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Coronavirus disease 2019 (COVID-19) is caused by a novel virus known as
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2-induced
hyperinflammation together with alteration of plasma proteins, erythrocyte deformability,
and platelet activation, may affect blood viscosity. Thus, this review aimed to study
the link between SARS-CoV-2 infection and alteration of blood viscosity in COVID-
19 patients. In order to review findings related to hyperviscosity in COVID-19, we
suggested a protocol for narrative review of related published COVID-19 articles.
Hyperviscosity syndrome is developed in different hematological disorders including
multiple myeloma, sickle cell anemia, Waldenstorm macroglobulinemia, polycythemia,
and leukemia. In COVID-19, SARS-CoV-2 may affect erythrocyte morphology via
binding of membrane cluster of differentiation 147 (CD147) receptors, and B and
3 proteins on the erythrocyte membrane. Variations in erythrocyte fragility and
deformability with endothelial dysfunction and oxidative stress in SARS-CoV-2 infection
may cause hyperviscosity syndrome in COVID-19. Of interest, hyperviscosity syndrome
in COVID-19 may cause poor tissue perfusion, peripheral vascular resistance, and
thrombosis. Most of the COVID-19 patients with a blood viscosity more than 3.5 cp may
develop coagulation disorders. Of interest, hyperviscosity syndrome is more commonly
developed in vaccine recipients who had formerly received the COVID-19 vaccine due
to higher underlying immunoglobulin concentrations, and only infrequently in those
who have not received the COVID-19 vaccine. Taken together, these observations
are untimely too early to give a final connotation between COVID-19 vaccination and
the risk for development of hyperviscosity syndrome, consequently prospective and
retrospective studies are necessary in this regard.

Keywords: COVID-19, hyperviscosity syndrome, COVID-19 vaccination, SARS-CoV-2, immunoinflammatory
disorders
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a current pandemic
disease that began in Wuhan, China in late December 2019.
COVID-19 is caused by novel virus known as severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) which
produced a worldwide crisis with high morbidity and mortality
(1). It has been shown that COVID-19 led to more than 500
million affected cases with more than 6 million confirmed deaths
till late May 2022. Different variants of SARS-CoV-2 strains
emerged in the early months of 2020, and the last variant
was Omicron SARS-CoV-2, which was mild with moderate
transmission and low mortality (2). Up to date, a new variant
strain of SARS-CoV-2 named the BA2 subtype has spread in
specific regions of China. Besides, a new mutant variant of
Omicron SARS-CoV-2 BA1 and BA2 has been observed and
detected in the United Kingdom, with about 637 confirmed cases.
This new strain has been renamed as the XE variant of SARS-
CoV-2, which is now with outstanding spread in China (3). Thus,
we are challenged by the emergence of new strains that could be
highly virulent and may cause the propagation of new waves.

Most COVID-19 patients are asymptomatic or present with
mild flu-like illnesses in about 85% of the cases. However, 15%
of COVID-19 patients may present with moderate symptoms,
including headache, fever, sweating, arthralgia, myalgia, dry
cough, and fatigue (4). However, 5% of COVID-19 patients may
develop severe and critical presentations due to the development
of acute lung injury (ALI) and acute respiratory distress
syndrome (ARDS) (5). COVID-19 patients with ALI/ARDS
require ICU admission and mechanical ventilation for respiratory
support (6, 7). Moreover, COVID-19 may cause extra-pulmonary
manifestations, including neurological complications (8), acute
kidney injury (9), testicular injury (10), heart failure (11), new-
onset diabetes mellitus (12), and thromboembolic disorders (13).

