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Human T-cell leukemia virus type 1 (HTLV-1) is a replication-competent human retrovirus
associated with two distinct types of diseases: a malignancy of mature CD4+ T
cells called adult T-cell leukemia-lymphoma (ATL) and a chronic inflammatory central
nervous system disease HTLV-1-associated myelopathy/tropical spastic paraparesis
(HAM/TSP). It was the first human retrovirus ever associated with a human
cancer. Although most HTLV-1-infected individuals remain asymptomatic for life, a
subpopulation develops ATL or HAM/TSP. Although the factors that cause these
different manifestations of HTLV-1 infection are not fully understood, accumulating
evidence suggests that the complex virus-host interactions, as well as the host immune
response against HTLV-1 infection, appear to regulate the development of HTLV-1-
associated diseases. This review outlines and discusses the current understanding,
ongoing developments, and future perspectives of HTLV-1 research.
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INTRODUCTION

Human T-cell leukemia virus type 1 (HTLV-1) belongs to the genus Deltaretrovirus of the
Orthoretrovirinae subfamily and infects approximately 5–10 million individuals worldwide (1).
HTLV-1 is a causative agent of adult T-cell leukemia (ATL), an aggressive form of T-cell malignancy.
Some 4–5% of HTLV-1 carriers develop ATL during their lifetime (2). HTLV-1 also causes HTLV-
1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in another 0.25–4% of infections
(3). In HAM/TSP, the corticospinal (pyramidal) tracts of the spinal cord are severely affected by
inflammatory reactions. This inflammatory disease results in irreversible paraparesis of the lower
limbs (4). The majority of infected individuals remain lifelong asymptomatic carriers (ACs).

Since the discovery of HTLV-1 and its association with these diseases in the 1980s (5–7),
significant progress has been made in molecular studies of this virus and the infected host, from
sequencing the viral genome to revealing the mechanisms of viral gene regulation and from
identifying molecular markers to developing molecular therapeutics to treat the disease. However,
HTLV-1 infection remains a threat to the human population. Although some new treatments have
been developed, the prognosis of ATL is poor (8), and HTLV-1 significantly deteriorates the quality
of life of HAM/TSP patients (9).

HTLV-1 is a latent virus. The host immune system is unable to clear the virus; therefore, HTLV-
1 persists in the host and poses a lifelong threat of ATL, HAM/TSP, and other inflammatory
disorders (10). The mechanism by which HTLV-1 controls viral gene expression and evades
immune clearance has not yet been fully elucidated. In this review, we describe persistent HTLV-1
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infection and recent findings on the nature of HTLV-1 gene
expression. We will discuss the clinical implications of HTLV-1
gene expression in the development of ATL and HAM/TSP.

PERSISTENCE OF HTLV-1 INFECTION

Global Endemicity and How HTLV-1
Spreads
HTLV-1 is prevalent across the globe. HTLV-1 is particularly
endemic in some areas, including southwestern Japan, Central
Australia, South America, the Caribbean islands, and sub-
Saharan Africa (11). Approximately 5–10 million people are
estimated to be infected with HTLV-1 globally (1). HTLV-
1 is transmitted via infected lymphocytes from HTLV-1
carriers; breastfeeding and sexual contact are common routes of
transmission where infectious lymphocytes are transferred to a
new host (12–14).

HTLV-1 is mainly found in CD4+ T lymphocytes. An infected
lymphocyte transmits HTLV-1 through cell-to-cell contact with
other lymphocytes. HTLV-1 viral components, including its
single-stranded RNA genome, are transferred to target cells
through this junction (15). Recently, Hiyoshi et al. reported
that the host factor M-Sec plays a critical role in efficient viral
transmission (16). M-Sec induces membrane protrusions and
establishes intercellular conduits (17). This is likely the molecular
basis of what is known as the virological synapse in HTLV-1
infections (15).

