (displaying properties of both cytotoxic T cells and NKT
cells) to Caco-2 cells lead to dose-dependent detaching of
adherent Caco-2 cells and cell death in >75 % of senescent cells
but <20 % of proliferating control cells which was confirmed
by CRV staining. This dose-dependent cytotoxicity was not
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FIGURE 1 | Induction of cellular senescence in vitro by Etoposide treatment. (A) Morphological appearance of Etoposide (Eto)-treated and control (DMSO) Caco2

cells using brightfield microscopy (upper panel), normal H&E-stained sections of cytoblocks (middle panel) and TEM (lower panel). Senescent cells adopt a

characteristic “fried egg” morphology, including an enlarged shape and nucleus. Cytoplasmatic vacuolation is apparent. (B) Increased senescence SA-β-GAL staining

indicates senescence induction. SA-β-GAL-positive cells were counted after DMSO and Etoposide-treatment. (C) FACS analysis confirms senescence induction in

Etoposide-treated cells.

observed in the control group of proliferating cells that had
not been exposed to Etoposide (Figures 4A,B). To discern
whether this specific elimination of senescent cells was facilitated
via factors secreted into the growth medium by the immune
cells, we incubated senescent Caco-2 cells with immune cell
supernatant. Importantly, addition of conditioned supernatant
of TALL-104 or NK-92 cells to Etoposide-pre-treated Caco-2
cells did not decrease cell viability measured by CRV absorption
(Figures 4C,D). To confirm the hypothesis that direct cell-cell
contact with immune cells accounts for the cell death of senescent
Caco-2 cells and to visualize this interaction, we conducted
electron microscopy and live cell imaging during co-incubation.
Live cell imaging proves directed movement of immune cells
toward senescent cells followed by detaching of senescent cells.

Non-senescent cells in the environment of senescent cells were
not eliminated by the immune cells to the same extent. Electron
microscopy of the co-culture experiments shows direct cell-
cell contact between TALL-104 cells and senescent Caco-2 cells
(Figures 4E,F, Supplementary Video 1).

To determine how immune cells execute the elimination of
senescent cells, a set of co-culture experiments was conducted
under inhibition of different pathways of cell death. By adding
inhibitors of apoptosis, granule exocytosis and necroptosis,
the relevance of those pathways for immune cell-mediated
elimination was determined. ZVAD has been demonstrated
to decrease death receptor mediated cell death in senescent
cells (46). Previous studies had not found an impact of
caspase-dependent apoptosis on NK cell-mediated senolysis (46).
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FIGURE 2 | Expression of senescence-associated molecules in CRC patients. (A) Representative TMA cores for each IHC marker. (B–F) Kaplan-Meier survival

analyses regarding expression of senescence markers when divided into three subcohorts: low expression (petrol), moderate expression (black) and excessive

expression (red). Cutoffs are displayed as bar graphs on the right of each curve and were calculated using a modification of the Charité Cutoff Finder from (54).

Disease-specific survival is shown. Two tier subdivision, progression-free survival and detailed individual cutoff values can be found in the Supplementary Material.
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FIGURE 3 | Proximity analysis of senescent cells and immune cells in CRC patients. (A) Schematic drawing of how the distance between immune cells and

senescent tumor cells was measured. (B) Kaplan-Meier survival analyses regarding the average distance between CD8- and p21-positive cells. (C) Schematic

drawing of how the proportion of immune cells within close proximity (within 100µm) of senescent tumor cells was measured. (D) Kaplan-Meier survival analyses

regarding the percentage of CD8-positive cells within 100µm of p21-positive cells. Again, cutoff values are displayed as bar graphs.

However, we found that using pan-caspase inhibitor ZVAD to
block death-receptor-mediated apoptosis resulted in significantly
higher quantity of remaining adherent senescent cells after co-
incubation resulting from abrogated senolysis of both NK-92 and
TALL-104 cells (p < 0.0001). Addition of the SMAC-mimetic
and apoptosis-sensitizer BV6 however did not have a measurable
effect. Inhibiting the necroptosis pathway using Necrostatin-1,
an allosteric inhibitor of RIP1, did not reverse the cytotoxicity of
TALL-104 or NK-92 cells, suggesting a necroptosis-independent
mechanism responsible for the targeted elimination of senescent