Of note, SARS-CoV-2 exploits diverse receptor types to
reach the affected cells. The angiotensin converting enzyme
2 (ACE2) is an innovator one correlated in the pathogenesis
of SARS-CoV-2 infection (14). This interface triggers down-
regulation of ACE2, which is essential for alteration of
pro-inflammatory/vasoconstrictor angiotensin II (AngII) to
vasodilator/anti-inflammatory Ang1-7 (15). Notably, SARS-
CoV-2 infection in severe cases may exaggerate human immune
responses, leading to hyperinflammation, hypercytokinemia,
and cytokine storm (16). Furthermore, SARS-CoV-2-induced
hyperinflammation together with alteration of plasma proteins,
erythrocyte deformability, and platelet activation may affect
blood viscosity (17).

Thus, this narrative review aimed to study the link between
SARS-CoV-2 infection and alteration of blood viscosity in
COVID-19 patients.

METHOD AND SEARCH STRATEGY

In order to review findings related to hyperviscosity in COVID-
19, the search was conducted from late December 2019 to early
January 2022 by using search engines including MEDLINE,

Scopus, Web of Science, PubMed, China National Knowledge
Infrastructure, Embase, Wanfang Data, and China Biology
Medicine by using the following keywords and terms; COVID-19
or SARS-CoV-2 or 2019-nCov and Hyperviscosity or Erythrocyte
deformability or Thrombosis. There were no limitations for
language and article types.

BLOOD VISCOSITY AND
HYPERVISCOSITY SYNDROME

Blood viscosity is a measure of blood flow resistance and can
also be recognized as the stickiness and thickness of blood
(18). The main determinants of blood viscosity are erythrocyte
deformability, hematocrit, erythrocyte aggregation, and plasma
viscosity, which depend on plasma macromolecules and water
content. Hematocrit represents the main determinant of blood
viscosity; an increase in hematocrit can elevate it by 4% (19).
When the hematocrit rises to 60–70% as in polycythemia,
the blood viscosity become higher than water by 10 times
with consequent increment resistance to the blood flow. As
well, increasing body temperature may induce dehydration
with an increase in blood viscosity (20). An increase in blood
viscosity leads to the development of hyperviscosity syndrome.
Of note, hyperviscosity syndrome is developed in different
hematological disorders, including multiple myeloma, sickle cell
anemia, Waldenstorm macroglobulinemia, polycythemia, and
leukemia (21, 22). Normal BV is usually between 1.4 and
1.8 centipoise (cp), and symptoms of hyperviscosity syndrome
develop when blood viscosity exceeds 4.0 cp (23). Patients with
hyperviscosity syndrome are presented with diving symptoms
due to impairment of blood flow, including headache, confusion,
visual disturbances, vertigo, and thrombotic events with or
without mucosal hemorrhage (21, 22). Sloop and colleagues
found that inflammation and hypergammaglobulinemia together
with the fostering of erythrocyte aggregation in sepsis could
be the potential mechanisms of increasing blood viscosity
in different infectious diseases (24). Hyperviscosity syndrome
in severe infections provokes thromboembolic disorders with
reduction of tissue perfusion resulting in multi-organ injury
(MOI) and fatal outcomes (24).

IMMUNOLOGICAL DISORDERS AND
HYPERVISCOSITY SYNDROME

Blood viscosity is highly sensitive to acute-phase reactants and
inflammatory reactions. Thus, acute and chronic inflammatory
disorders are linked with elevations of blood viscosity and
the development of hyperviscosity syndrome (25). It has been
reported that the development of hyperviscosity syndrome
was linked with an increase in inflammatory biomarkers
like erythrocyte sedimentation rate and C-reactive protein
(CRP) (25). Therefore, hyperviscosity syndrome may progress in
various immunoinflammatory disorders like rheumatoid arthritis
(RA) and systemic lupus erythematosus (SLE) due to formation
of intermediate immunocomplex and hyperparaproteinemia
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respectively (26, 27). Hyperviscosity syndrome in RA patients
is correlated with levels of rheumatoid factor, fibrinogen, and
inflammatory levels (26). However, hyperviscosity syndrome
in RA patients treated with immunosuppressive agents and
plasmapheresis is rare (28). Further, hyperviscosity syndrome
could be the presenting symptoms in patients with SLE due
to the development of monoclonal gammopathy and an
unusual increase of immunoglobulin type G4 (29). Moreover,
there is an interacted relationship between hyperviscosity
syndrome and inflammation due to the increase of acute phase
reactant fibrinogen, whose level is correlated with increasing
blood viscosity (30). Notably, fibrinogen-related proteins
are augmented during the immune response to numerous
inflammatory stimuli (31). Fibrinogen and related proteins
play a perilous role in neutralizing invading pathogens (31).
Sequentially, exaggerated immune responses and exaggerated
levels of fibrinogen-related proteins are connected with the
development of hyperviscosity syndrome (32).