HTLV-1 genomic RNA is reverse-transcribed in the target cell,
and the resulting double-stranded DNA, 9 kb in size, is inserted
into the host genome. The location at which the HTLV-1 provirus
is inserted in each infection is not completely random. HTLV-
1 favors genomic sites near genes, CpG islands, and chromatin
regions with epigenetic marks associated with gene regulation
(18). Unlike HIV-1 infection, where the reverse-transcribed HIV-
1 genome is guided to actively transcribed genes by the host factor
LEDGF (19), the mechanism by which HTLV-1 is preferentially
integrated in these characteristic regions is currently unknown.
Host factor PP2A has been identified as a binding partner of the
HTLV-1 integration complex (20, 21). More studies are needed
to elucidate the mechanisms underlying HTLV-1 integration
preferences.

Latent Infection of HTLV-1
It has been postulated that HTLV-1 propagates rapidly in a new
host during the early stages of infection. HTLV-1 is believed not
to produce cell-free infectious viral particles in vivo. HTLV-1
increases the proviral copy number by a combination of de novo
cell-to-cell infection and mitotic division in each infected cell.
Each infected cell carries a single HTLV-1 provirus copy in its
genome (22).

The expression of viral genes for HTLV-1 propagation in the
new host elicits the host immune response. HTLV-1-infected cells
will be lysed by cytotoxic T lymphocytes (CTLs) that are specific
for viral antigens (23, 24, 25). Therefore, HTLV-1 propagation
is counterbalanced by the host immune response, which in turn
determines the set point of proviral load (PVL) in the host. PVL

in ACs is approximately 1% [i.e., HTLV-1 is found in 1% of total
peripheral blood mononuclear cells (PBMCs)]; PVL varies by
1,000-fold among ACs (26, 27). It is estimated that PVL in each
individual is typically maintained by the mitotic division of cells
in the chronic phase of infection (28). PVL positively correlates
with the risk of developing ATL and HAM/TSP; that is, the risk
of disease onset is greater with a higher PVL (26, 29).

HTLV-1 inserts its genome at a unique location on the host
chromosome during de novo infection. Each infected cell carrying
a single copy of the HTLV-1 provirus in the genome gives rise
to a group of sister cells, or a clone, by mitotic division, which
shares the same proviral integration site. Gillet et al. estimated
the abundance of each clone, or clonality, in ACs and patients
with ATL and HAM/TSP by quantifying the frequency of each
provirus integration site using high-throughput sequencing (30).
It is estimated that tens of thousands of unique HTLV-1-infected
clones exist in a typical host. These clones persist for many years,
from which a malignant clone emerges (31).

Progression to Diseases
ATL is a malignancy characterized by clonal expansion of HTLV-
1-infected lymphocytes, often with a PVL of >90% in acute ATL
cases. It takes decades for a malignant clone to emerge from a
typical HTLV-1 infection. Recently, two studies retrospectively
performed exon sequencing of clinical samples to track gene
mutations before ATL onset. These studies found, among other
genes, recurrent mutations in CCR4, PLCG1, PRKCB, and
NOTCH1 that precede the onset of ATL (32, 33). It is possible
that HTLV-1 infection per se does not cause ATL. HTLV-1
infection prolongs the lifetime of infected lymphocytes, during
which infected lymphocytes acquire a set of gene mutations and
undergo malignant transformation.

HAM/TSP is another clinical entity associated with HTLV-1
infections. The PVL is significantly higher in HAM/TSP patients
than in ACs (26). Monoclonal expansion is not observed in
HAM/TSP; instead, it is envisaged that the number of clones
increases, which accounts for the high PVL (30).

HTLV-1 tax and HBZ, as we describe in the next section, are
the main viral factors that confer a growth advantage to infected
cells. It appears that HTLV-1 performs two contradicting tasks:
expressing viral genes to sustain the infected cells and avoiding
CTL killing exerted by the host immune response. Therefore,
understanding the regulation of HTLV-1 genes in vivo is crucial
for understanding HTLV-1 infection and its associated diseases.

