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Case report: Individualized
pulsed electromagnetic field
therapy in a Long COVID patient
using the Adaptive Force as
biomarker

Laura V. Schaefer1,2* and Frank N. Bittmann1,2

1Regulative Physiology and Prevention, Department of Sports and Health Sciences, University

Potsdam, Potsdam, Germany, 2Practice of Integrative Medicine Bittmann, Potsdam, Germany

The increasing prevalence of Long COVID is an imminent public health

disaster, and established approaches have not provided adequate diagnostics

or treatments. Recently, anesthetic blockade of the stellate ganglion was

reported to improve Long COVID symptoms in a small case series, purportedly

by “rebooting” the autonomic nervous system. Here, we present a novel

diagnostic approach based on the Adaptive Force (AF), and report sustained

positive outcome for one severely a�ected Long COVID patient using

individualized pulsed electromagnetic field (PEMF) at the area C7/T1. AF

reflects the capacity of the neuromuscular system to adapt adequately to

external forces in an isometric holding manner. In case, maximal isometric

AF (AFisomax) is exceeded, the muscle merges into eccentric muscle action.

Thereby, the force usually increases further until maximal AF (AFmax) is

reached. In case adaptation is optimal, AFisomax is ∼99–100% of AFmax.

This holding capacity (AFisomax) was found to be vulnerable to disruption

by unpleasant stimulus and, hence, was regarded as functional parameter.

AF was assessed by an objectified manual muscle test using a handheld

device. Prior to treatment, AFisomax was considerably lower than AFmax for

hip flexors (62 N = ∼28% AFmax) and elbow flexors (71 N = ∼44% AFmax); i.e.,

maximal holding capacity was significantly reduced, indicating dysfunctional

motor control. We tested PEMF at C7/T1, identified a frequency that improved

neuromuscular function, and applied it for ∼15min. Immediately post-

treatment, AFisomax increased to ∼210 N (∼100% AFmax) at hip and 184 N

(∼100% AFmax) at elbow. Subjective Long COVID symptoms resolved the

following day. At 4 weeks post-treatment, maximal holding capacity was still

on a similarly high level as for immediately post-treatment (∼100% AFmax) and

patient was symptom-free. At 6 months the patient’s Long COVID symptoms

have not returned. This case report suggests (1) AF could be a promising

diagnostic for post-infectious illness, (2) AF can be used to test e�ective

treatments for post-infectious illness, and (3) individualized PEMF may resolve

post-infectious symptoms.
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1. Introduction

“Long COVID” receives increasing attention due to the high

number of affected persons during SARS-CoV-2 pandemic. Six

month post-infection 57% of COVID-19 survivors show one or

more sequelae, after 1 year still half of them present at least

one symptom (1, 2), regardless of infection severity (3). Long

COVID shows similarities to myalgic encephalomyelitis/chronic

fatigue syndrome (ME/CFS) (4–9), which is known since

decades and can arise after viral infections (7–12). For post-

infectious syndromes a dysfunction of the autonomous nervous

system (ANS) was discussed to be the cause or at least a

component (4, 7–9). The underlying mechanisms, the causality

and the influence of pre-existing health conditions are not

sufficiently known (1, 13). Innovative diagnostics and efficient

causal therapies are urgently needed (14, 15).

Recently, Liu and Duricka reported sustained positive

clinical outcomes for two Long COVID patients after stellate

ganglion block (SGB), i.e., injecting local anesthetics near

the stellate ganglion (4). Based on the rapid resolution

of symptoms the authors concluded the “system needs to

‘reboot’ to produce functional recovery” (4). The positive

effect of SGB was suggested to be based on “sympathectomy,”

which “produces its beneficial effects. . . by attenuating

chronic sympathetic hyper responsiveness, improving

cerebral and regional blood flow, and recalibrating the

autonomic nervous system toward pre-COVID homeostasis” or

“rebalancing the interaction between the nervous and immune

system” (4).

Despite of delaying broad acceptance as valid treatment (4),

therapeutic local anesthesia to sympathetic ganglia is supposed

to be a promising approach for relieving severe conditions (16–

20). It is applied since decades to treat several conditions, e.g.,

acute/chronic pain, functional disorders, dysautonomia, and

chronic inflammation (16, 21). SGB, e.g., reduced the symptoms

in patients with posttraumatic stress disorders (22, 23), may

modulate the immune response (24), or stabilized ventricular

rhythm (25). The local injection is claimed to be safe (4, 21),

however, it is invasive and involves some risks (21, 26).