In addition, abnormal immune response in some viral
infections may trigger activation of macrophage cluster of
differentiation 169 (CD169), which is involved in immune
response and activation of bone marrow for production of
erythrocytes (33). Over-activation of CD169 macrophages may
be linked with the propagation of polycythemia (33). Besides,
CD169 macrophages control immunological responses during
viral infections by recruiting monocytes and producing pro-
inflammatory cytokines and chemokines (34). In this state,
immunological response to various stimuli may increase
blood viscosity with the development of hyperviscosity
syndrome. These verdicts indicate that abnormal immuno-
inflammatory disorders are associated with the progression of
hyperviscosity syndrome.

VIRAL INFECTIONS AND
HYPERVISCOSITY SYNDROME

It has been reported that hyperviscosity syndrome may develop
in different viral infections. For example, impaired humoral and
cellular immunity may increase immunoglobulin (IgG) levels
in patients with human immunodeficiency virus type 1 (HIV-
1) infections with subsequent development of hyperviscosity
syndrome (35). Increased blood viscosity and the development
of hyperviscosity syndrome in HIV-1 infected patients may
be related to B cell hyperactivation, increased IgG production,
changes in T cell-mediated B cell regulation, chronic exposure to
HIV-1 antigens, increased production of interleukin 6 (IL-6), and
direct activation of B cells by HIV-1 (36). Likewise, production of
myeloma associated IgG1 paraprotein against HIV-1 p24 antigen
in HIV-1 patients (37).

Moreover, indicators of blood viscosity are augmented
in patients with hepatitis B virus (HBV) infection (38).
A prospective study revealed that patients with HBV infection
had greater RBCs aggregation index, hematocrit, and blood
viscosity as compared with control groups (38). As well,
soluble fibrinogen like protein 2 (sFGL2) is elevated in patients
with HBV infection (39). Into the bargain, hyperviscosity

syndrome has been reported to be linked with respiratory
viral infections like influenza pneumonia (40). In their study,
Bogomolov et al. observed that influenza pneumonia and other
severe acute respiratory viral infections can cause hyperviscosity
syndrome through induction of hypercoagulation, alteration
of fibrinolytic activity, intravascular homeostasis, and failure
of microcirculation (40). High blood viscosity in influenza
pneumonia and respiratory viral infections may provoke
progression of thrombosis due to an increase in vascular
resistance, which hampers peripheral tissue perfusion (24). Piñol-
Ripoll and coworkers found that chronic bronchitis predisposes
to the development of hyperviscosity syndrome and an increased
risk of ischemic stroke (41). Thus, these observations point
out that acute respiratory viral infections as well as other
viral infections may increase the risk of development of
vascular complications through induction and progression of
viral infections.

COVID-19 AND HYPERVISCOSITY
SYNDROME

SARS-CoV-2 infection has been shown to reduce erythrocyte
deformability and increase erythrocyte aggregation in COVID-
19 patients in low-shear flow and stasis, which, combined with
an increase in fibrinogen level, may increase blood viscosity
and lead to the development of hyperviscosity syndrome
(42). Increasing blood viscosity and hyperviscosity syndrome
progression in COVID-19 may be linked to a variety of
mechanisms, including endothelial dysfunction, exaggerated
immune response, hypoxia, and coagulation disorders (17).
Likewise, platelet hyper-reactivity, high ferritin, and P-selectin
activity together with changes in erythrocyte function in COVID-
19 might participate in the development of hyperviscosity
syndrome (43). In severe SARS-CoV-2 infections, fever and
dehydration due to anorexia, vomiting, and diarrhea may
increase blood viscosity in COVID-19 patients (44).