NATURE OF HTLV-1 GENE EXPRESSION

Genomic Structure of HTLV-1
HTLV-1 viral genes are encoded in both the plus and minus
strands of the provirus, which is 9 kb in size and is embedded
in the host chromatin (Figure 1). HTLV-1 has two long terminal
repeats (LTRs) at the 5′ and 3′ ends of its provirus. HTLV-1
gag, pol, and env, the essential retroviral genes, are encoded on
the plus strand. HTLV-1 carries an additional genomic segment,
referred to as pX, which is downstream of the env gene. The pX
region encodes HTLV-1 tax, rex, and other accessory genes (34).

Frontiers in Medicine | www.frontiersin.org 2 April 2022 | Volume 9 | Article 867478

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-867478 April 4, 2022 Time: 12:7 # 3

Miura et al. Current Perspectives in HTLV-1 Infection

FIGURE 1 | Genome structure of the HTLV-1 provirus. The proviral DNA with
the LTRs and viral transcripts encoded in either the plus or minus strand of the
viral genome. Alternative splicing yields doubly spliced (tax, rex and p30),
singly spliced (env, p21, p13, and p12) mRNAs as well as the unspliced gag
and pol transcript. The structural genes (gag, pol and env) and the pX region
are flanked by the 5′ and 3′ LTRs. HBZ, encoded on the minus strand, is
transcribed from the 3′ LTR.

The plus strand is transcribed from the promoter, which resides
within the 5′ LTR. Alternative splicing yields mature mRNA for
each gene. On the minus strand, HTLV-1 encodes the HTLV-1
bZIP factor, or HBZ, and its transcription is initiated within the
3′ LTR.

Distinct transcription factors operate in plus- and minus-
strand transcription. Each LTR consists of three regions:
U3, R, and U5. U3 contains binding sites for activating
transcription factor (ATF), cAMP response element-binding
protein (CREB), and activator protein 1 (AP-1) for plus-strand
transcription. In contrast, minus-strand transcription is driven
from U5 in the 3′ LTR by transcription factor Sp1 (35).
HTLV-1 Tax, once it is produced, forms a complex with the
transcription factors on the 5′ LTR and recruits CBP/p300,
thereby enhancing viral gene transcription. Recently, another
mechanism of plus-strand transcription was reported by Wang
et al., where Yin Yang 1 (YY1) binds to the R region of
HTLV-1 transcripts and enhances transcription initiation (36).
Interestingly, transcriptional enhancement was not observed
when the YY1-binding element was placed upstream of the
transcription start site. It has been proposed that YY1 binds
to HTLV-1 plus-strand transcripts, as opposed to DNA, and
enhances transcription initiation.

HTLV-1 Tax and HBZ
HTLV-1 tax and HBZ have been extensively studied to
understand the pathogenicity of HTLV-1 (37) (Figure 2). Tax
binds to several proteins. For example, Tax binds to the
nuclear factor κB (NF-κB) components and activates its pathway,
resulting in the activation of inflammatory signaling. Conversely,
HBZ has a counteracting effect on HTLV-1 tax. HBZ protein

interferes with the NF-κB pathway (38). The HBZ protein binds
to ATF and AP-1 transcription factors and inhibits their function
(39). HBZ RNA also functions in the nucleus. Two recent studies
performed RNA precipitation to identify chromatin regions
targeted by HBZ RNA. Gazon et al. found that HBZ RNA binds
to HTLV-1 LTR and displaces TATA-box binding protein, thereby
suppressing the transcription of the plus strand (40). Ma et al.
reported that HBZ RNA associates with the CCR4 promoter and
enhances CCR4 expression (41). CCR4 is a chemokine receptor
highly expressed in ATL (42) and HAM/TSP (43). CCR4 is an
important molecule in HTLV-1 infection, not only because its
mutation significantly contributes to the development of ATL
as described above, but also because it serves as a marker for
ATL and HAM/TSP (44, 45), and is targeted by the monoclonal
antibody mogamulizumab, a clinically approved drug for the
treatment of ATL and HAM/TSP (46, 47).