Another approach to influence the ANS is the use of

weak, low-frequency pulsatile electromagnetic fields (PEMF)

(27). Animal studies support the hypothesis that PEMF

can be useful in therapy (27–30), e.g., in cardiac diseases

(27, 30, 31). In humans, PEMF could normalize dysautonomia

in children (32, 33) and was found to be effective to treat

neuropathic/postsurgical pain and edema as well as several

other indications (34–37). PEMF acupuncture of BL15 (bladder

meridian and paravertebral T5) was found to activate the

parasympathetic nervous system (38). Moreover, PEMF

showed positive effects in cancer treatment (39). It modulated

the physiology and electrochemistry of cancer cells and

had immunomodulatory and systematic effects (39–41).

PEMF was suggested to be a “suitable therapeutic approach

with neuroimmunomodulatory, anti-inflammatory, anti-

hyperglycemic, anti-hyperalgesic, and anti-allodynic actions”

(35). Despite of those findings, development of PEMF therapy

is slow due to the lack of scientifical evidence-based knowledge

(36). Furthermore, the application parameters of PEMF were

claimed to be “quite diverse, with no clear rationale for why

particular parameters are chosen” (35).

Based on the above-mentioned knowledge and own

clinical experience, we hypothesize (1) individualized PEMF

in the sense of non-invasive neural therapy can be useful

for treatment of dysautonomia in Long COVID; (2) the

appropriate and helpful application parameters of PEMF can

be tested by Adaptive Force (AF); (3) The AF can serve as

biomarker (diagnostic/follow-up).

The AF characterizes the holding capacity of the

neuromuscular system, which can be assessed, e.g., by a

manual muscle test (MMT) objectified by a handheld device

(42–44). During MMT, the tester applies a smoothly increasing

force on the patient’s limb in direction of muscle lengthening up

to a considerably high force level. In case, the patient can adapt

the muscle tension maintaining the isometric position during

the entire force increase, the MMT is rated as “stable” and the

maximal AF (AFmax) is reached under isometric conditions

[AFmax = maximal isometric AF (AFisomax)]. An “unstable”

adaptation is characterized by yielding of the limb during force

increase. The patient is not able to adapt adequately. AFisomax

is considerably low and AFmax is reached during eccentric

muscle action (43–45).

Healthy persons usually show stable adaptation (AFisomax
AFmax ≥

99%) (43–45). Based on own practical experience, patients

with, e.g., post-infectious syndromes show unstable adaptation.

Common measurements of maximal strength (e.g., hand grip

force) usually do not show a significant difference between

patients and controls (46, 47). Two studies revealed a

significantly reduced force in ME/CFS (48, 49). However, one

did not describe sex effects. Females were overrepresented in

ME/CFS group (96 vs. 62% in controls) (49), which might

explain the lower strength. The findings are inconclusive and

highlight that common maximal strength assessments might

not be appropriate to investigate motor function in post-

infectious states. We hypothesize AFisomax might be a decisive

motor function to investigate and uncover clear differences

between patients and controls. Moreover, AFisomax can react

immediately to positive and negative inputs (43–45). A proposed

neurophysiological explanation was given previously (42–45).

Hence, the AF might be a useful biomarker to investigate

patients and to determine helpful treatments, such as the

individual PEMF.

This case report presents the positive clinical outcome

for one Long COVID patient after a single treatment with

individualized PEMF using the AF as biomarker.
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2. Patient information

A 24-year-old female (168 cm, 65 kg; student since 2016;

student assistant since 2020) presented herself in our practice of

integrative medicine in August 2021. She reported a non-critical

course of COVID-19 infection in December 2020 which lasted

2–3 weeks with symptoms as fever, loss of smell/taste, muscle

pain and headache.