Concerning the clinical perspective regarding the potential
role of SARS-CoV-2 infection in the propagation of
hyperviscosity syndrome, SARS-CoV-2 infection is linked
with microcirculation failure in hospitalized COVID-19
patients (42). Of note, microcirculatory failure in COVID-19
patients leads to noteworthy alterations in the erythrocytes
deformability and aggregation, resulting in stasis and
augmentation of blood viscosity (45). Besides, coagulation
disorders, endothelial dysfunction, and cytokine storm all
contribute to microcirculation dysfunction in septic COVID-19
patients (46). The Renoux et al. study, which included seven
hospitalized COVID-19 patients, seven non-COVID-19 septic
patients, and seven healthy controls, found that erythrocyte
deformability was lower in both COVID-19 patients and
non-COVID-19 septic patients compared to controls (42). In
addition, erythrocyte aggregation was higher in COVID-19
patients as compared to non-COVID-19 patients without
noteworthy variations in fibrinogen levels and blood viscosity
(42). This small sample size study may not give a tangible clue
regarding normal blood viscosity in COVID-19. However, a

Frontiers in Medicine | www.frontiersin.org 3 June 2022 | Volume 9 | Article 876017

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-876017 June 13, 2022 Time: 13:48 # 4

Al-kuraishy et al. Hyperviscosity Syndrome and SARS-CoV-2 Infection

retrospective study including 41 COVID-19 patients reported
that assessed blood viscosity was superior in COVID-19 patients
compared with healthy control subjects (17).

Hyperviscosity Syndrome and
Inflammatory Signaling Pathways in
COVID-19
Exaggerated immune response and the release of pro-
inflammatory cytokines, primarily IL-6, have been linked to
the development of cytokine storm and MOI (47). In COVID-19,
IL-6 is thought to be an important activator of fibrinogen
synthesis (48). In addition, deregulation of the renin-angiotensin
system (RAS) with an increase in circulating AngII levels in
COVID-19 may prompt expression and synthesis of fibrinogen
(49). In turn, high fibrinogen levels activate erythrocyte
membrane integrinαvβ3 receptors, which induce erythrocyte
aggregation and the development of hyperviscosity syndrome
(48). Of interest, CD169 macrophages, which are involved in
the maturation of erythrocytes, are activated in SARS-CoV-2
infection, resulting in polycythemia and the development
of hyperviscosity syndrome (50). It has been observed that
CD169 monocytes are expressed in 93.7% of COVID-19
patients and are regarded as having diagnostic benefits (50).
Consequently, SARS-CoV-2-induced expression of CD169 by
macrophages/monocytes may promote the development of
polycythemia and hyperviscosity syndrome in COVID-19.

Significantly, increased blood viscosity in COVID-19 patients
stimulates the release of arginine vasopressin (51), which causes
the release of pro-inflammatory cytokines via activation of the
nuclear factor kappa B (NF-κB) and nod-like receptor pyrin 3
(NLRP3) inflammasomes, both of which contribute to increased
blood viscosity (51). Of note, both of NF-κB and NLRP3
inflammasome persuade asymmetry of erythrocyte membrane
with decrease of erythrocyte deformability in normal and sickle
erythrocytes (52, 53). Besides, NF-κB and NLRP3 inflammasome
are extremely triggered in COVID-19 (54), and might a latent
causes for lessening of erythrocyte deformability in COVID-19.