Silent Infection of HTLV-1 in PBMCs
in vivo
Despite the pleiotropic functions of HTLV-1 plus-strand gene tax,
tax mRNA is often not detected in clinically isolated PBMCs (48,
49). This observation can be explained by three mechanisms: gene
deletion, gene mutation, and DNA methylation near the 5′ LTR,
where the plus-strand transcripts are encoded.

HTLV-1 proviruses are often defective in ATL. Tamiya et al.
reported two types of defective proviruses: lacking the retroviral
gag and pol segments or lacking the 5′ LTR (50). In some
ATL cases, the deletion occurs before the HTLV-1 provirus
is integrated into the genome (51). A proviral deletion was
preferentially found at the 5′ end of the provirus, whereas the
3′ end of the provirus was unaffected. This raises the possibility
that plus-strand genes are not essential, whereas the antisense
HBZ gene is crucial for pathogenesis (52). More recently, Katsuya
et al. reported a gene deletion in the 3′ LTR of the HTLV-1
provirus (53). The significance of losing the 3′ LTR, and hence
HBZ expression, on HTLV-1 persistence and pathogenesis is yet
to be investigated.

The second mechanism of gene silencing involves point
mutation in the tax gene. A point mutation that introduces a
premature termination codon in the tax mRNA results in the
loss of functional Tax protein, a strong activator of its viral sense
promoter (48, 54).

The third mechanism involves epigenetic modification. The
cytosine residues in the 5′ LTR and the adjacent downstream
region are highly methylated; although the 3′ LTR has a sequence
identical to the 5′ LTR, the 3′ LTR is not methylated (55, 56).
Currently, it is not known what regulates the contrasting DNA
methylation patterns in the 5′ LTR and 3′ LTR. Recently, Satou
et al. reported that HTLV-1 binds the host factor CTCF in the
pX region upstream of the 3′ LTR (57). CTCF is responsible
for transcriptional regulation, DNA insulation, and chromatin
folding. Therefore, it was hypothesized that CTCF binding
regulates DNA methylation in the pX region and keeps the 3′ LTR
open for transcription. Cheng et al. showed that the boundary of
DNA methylation moved beyond the CTCF-binding site toward
the 3′ LTR without CTCF (58), whereas two CRISPR-mutated
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FIGURE 2 | Role of Tax and HBZ. Two viral genes, Tax and HTLV-1 bZIP factor (HBZ) play critical roles in viral transcription and promotion of T-cell proliferation by
interacting cellular factors, which is closely related to the long-term survival and persistence of HTLV-1 in infected individuals and development of HTLV-1-associated
diseases. SRF, serum response factor.

primary T cell clones eliminating the CTCF binding on the
provirus reported no impact (59). It is possible that the effect of
CTCF on regulating DNA methylation depends on the location
at which the HTLV-1 provirus is integrated.

Spontaneous Reactivation of the
Plus-Strand Transcription in PBMCs
ex vivo
Although viral gene expression appears to be silenced during
latency in HTLV-1 infection, a strong cellular immune response
has been detected for plus-strand products such as Gag and
Tax (60). This indicates that plus-strand transcription is not
permanently silenced; however, HTLV-1 genes are expressed
intermittently, which constantly evokes the host immune
response against viral antigens. The apparent silencing of HTLV-
1 plus-strand transcription in vivo is reversible. HTLV-1-positive
PBMCs from HTLV-1-infected individuals initiate viral gene
expression once they are isolated from the peripheral blood
and cultured (24, 61, 62). Approximately half of HTLV-1-
infected PBMCs reactivate plus-strand transcription, although
this varies among HTLV-1-infected individuals (20 to 80%)
(24, 63). Reactivation occurs rapidly within the first few hours
of in vitro culture (63, 64). The plus-strand transcription
reactivation is intense: about a hundred of transcripts are
produced per hour in a single cell with the positive feedback
of Tax protein (63). Kulkarni et al. showed that p38 MAP
kinase and deubiquitylation of histone H2A in the HTLV-1

provirus are responsible for viral gene activation in ex vivo
culture (65). The primary stimulation that ultimately leads to
the activation and deubiquitylation of these factors is obscure.
Any physical or chemical stress that PBMCs experience when
drawn from the circulation may trigger spontaneous viral
transcription reactivation. It is probable that HTLV-1 reactivates
in breast milk in response to non-specific stimulation due to
environmental changes.