cells. To assess the role of granule exocytosis for the immune-
mediated depletion of senescent cells, we conducted a set of
experiments in the presence of Concanamycin A (Conc A)
which inhibits perforin-based cytolytic activity by inhibition of
vacuolar type H+-ATPase. Conc A decreased the cytotoxic effect
of TALL-104 cells (p < 0.0001) but did not significantly prevent
killing of senescent cells by NK-92 cells. HMGB1-Inhibititor
glycyrrhizinic acid (Gly. Acid) was used to address HMGB1-
dependent metabolic cell death. Spautin-1 (p < 0.0230) was
used to address autophagy-associated cell death mechanisms.
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FIGURE 4 | Co-incubation of senescent cells and immune cells. (A,B) CRV absorbance of remaining adherent cells after co-incubation of senescent Caco-2 cells and

immune cells. Co-incubation with TALL-104 (A) or NK-92 (B) immune cells lead to dose-dependent elimination of senescent cells. (C,D) Elimination of senescent cells

under the influence of immune cell conditioned supernatant and various inhibitors of cellular clearance mechanisms as measured by CRV absorbance. TALL-104 (C)

and NK-92 (D) experiments are shown. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001, ns = not significant. (E) Life cell imaging of co-incubation of senescent

cells and immune cells. Specific elimination of senescent cells (blue) by NK-92 cells while proliferating cells (orange) are spared. (F) Electron microscopy. Cell-cell

contact of TALL-104 cells (red) and a senescent cell (blue).

ABT263 partly abrogated the cytotoxic effect of NK-92 cells (p
< 0.0001) but did not significantly prevent killing of senescent
cells by TALL-104 cells. Altogether, our co-incubation, electron
microscopy and live cell imaging results indicate that direct cell-
cell contact between immune cells and targeted senescent cells
is a key mechanism for immune-cell-mediated senolysis. In the
presence of inhibitors of apoptosis or (to some extent) granule
exocytosis, immune cell-mediated elimination of senescent cells
is decreased, suggesting that killing of senescent cells is mainly

facilitated via apoptosis induction and via induction of granule
exocytosis (Figures 4C,D).

DISCUSSION

Arresting the cell cycle of premalignant cells as a response to
oncogenic signaling and DNA impairment strongly supports
the idea of senescence as a beneficial anti-cancer-mechanism
(55–57). A premalignant cell’s ability to senesce involves major
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tumor-suppressor pathways and has been proven crucial to
fight neoplastic transformation in vivo (6, 9, 58–60) and affects
treatment outcome of cancer patients (61, 62). Recent studies
point to a crucial role of cellular senescence in gastrointestinal
diseases including colorectal carcinogenesis (40). Studies report
that oncogene-induced senescence (OIS) prevents progression
of benign KRAS-mutated sessile serrated adenomas to invasive
carcinomas and provides an important barrier opposing
malignancy in these early lesions. Malignant transformation
to serrated adenocarcinoma requires overcoming this OIS-
facilitated cell cycle arrest by downregulation of p16Ink4a (49).
There is evidence to suggest that senescence detection might be
of predictive value for CRC patients (50), however an extensive
clinical study to evaluate the prognostic potential of senescence
markers had been missing.

Our study reflects the important and complex role of cellular
senescence in colorectal carcinogenesis. In many previous
studies, cellular senescence has been described as a “double-
edged sword” (34), referring to both the pro- and antitumorigenic
effects senescent cells do have on disease progression. We
demonstrate that absence of intratumoral senescence and
therefore the lack of a basic antitumor defense mechanism
is linked with a negative prognosis. Regarding the expression
of p21, NTAL, EBP50 and ARMCX3, our results show the
important role of senescence induction in tumor defense and
underline the relevance of cell cycle regulator p21 and p21-
mediated senescence. Moreover, we show that the occurrence
of extremely high percentages of senescent cells in CRC is
linked to a negative prognosis when compared to patients with
moderate expression of senescence markers. These findings point
to a complex role of cellular senescence in CRC, suggesting
that both non-existent and extensive detection of senescent cells
correlate with a negative prognosis. However, further analyses in
the context of various molecular and disease subtypes are also
necessary to validate our findings.