Moreover, p38 mitogen activated protein kinase (p38MAPK),
mechanistic target of rapamycin (mTOR) and high mobility
group box protein 1 (HMGP1) are also activated in COVID-
19, leading to the release of pro-inflammatory cytokines (55–
57). In turn, increased pro-inflammatory cytokines promote
elevation of blood viscosity by inducing expression of fibrinogen
with a reduction of erythrocyte deformability (58). Likewise,
COVID-19 is usually associated with psychological stress and
sympathetic outflow (59). In relevant, psychological stress
increases circulating AngII as well, AngII promotes psychological
stress through augmentation of sympathetic activation (60).
Similarly, AngII receptor blockers attenuate stress pressor in
young adults (60). Therefore, COVID-19-induced psychological
stress may augment the dysregulated RAS by increasing AngII
with the consequent development of hyperviscosity syndrome.
As well, high circulating AngII in COVID-19 promotes the
release of pro-inflammatory cytokines with the induction of
erythrocyte aggregation and an increase in blood viscosity (61).

These observations suggest that activated inflammatory
signaling pathways and the release of pro-inflammatory cytokines

might be the latent causes for the development of hyperviscosity
syndrome in COVID-19.

Hyperviscosity Syndrome and
Erythrocyte Deformability in COVID-19
In COVID-19, SARS-CoV-2 may affect erythrocyte morphology
via binding of membrane cluster of differentiation 147 (CD147)
receptors and Band3 protein on the erythrocyte membrane (62,
63). These changes reduce the functional capacity of erythrocytes
for oxygen transport and result in the development of tissue
hypoxia (63). It has been shown that erythrocyte distribution
width and other indices were brutally affected in SARS-CoV-
2 infection and were associated with COVID-19 severity (64).
Besides, severe hypoxia and acidosis encourage changes in the
erythrocyte morphology (65). These explanations propose that
direct SARS-CoV-2-induced erythrocyte dysmorphology and
connected metabolic acidosis with hypoxia may induce the
development of hyperviscosity syndrome in COVID-19.

Moreover, lipoproteins can disturb blood viscosity as low
density lipoprotein (LDL) is clearly correlated while high density
lipoprotein (HDL) is negatively correlated with blood viscosity
(66). Indeed, HDL is required for erythrocyte morphology and
deformability; thus, a decrease in HDL may shorten erythrocyte
life by increasing osmotic fragility and decreasing erythrocyte
deformability (67). In COVID-19, there is a notable variation
in lipoprotein serum levels, and low HDL levels are linked
with COVID-19 severity (68, 69). Thus, the decrease of HDL
in SARS-CoV-2 infection may increase blood viscosity with the
development of hyperviscosity syndrome in COVID-19.

Notably, COVID-19-induced oxidative stress may prompt
an increase in blood viscosity (70). High oxidative stress in
COVID-19 can trigger atypical hemorheological alterations
with a decrease in erythrocyte deformability (71). In severe
SARS-CoV-2 infections, oxidative stress may lead to endothelial
dysfunction and thrombotic complications (72). Hence,
variations in erythrocyte fragility and deformability with
endothelial dysfunction and oxidative stress in SARS-CoV-2
infection may cause hyperviscosity syndrome in COVID-19.

Remarkably, erythrocyte morphology and functions are also
affected in SARS-CoV-2 infection with the progression of
erythrocrine dysfunction (73). In this state, the development
of abnormal erythrocytes may contribute to the development
of endothelial dysfunction and vascular injury by aggregate
oxidative stress (74). Of interest, erythrocytes from COVID-
19 patients promote expression of endothelial arginase with
the generation of reactive oxygen species (ROS), reduction of
endothelial NO and development of endothelial dysfunction
(74). Thus, SARS-CoV-2 infection-induced oxidative stress
might in part be mediated by the development of abnormal
erythrocytes in COVID-19.