Stochastic Transcription of HTLV-1
Genes in vitro
Billman et al. recently applied single-molecule RNA fluorescence
in situ hybridization (FISH) to detect viral transcripts in HTLV-
1-infected cells in vitro (66). They used HTLV-1-infected cells
freshly established and cultured from patient PBMCs (22). Single-
molecule FISH detects diffraction-limited spots, each of which
are from a single mRNA, thereby allowing for the absolute
quantification of viral transcripts expressed in each cell (67).
Using this technique, Billman et al. found that plus-strand genes
are expressed in a transcription burst. Transcription is rare;
however, once the genes are expressed, hundreds of transcripts
are produced at a time. In contrast, the minus-strand transcripts
contained per cell were much fewer (up to ∼10 molecules).
A slight deviation from the Poisson distribution indicates that
minus-strand transcription also occurs in a burst, yet it is much
smaller. Stochastic HBZ transcription results in approximately
20% of a clonal population with no HBZ transcripts at a given
time. The occurrence of the plus-strand transcription burst is
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associated with the progression to the G2/M cell cycle stage.
Although the causation of these two events is not clear, the
function of tax and HBZ genes suggests that HTLV-1 gene
expression accelerates cell cycle progression.

The termination of a transcriptional burst is a common
question in gene regulation. In the study by Billman et al. the
occurrence of plus-strand transcription was significantly lower
in HBZ-positive cells, in line with other observations that HBZ,
in the form of protein (35, 68) or RNA (40), suppresses plus-
strand expression.

Conundrums in HTLV-1 Gene Expression
in vivo and in vitro
It has been postulated that HTLV-1 genes are intermittently
expressed in vivo. Does the rare expression of HTLV-1 plus-
strand genes observed in vitro account for the viral expression
in vivo? Therefore, if, and when PBMCs intermittently transcribe
HTLV-1 plus-strand genes in vivo, are the frequency and intensity
of expression similar to those observed in vitro? In a previous
study where single-molecule RNA FISH was performed on
hundreds to thousands of HTLV-1-infected PBMCs for each
HTLV-1-positive subject, no intense plus-strand transcription
burst was reported unless cultured in vitro (63). The frequency
and intensity of plus-strand gene bursts in vivo should be much
smaller than those observed in vitro.

There is an apparent discrepancy between PBMCs in vivo,
fresh in vitro culture, and HTLV-1-infected cells maintained
in vitro. Is it possible to translate the findings of HTLV-1 gene
expression in vitro into the unseen nature of HTLV-1 gene
expression in vivo?

First, there is a correlation between spontaneous plus-
strand reactivation in HTLV-1-positive PBMCs in vitro and the
expression of HTLV-1 genes in vivo. Patient-derived PBMCs
contain many distinct clones of HTLV-1-infected lymphocytes.
The provirus integration site is a strong determinant of
spontaneous plus-strand transcription in vitro, and the degree of
spontaneous expression in vitro is inversely correlated with the
clonal abundance (18). This indicates that a clone that reactivates
plus-strand transcription in vitro also transcribes HTLV-1 genes
at high frequency in vivo, as the relatively small abundance
of that clone is a result of CTL killing that recognizes viral
expression (24).

It appears that cells in vitro, where a strong plus-strand
transcription burst is observed, are in another equilibrium
state that is different from what might otherwise be in vivo
in which HTLV-1 is silenced. HTLV-1-positive PBMCs show
transient, spontaneous reactivation of plus-strand transcription
along the way throughout the circulation. It is possible that
HTLV-1-positive lymphocytes express plus-strand genes when
certain conditions are met in vivo, if not in peripheral blood,
such as in lymph nodes or bone marrow (69), especially with
the aid of local stimulatory signals from other cells in those
compartments. This possibility is supported by the in vitro
study by Kulkarni et al. that lower glucose availability and
hypoxic conditions both enhance tax transcription (70). We are
currently developing a microscopic technique to capture the

transcription burst in each HTLV-1-positive clone in a given
native tissue environment.