Afterwards she felt quite good for ∼8 weeks. In March

2021 a state of Long COVID arose with severe symptoms

as pronounced fatigue, fast exhaustion, post-exertional

“crashs,” weakness, concentration problems, loss of speaking

abilities, headache, muscle pain/cramps, sensitivity to stimuli

(light/noise) and loss of smell. Less pronounced were nausea,

nerve tingling, visual disturbances, memory, and sleeping

problems and heavy perspiration. She was not able to proceed

her Bachelor thesis, work as assistant or participate in social

life. She appeared to be emotionally strong with good family

bonding, although she naturally perceived her condition as very

burdensome, especially because of the prospect of the clinicians

she had to be patient, wait and pace herself.

She had a borreliosis infection in 2016. No

other pre-existing health issues were reported

(infections/hormonal/digestive/psychological). She always

was sportive but sometimes not able to climb stairs in the

current condition.

She already received exercise and physiotherapy,

reflective breathing massage, tried supplements/vitamins

and melatonin pills for sleeping problems. None of them led to

a considerable condition improvement. Pacing herself resulted

in a state in which she partly could resume work/studies.

However, as soon as she went beyond her (low) limits

(physically/cognitive/emotionally), a crash resulted (recovery:

few days).

3. Clinical findings

The intensity of common Long COVID symptoms was

inquired on a numerical scale [0-no to 10-very strong;

according to Liu and Duricka (4)] retrospectively for pre-

COVID baseline, during Long COVID (post-COVID) as well

as 1-day, 4-weeks, and ∼6-month post-treatment (Figure 1).

Fatigue, memory/concentration issues, headache, muscle pain,

loss of smell/taste, depression/anxiety, dizziness, and post-

exertion malaise were rated by ≥ 9 post-COVID.

For physical examination, the AF of nine different

muscles/muscle groups was assessed on both sides by the MMT

[hip flexors/adductors/abductors/extensors, foot dorsiflexors,

pectoralis major (sternal and clavicular part), deltoid, and elbow

flexors]. For left elbow/hip flexors, the AF was objectified (see

below, Figure 2). All tested muscles showed a clearly unstable

behavior in MMTs pre-treatment.

4. Timeline

Figure 3.

5. Diagnostic assessment

Diagnostic challenges for Long COVID appear because

diagnosis is currently based on exclusion (15, 50). The patient

provided documentation of a received extensive diagnostic

assessment from a medical clinic (diagnosis: Long COVID). All

other possible causes were excluded therein.

Besides the symptom intensity at five timepoints (Figure 1),

the AF of left elbow and hip flexors was objectified by a

handheld device which records reaction force (N) between

tester and patient as well as limb position [angular velocity

(◦/s)]. It consists of strain gauges (co. Sourcing map, model:

a14071900ux0076, precision: 1.0 ± 0.1%, sensitivity: 0.3

mV/V) and kinematic sensor technology (Bosch BNO055,

9-axis absolute orientation sensor, sensitivity: ± 1%) (42–

45). Data were AD converted, buffered (sampling rate:

180Hz) and sent (Bluetooth 5.0) to a tablet with measuring

software (sticky notes). Data processing and evaluation were

performed according to Schaefer et al. (43–45) in NI DIAdem

20.0 (National Instruments, Austin, TX, USA). Signals were

interpolated (1 kHz) and filtered (Butterworth, filter degree

5, cut-off frequency 20Hz). For visualization (Figure 2) the

angular velocity was additionally filtered (degree: 3, cut-off:

10Hz) to smoothen the oscillations (note: this leads to slightly

different results between visual inspection in Figure 2 and results

given below).

The following parameters were extracted: (1) AFmax (N):

peak value of the whole trial. This can be reached either during

isometric or eccentric muscle action. (2) AFisomax (N): the

maximal isometric AF refers to the highest force under isometric

conditions. This was defined as the force at the moment in

which the gyrometer signal increased above zero, indicating a

yielding of the limb (breaking point). In case the gyrometer

signal oscillated ∼0 during the entire trial, AFmax = AFisomax.

(3) Slope: the slope of force rise before AFisomax of all trials

was calculated by the difference quotient to control the increase.

Reference points (time, force) were 70% and 100% of averaged

AFisomax of all as unstable assessed MMTs. The decadic

logarithm was taken from values [lg(N/s)] since force rise is

exponential. Arithmetic means (M) and standard deviations

(SD) of each parameter were calculated of the three trials for

each muscle and timepoint (Table 1).

Figure 2 shows the signals of the three trials of left elbow/hip

flexors at each timepoint (pre, post, and end), Table 1 shows

the respective values. The entry MMTs were clearly unstable,

indicated by low AFisomax ≈ ∼71N (elbow) and ∼62N (hip).