Hyperviscosity Syndrome and
Thrombosis in COVID-19
Conspicuously, severe COVID-19 is linked with the development
of thromboembolic events due to direct SARS-CoV-2 cytopathic
effects and related platelet activation, coagulation activation,
endothelial dysfunction, and inhibition of the fibrinolytic
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pathway (75). Also, down-regulation of ACE2 with deregulation
of RAS together with exaggerated release of pro-inflammatory
cytokines may induce endothelial dysfunction through reduction
of prostacyclin and nitric oxide (NO) (76). Thrombotic events
may increase the risk of the development of hyperviscosity
syndrome (77). These observations suggest a mutual interaction
between HVS and thrombotic events in COVID-19.

Additionally, hypoalbuminemia is linked with an increase in
blood viscosity and the development of hyperviscosity syndrome
(78). Of note, serum albumin is negatively correlated with
D-dimer and CRP, and hypoalbuminemia is linked with the
development of coagulopathy in COVID-19 patients through a
decrease in the anticoagulant and antiplatelet effects of albumin
(79). A study of 113 COVID-19 patients by Bi et al. found
that a high fibrinogen/albumin ratio was associated with an
increased risk of thrombotic events, disease severity, and poor
clinical outcomes (80). Thus, the blood viscosity is increased and
reaches up to 4.2 cp. Consequently, hyperfibrinogenemia and
hypoalbuminemia may increase blood viscosity and contribute
to the progression of hyperviscosity syndrome and thrombotic
complications in COVID-19 (80).

Strangely, most of the COVID-19 patients with higher blood
viscosities of more than 3.5 cp may develop coagulation disorders
(81). In this condition, there is a close relationship between
hyperviscosity syndrome and thrombotic events in COVID-
19. It has been shown that critical COVID-19 patients were

associated with thrombotic complications and blood viscosity
greater than 3.5 cp (the normal range is 1.4–1.8 cp) was
correlated with thrombotic complications (81). In addition,
Truong et al. reported that symptoms of hyperviscosity syndrome
were more obvious in COVID-19 patients with a blood viscosity
of more than 4.2 cp (82). These findings suggest that higher
blood viscosity is connected with more severe hyperviscosity
syndrome in COVID-19.

These verdicts propose that severe SARS-CoV-2 infection in
COVID-19 patients can increase blood viscosity by modulating
fibrinogen, albumin, lipoproteins, and erythrocyte deformability
and aggregations (Figure 1).

Complications of Hyperviscosity
Syndrome in COVID-19
Of interest, hyperviscosity syndrome in COVID-19 may cause
poor tissue perfusion, peripheral vascular resistance, and
thrombosis (24). In particular, low-shear areas are vulnerable to
thrombosis due to a decrease in the dispersion of clotting factors
and a reduction in the shear-induced release of antithrombotic
molecules like NO and prostacyclin (24).

Indeed, hyperviscosity syndrome may lead to extra-
pulmonary complications, including acute kidney injury,
skeletal muscle ischemia, glucose intolerance, and myocardial
necrosis (83). In addition, hyperviscosity syndrome leads

FIGURE 1 | Mechanism of hyperviscosity syndrome in COVID-19: COVID-19 through down-regulation of angiotensin converting enzyme 2 (ACE2), psychological
stress, hyperinflammation, oxidative stress, abnormal morphology of erythrocytes, and reduction of high density lipoprotein (HDL). These changes increase
fibrinogen level and angiotensin II (AngII), with induction of erythrocrine dysfunction and subsequent development of hyperviscosity syndrome.
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to ventilation-perfusion mismatch and the development of
pulmonary hypoperfusion. These pathological changes lead
to silent hypoxemia and exaggerated pulmonary vascular
resistance (84). Furthermore, COVID-19-induced hyperviscosity
syndrome has been associated with numerous cardiovascular and
neurological complications like stroke and myocardial infarction
(85, 86). In particular, hyperviscosity syndrome increases the
risk of the development of myocardial infarction in COVID-19
patients (87). As well, immunothrombosis and endothelial
dysfunction, which are induced by SARS-CoV-2 infection, could
be potential causes of hyperviscosity syndrome in COVID-19
(82). These vicissitudes escalate the risk of the development of
myocardial infarction in surviving COVID-19 patients due to
the progression of coronary microangiopathy (88).