Finally, is the spontaneous expression of viral genes truly
stochastic? If it is truly stochastic, then the expression is governed
by the probabilistic binding of biochemical molecules under
random thermodynamic fluctuations. Or if it is not otherwise,
there should be unseen factors that determine the HTLV-1 gene
expression. It is tempting to assay the transcription burst on
an HTLV-1-infected cell line carrying multiple copies of the
HTLV-1 provirus: if the multiple HTLV-1 copies burst at the
same instance within a single cell, then this predicts that there
are unseen factors that coordinate the HTLV-1 transcription
initiation. The outcome of the in vitro study will be translated into
an understanding of how HTLV-1 gene expression is regulated
in vivo.

CLINICAL IMPLICATIONS OF THE
HTLV-1 GENE EXPRESSION

Overview
As HTLV-1 transmission requires cell contact, HTLV-1
propagates within the host by both clonal expansion of infected
cells and de novo viral infection. In HTLV-1-infected individuals,
cell-free virus particles are usually undetectable, and the plasma
does not transmit the infection. Furthermore, PVL in PBMCs,
which reflects the number of virus-infected cells, correlates with
the risk of developing ATL and HAM/TSP (26, 29). It is therefore
believed that HTLV-1 is almost entirely cell-associated in vivo,
and clonal proliferation of infected cells predisposes individuals
to ATL and HAM/TSP. Among HTLV-1 genes, tax and HBZ
play a particularly important role in regulating the expression of
viral and host genes as well as the activation and proliferation
of host cells (71) (Figure 2). Tax induces the expression of
serum response factor (SRF) and various cellular genes via
transcriptional pathways, such as the NF-κB, CREB, and AP-1
pathways (72, 73). In contrast, the HBZ protein suppresses the
transcription of the tax gene and the cellular pathways that Tax
activates. HBZ RNA suppresses apoptosis by inducing survivin
expression (74) and, therefore, promotes the proliferation of
T cells (52). Thus, understanding how HTLV-1 regulates the
expression of viral and cellular genes in vivo is key to elucidating
the mechanisms of long-term survival and the persistence of
HTLV-1 in infected individuals, which is closely related to the
development of HTLV-1-associated diseases. The roles of Tax and
HBZ in the pathogenesis of ATL and HAM/TSP are summarized
in Figure 3.

Clinical Implications of the HTLV-1 Gene
Expression in ATL
Approximately 60% of ATL patients do not express tax mRNA
in freshly isolated PBMCs (48). Tax is often repressed once ATL
develops (75), whereas HBZ mRNA is expressed in all ATL
cases (49), because HTLV-1 provirus is substantially silenced
by proviral defects and/or epigenetic mechanisms (see section
“Silent Infection of HTLV-1 in PBMCs in vivo”). These findings
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FIGURE 3 | Roles of HTLV-1 Tax and HBZ in the pathogenesis of ATL and HAM/TSP. This figure illustrates the model for ATL and HAM/TSP development. Both Tax
and HBZ play crucial roles in oncogenic and inflammatory processes through multiple mechanisms.

suggest that Tax is essential to initiate transformation, while HBZ
has roles in promoting viral replication and cellular proliferation
to maintain the transformed ATL cells when Tax expression is
extinguished. If this is the case, it may be the most efficient
method to escape HTLV-1-specific CTLs.

Previous reports have described the downregulation of
microRNAs in ATL cells (76, 77). This may cause disordered
gene expression at the transcriptional and post-transcriptional
levels, thereby contributing to the development of ATL. The
relationship between downregulation of microRNA and gene
expression of tax and/or HBZ has not been reported; thus, it
should be investigated in future studies.