The muscle started to lengthen at∼44± 25% of AFmax (elbow)

and ∼28 ± 6% (hip). The slope was slightly smoother for pre

Frontiers inMedicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2022.879971
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Schaefer and Bittmann 10.3389/fmed.2022.879971

FIGURE 1

Intensity of Long COVID symptoms over time. Data was collected retrospectively for pre-COVID. Y-axis was set to −1 to visualize a score of

zero [visualization was chosen following Liu and Duricka (4)].

vs. post vs. end (Table 1). Thus, the conditions for adaptation

should have been even better in pre-tests.

After initial AF assessment, we tested the individual

supportive PEMF frequency. For that, we placed the coil

anteriorly centered to the area of stellate ganglion (C7/T1) and

performed the MMT repeatedly whereby before each test we

adjusted the frequency. As soon as the muscle showed stability,

we used this frequency for treatment. The stabilized holding

capacity indicates that exactly this configuration is supportive

for the patient’s system. Hence, the motor output leads us to

the helpful PEMF frequency by instantaneously gaining stability.

The PEMF has a reach of∼20 cm and, therefore, it had no special

lateral effect.

Immediately after PEMF application (see below), all muscles

were clearly stable in MMT. Results of AF values are given

(Figure 2C, Table 1). The first trial of elbow flexors was not

fully stable, indicated by a deviation of gyrometer signal above

zero. However, the breaking point (AFisomax) was on a high

force (174 N ≈ 99% of AFmax). All other trials post-treatment

showed full stability with high AFmax reached during isometric

conditions [M ± SD: AFisomax
AFmax = 99.6 ± 0.7% (elbow); 100

± 0% (hip)]. The isometric holding capacity was immediately

increased by 2.6 (elbow) and 3.4-fold (hip) force compared to

pre-treatment. The patient was able to maintain the isometric

position of muscles during the entire force increase in contrast

to pre-state. Those results support the manually assessed motor

function as immediate reaction to the individual PEMF therapy.

6. Therapeutic intervention

Individualized PEMF therapy using bioMATRIX driver

(Roland Pechan GmbH & Co.KG; sinusoidal signal, 100–

1,000Hz, max. 3 mT) was applied via coil to the area of C7/T1

assuming that it affects the stellate ganglion in order to “reboot”

the ANS in the sense of a non-invasive neural therapy. The

individual PEMF frequency of 550Hz (flux density 1 mT) was

tested by the AF andwas applied for∼15min. Established PEMF

devices work with up to 10 mT (51). Only one treatment was

performed since the condition improved immediately.

7. Follow-up and outcomes

The symptoms intensity improved immediately 1-day post-

treatment and sustained until now (6-month post-treatment;

Figure 1). The day after treatment she gave feedback (e-mail;

translated): “I woke up this morning for the first time since

months without a feeling of hangover. I don’t have headache;

my head feels broad and open (. . . ). An incredible feeling.

I don’t have any nausea, I feel as 1,000 kg burden were

removed from my body. I feel totally easy and energetic. I

had no problems to fall asleep yesterday and slept through

without melatonin pills. This morning I got out of bed without

any difficulties, directly felt like doing Yoga and went for

a bicycle trip.” She also felt like having “drunk 10 cups
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FIGURE 2

AF recordings of left elbow and hip flexors. (A) Force (N) of all trials before (pre), directly after (post) and 4 weeks after treatment (end). (B) Force

(N) and angular velocity (◦/s) of AF recordings pre-treatment, (C) directly post-treatment, and (D) 4-weeks post-treatment (end). All signals were

filtered (butterworth; force: filter degree 5, cut-o� frequency: 20 Hz; angular velocity: filter degree: 10, cut-o�: 3 Hz). Dotted lines indicate zero

for angular velocity.
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FIGURE 3

Timeline from acute SARS-CoV-infection over the ∼6-month Long COVID period until the individualized PEMF treatment resulting into

sustained recovery (∼6-month post-treatment).

TABLE 1 Results of Adaptive Force (AF) of left elbow and hip flexors.