Indeed, hyperviscosity syndrome is connected with the
progression of post-COVID-19 syndrome (long COVID-19),
which is characterized by dyspnea, fatigue, cognitive dysfunction,
and headache following recovery from COVID-19 (89). It
has been shown that long COVID-19 is linked with cardio-
pulmonary fibrosis and immunosuppression due to upregulation
of transforming growth factor beta (90). Protracted inflammatory
changes and high blood viscosity in patients with long COVID-
19 can decrease tissue perfusion with induction of abnormal
cellular metabolism (91). In this state, COVID-19-induced
abnormal erythrocrine function may promote tissue hypoxia
and subnormal cell metabolism, which may prolong symptoms
of long COVID-19 (74). Herein, hyperviscosity syndrome with
or without erythrocrine dysfunction in COVID-19 contributes
to the decrease in tissue oxygenation and the development of
cardio-metabolic complications in long COVID-19 (Figure 2).

COVID-19 VACCINATION AND
HYPERVISCOSITY SYNDROME

The management of COVID-19 heavily relies on the presence of
safe and effective vaccines. There are various types of vaccines

FIGURE 2 | Complications of hyperviscosity syndrome in COVID-19:
Hyperviscosity syndrome provokes the development of endothelial
dysfunction, microangiopathy, and hypoperfusion with the development of
thrombosis and tissue hypoxia, which eventually cause organ dysfunction.

against SARS-CoV-2. One type is mRNA vaccines encoding the S
protein antigen of the virus, like the Pfizer-BioNTech COVID-
19 Vaccine (92). Another type of COVID-19 vaccine is the
vector-based vaccine that delivers the code for the spike antigen
of SARS-CoV-2. Examples of vector-based vaccines include the
Oxford–AstraZeneca vaccine, Convidecia vaccine, Sputnik-V
vaccine, and Johnson vaccine (93). Also, there are inactivated
vaccines, such as the Sinopharm vaccine (93). Another potential
COVID-19 vaccine is the NVX-CoV2373 vaccine, which contains
a recombinant nanoparticle spike protein (94). The COVID-19
vaccine was developed in the early part of April 2020 to control
the spread of the SARS-CoV-2 infection (95). It is of note that the
FDA approved the first COVID-19 vaccine on August 23, 2021,
which is an mRNA vaccine that has been known as the Pfizer-
BioNTech COVID-19 Vaccine. This vaccine was approved for
those who are 16 years of age or older (95). Subsequent to the
COVID-19 vaccination, some reports disclosed that the blood
viscosity was augmented due to induction of immune response
and an increase in anti-SARS-CoV-2 immunoglobulins (96).
It has been shown that hyperviscosity syndrome may develop
following COVID-19 vaccination, causing immunoinflammatory
changes (96). Hyperviscosity syndrome is associated with the
concentration of immunoglobulins; nevertheless the lowest
normal immunoglobulins concentrations are below 545 mg/dl
whereas the lowest blood viscosity is 1.5 cp (97). The blood
viscosity will be 2.6 cp when the immunoglobulin concentrations
reach up to 6160 mg/dl (94). Of note, symptoms of HVS develop
when BV exceeds 4.0 cp (97).

Normally, in healthy COVID-19 vaccine recipients, the blood
viscosity is increased by 2.4 cp (98). However, COVID-19
vaccine-induced hyperviscosity syndrome is more common in
patients with metabolic syndrome due to metabolic disorders
which increase blood viscosity (99). Of interest, hyperbilirubemia
in chronic liver diseases may induce the development of
hyperviscosity syndrome following COVID-19 vaccination (99).
Interestingly, hyperbilirubinemia provokes the development of
hyperviscosity syndrome by an unknown mechanism (99).
Therefore, patients with metabolic disorders are regarded as
high-risk factors for the development of hyperviscosity syndrome
after COVID-19 vaccination. Hence, monitoring of blood
viscosity in COVID-19 vaccine recipients is compulsory to avoid
post-vaccine complications (100, 101).