Clinical Implications of the HTLV-1 Gene
Expression in HAM/TSP
In patients with HAM/TSP, the quantity of PVL in PBMCs
is significantly higher than that in ACs and is well correlated

with the concentration of neopterin in the cerebrospinal fluid
(CSF) (26), a marker associated with cell-mediated immunity
(78), and with disease progression (79). In individual HAM/TSP
patients, PVL in CSF cells was higher than that in PBMCs,
and the ratio of PVLs in CSF cells/PBMCs was significantly
associated with clinically progressive disease and recent onset of
HAM/TSP (80). Thus, HTLV-1 PVL is an important biomarker
for HAM/TSP. Meanwhile, the total amount of HTLV-1 tax
mRNA in PBMCs and mRNA expression level in HTLV-1-
infected cells (mRNA/DNA ratio) were significantly higher in
HAM/TSP patients than in ACs and correlated with PVL, Tax-
specific CTL frequency, and disease severity of the patients (81).
In addition, HBZ mRNA load was positively correlated with
PVL, disease severity, and neopterin concentration in the CSF of
HAM/TSP patients (82).

HTLV-1-specific CTLs are abundant in PBMCs of infected
individuals, and their frequency is proportional to the PVL,
indicating that HTLV-1 is not latent in vivo but is expressed
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persistently or at frequent intervals in infected individuals
(3). Interestingly, in HTLV-1 infection, although the dominant
antigen recognized by HTLV-1-specific CTLs is the Tax protein
(83, 84), PVL and the risk of HAM/TSP are determined by the
CTL response to poorly immunogenic HBZ proteins (85, 86).
This is consistent with the idea that a persistent HTLV-1 infection
establishes an equilibrium between viral replication and the host
immune response, and that the response of HTLV-1 specific
CTLs determines the equilibrium PVL and the risk of HAM/TSP.
Meanwhile, it remains possible that the chronically activated anti-
HTLV-1 CTLs found in patients with HAM/TSP contribute to
systemic inflammation. Many host genes dysregulated by Tax and
HBZ may activate and proliferate host cells and induce systemic
inflammation in vivo.

Inflammation and Tumorigenesis
In recent decades, it has become evident that chronic
inflammation and tumor development are closely related
(87). Infection, chemical substances, and injury can initiate
tumorigenesis at the associated inflammation site. Alternatively,
tumor induction triggers inflammation through the secretion
of chemokines and inflammatory signaling molecules, creating
a local microenvironment that supports further tumor
development.

There is strong evidence suggesting that inflammation,
induced by HBZ, promotes the development of ATL. HBZ-
transgenic mice develop lymphoma, in which it was shown
that HBZ induces Foxp3 expression and the proliferation of the
regulatory T-cell phenotype (88). However, the Foxp3 expression
in these cells is not stable; such cells secrete IFN-γ (Interferon-
gamma) and promote systemic chronic inflammation (89). The
incidence of lymphoma was significantly low in HBZ-transgenic
mice lacking IFN-γ, suggesting that IFN-γ, alongside HBZ,
promotes tumorigenesis in HTLV-1 infection (90). More recently,
Higuchi et al. reported an unexpected observation; the deletion of
IL-6, also a pro-inflammatory cytokine, increased the incidence

of lymphoma development in their transgenic mice, and IL-10
was upregulated in HBZ-transgenic mice lacking IL-6 (91). IL-
10 is an immunosuppressive cytokine and it is known to promote
the proliferation of HTLV-1-infected T cells in vitro (92). Higuchi
et al. have shown that IL-10 signaling is redirected to T-cell
proliferation by HBZ modulating the STAT pathway.

CONCLUDING REMARKS

HTLV-1 induces T-cell leukemia/lymphoma and systemic
inflammation in vivo. Increasing evidence suggests that both
HBZ and Tax play distinct but important roles during very long
latency periods in disease induction. Characterization of the
viral gene expression profile throughout the infection process
is essential to provide key functional information to shed light
on HTLV-1 pathogenesis. As ATL is still dismal and HAM/TSP
remains an intractable disease, the establishment of a precise
understanding of disease developmental pathways is an urgent
requirement. Further studies using newly developed methods
with large amounts of data, such as computational biology and
bioinformatics, are warranted to provide in vivo evidence for
these points.
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