Senescent cells within the tumor do not automatically imply
an effective tumor defense. An effect contributing to the negative
outcome of those patients with large numbers of senescent cells
might be the inflammatory micromilieu developing in close
distance to senescent cells as a driver of further cell damage and
therefore accelerating disease progression. While some of the
factors secreted after SASP initiation contribute to maintaining
the cell cycle arrest and reinforce the senescence program in
premalignant cells (63–66) the SASP-driven proinflammatory
alterations to the micromilieu–despite enhancing immune
surveillance –do as well have malignancy-promoting effects (67).

Secreted factors may provide protumorigenic conditions
and stimulate growth, dedifferentiation, and invasiveness of
premalignant epithelial cells (68–70). Senescent fibroblasts
signaling might contribute to growth-enabling changes to the
microenvironment of dormant metastases (71). Increased VEGF
expression by senescent cells increases angiogenesis in lesions
at risk of malignant transformation and facilitates tumor
vascularization, hereby contributing tomalignant transformation
(72). In CRC, VEGFR2 signaling silences the tumor-antagonizing
effect of cellular senescence by actively bypassing p21 (73).
There is evidence that the SASP-mediated inflammatory response

enhances immune control of senescent tumorous lesions in
colorectal carcinoma and prevents malignant transformation in
the presence of functional p53 but is protumorigenic in p21/p53-
deficient lesions (74).

The perception of senescence as a beneficial anticancer
mechanism (55–57) depends on the ability of the immune system
to clear senescent cells and prevent negative effects mediated
by senescent cells that remain in the tissue (39). Disruption
of the tumor immunosurveillance results in accumulation
of senescent cells (39), which might be the cause for the
negative prognosis we observed in patients with extensive
expression of senescence markers. Our study demonstrates that
a dichotomous classification does not apply when describing
the impact of cellular senescence detection on CRC prognosis.
Senescence-associated molecules do have significant prognostic
value concerning the outcome of patients with CRC. Moreover,
we demonstrate that immune cells in vitro specifically eliminate
senescent colon cancer cells while somewhat sparing proliferating
cells. As Sagiv et al. showed for liver fibrosis in mice (46),
we could demonstrate that NK cell-mediated clearance of
senescent colorectal carcinoma cells is dependent on granule
exocytosis. However, in contrast to Sagiv et al. (46) we found that
suppression of the death receptor pathway by ZVAD abrogated
the immune cell-mediated elimination of senescent cells in both
theNK cell and the cytotoxic T cell model. Thus, our findings lead
to the conclusion that induction of both apoptosis and granule
exocytosis contribute to the targeted elimination of senescent
cells by the immune system.

To reflect this interaction in the clinical setting, proximity
analyses of the spatial relation of senescent tumor cells and
immune cells are of prognostic relevance and could constitute
a prognostic tool in colorectal cancer. Interestingly, we found
that the spatial relation of p21-positive tumor cells and cytotoxic
T cells is indicative of prognosis regarding DSS and PFS of
CRC patients. There is evidence for an immune-infiltration-
preventing effect of SASP signaling under certain circumstances
(75). High percentage of senescent cells within the tumor–
indicative of a negative prognosis as demonstrated in our
study–might be the result of impeded tumor immune infiltration
due to SASP signaling by senescent cells inhibiting immune cells
(75). Furthermore, we showed that patients with close distance of
senescent tumor cells and cytotoxic T cells do have a significant
better survival which might indicate an antitumorigenic,
preferable SASP signaling in these patients. How to impact
SASP and induce the preferable, immunosurveillance-promoting
secretory activity in senescent cells needs further evaluation
and bares great potential in future therapy development. There
is in vitro (18, 76, 77) and in vivo (78–80) evidence for a
therapeutic approach inducing cellular senescence in cancerous
lesions, evoking immune-cell mediated elimination of cancer
cells and enhancing tumor surveillance (41, 44, 81). There
are first therapeutic approaches of altering the senescence-
induced immune response to induce an antitumorigenic
microenvironment (51). Furthermore, therapeutic agents
specifically eliminating senescent cells, called senolytics, have
demonstrated great potential in various age-associated diseases,
including cancer (82).
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Taken together, cellular senescence is a key mechanism
in opposing malignant transformation of impaired cells. The
antitumorigenic effect of cellular senescence is dependent on
an intact immune surveillance of the lesion. Therefore, the
interaction of immune cells and senescent cells within the
tumor microenvironment is of crucial prognostic relevance and
provides targets for CRC therapy.
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