It has been reported that patients with metabolic syndrome
had higher blood viscosity and were more susceptible to the
propagation of hyperviscosity syndrome (102). In particular,
metabolic syndrome is associated with underlying systemic
inflammation and oxidative stress, which increases the
blood viscosity by reducing erythrocyte deformability (103).
Consequently, patients with metabolic syndrome are at a superior
risk for the development of hyperviscosity syndrome following
COVID-19 vaccination. Herein, COVID-19 vaccinations
may increase the risk for development of hyperviscosity
syndrome in patients with metabolic syndrome (104). It has
been demonstrated that the blood viscosity was elevated by 2.7
times in healthy subjects compared to 2.99 times in patients
with metabolic syndrome after COVID-19 vaccinations (104).
This elevation in the blood viscosity did not reach the state of
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hyperviscosity syndrome, which might be due to the validity of
the method in the assessment of blood viscosity (105).

Remarkably, oxidative stress can persuade a reduction in
erythrocyte deformability with a successful increase in blood
viscosity (106). High oxidative stress and fibrinogen together
with prolonged low-grade inflammation in obesity are related
to the development of hyperviscosity syndrome (107, 108).
Thus, obese patients are at great risk for the development
of hyperviscosity syndrome following COVID-19 vaccination.
Likewise, the immune response in obese patients to the
COVID-19 vaccine is weak due to the decreased reactivity of
lymphocytes (109). Hence, interruption of the immune response
may reduce the concentration of immunoglobulins after COVID-
19 vaccination (110). As well, the immune response in obese
patients was low after the influenza vaccine (110).

Astonishingly, hyperviscosity syndrome is more commonly
developed in vaccine recipients who have formerly received the
COVID-19 vaccine due to higher underlying immunoglobulin
concentrations and only infrequently in those who have not
received the COVID-19 vaccine (96). Therefore, screening of
subjects for previous COVID-19 vaccination is vital before
introducing COVID-19 vaccination to avert the development
of hyperviscosity syndrome and related complications. Besides,
use of contraceptives may increase the risk of development of
hyperviscosity syndrome following COVID-19 vaccination (111).
Hence, we suggest taking the risk into consideration for patients
taking contraceptives at the time of COVID-19 vaccination.

Taken together, these findings are too preliminary to draw
any conclusions about the relationship between COVID-
19 vaccination and the risk of developing hyperviscosity
syndrome; therefore, further research, both prospective and
retrospective, is required.

The present review had numerous limitations, including
the scarcity of prospective studies which appraised the blood

viscosity of COVID-19. As well, most of the studies were
hypothetical in their explanation of hyperviscosity syndrome
in COVID-19 and COVID-19 vaccination. However, regardless
of these limitations, the present critical review reveals
that hyperviscosity syndrome is an imperative mechanistic
pathway in the progression of COVID-19 complications and
associated vaccines.

CONCLUSION

The present review showed that COVID-19 and linked
vaccines are associated with the development of hyperviscosity
syndrome, particularly in patients with previous COVID-
19 and metabolic disorders. The potential mechanism of
hyperviscosity syndrome in COVID-19 and COVID-19
vaccines is augmentation in the levels of fibrinogen and
immunoglobulins. As well, dehydration, oxidative stress, and
inflammatory reactions could be additional contributing factors
in the development of hyperviscosity syndrome in COVID-
19. Though, this review did not determine the ultimate causal
relationship between COVID-19 and COVID-19 vaccines
with the development of hyperviscosity syndrome. Therefore,
experimental, in vitro, and clinical studies are necessary in this
regard.
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