AFisomax (N) AFmax (N) AFisomax
AFmax (%) Slope [lg(N/s)]

Pre Post End Pre Post End Pre Post End Pre Post End

Elbow flexors

1 111.45 174.24 202.34 161.45 176.29 202.34 0.69 0.99 1.00 1.89 1.96 1.90

2 28.50 196.23 192.39 142.64 196.23 192.39 0.20 1.00 1.00 1.68 1.85 1.94

3 73.50 181.62 192.43 177.16 181.62 192.43 0.41 1.00 1.00 2.01 1.95 1.99

M 71.15 184.03 195.72 160.42 184.71 195.72 0.44 1.00 1.00 1.86 1.92 1.95

SD 41.52 11.19 5.73 17.28 10.33 5.73 0.25 0.01 0.00 0.17 0.06 0.05

CV 0.58 0.06 0.03 0.11 0.06 0.03 0.57 0.01 0.00 0.09 0.03 0.02

Hip flexors

1 - 194.70 206.05 190.83 194.70 206.05 - 1.00 1.00 1.59 1.98 1.91

2 71.33 232.72 211.09 218.49 232.72 211.09 0.33 1.00 1.00 1.66 1.87 1.86

3 51.76 202.60 199.68 215.53 202.60 199.68 0.24 1.00 1.00 1.81 2.08 1.69

M 61.54 210.01 205.61 208.28 210.01 205.61 0.28 1.00 1.00 1.69 1.98 1.82

SD 13.84 20.06 5.72 15.19 20.06 5.72 0.06 0.00 0.00 0.11 0.11 0.12

CV 0.22 0.10 0.03 0.07 0.10 0.03 0.22 0.00 0.00 0.07 0.06 0.06

Single values of each trial, the arithmetic means (M), standard deviations (SD), and coefficients of variation (CV) of the maximal isometric AF (AFisomax), the maximal AF (AFmax), their

ratio (%), and of the slope of force rise [lg(N/s)] are given for each timepoint (pre: before treatment, post: directly after treatment, end: 4-weeks after treatment).

of coffee. I don’t know where to go with my energy. It

almost feels uncomfortable since my body is so twitchy.” It

appears that the treatment led to sympathetic hyper activation.

However, this adverse unanticipated reaction dissolved the

next day.

Two weeks post-treatment she reported she still feels

physically and mentally healthy. She was able to exercise as

intensive as before COVID-infection (85 km bicycle trip without

problems), she had no concentration issues and meetings with

several persons were no problem anymore. “I am grateful and

happy to have my life back.”

At follow-up appointment 4-weeks post-treatment, she

felt well and healthy (Figure 1). All above-mentioned muscles

showed stability in MMT, supported by AF recordings

(Figure 2D, Table 1). The patient was able to stabilize themuscles

in isometric holding conditions despite of the external increase
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until a considerably high AFisomax = AFmax = 195.7 ± 5.7N

(elbow) and 205.6± 5.7 N (hip).

Approximately 6-weeks post-treatment she received a lymph

drainage (head and shoulder girdle) independent of our

intervention and reported of headache, fatigue, concentration

problems and sensitivity to stimuli afterwards for 3 days. She

had another appointment in our practice ∼1 week later. The

muscles were still stable in entry MMTs. They became unstable

after lymph drainage performed in our practice indicating that

it irritated her system. By applying an individually newly tested

PEMF frequency (590Hz) the muscles were stabilized again.

After the next lymph drainage independent of our intervention,

she perceived headache for 1 hour but felt well afterwards.

Approximately 10-weeks post-treatment she reported “I feel

currently wonderful”. The sustainability was underpinned by the

last assessment (January 2022; Figure 1). She reported, she is

physically completely on the level before COVID, “if not better.”

However, after emotional stress fatigue sometimes returns, but

not in the previous extent.

8. Discussion

This case report suggests that low-frequency PEMF to the

area of stellate ganglion with individually tested frequency using

the AF might be an effective therapy in Long COVID patients.

Since Liu and Duricka found a similar outcome after SGB (4),

we assume that PEMF to the area C7/T1 affect the stellate

ganglion. Based on our case and their suggestion that “cervical

sympathetic chain activity can be blocked with local anesthetic,

allowing the regional autonomic nervous system to ‘reboot”’ (4),

we propose the same effect might be gained by individualized

PEMF therapy. A rationale for the mechanisms behind the

hypothesis rebooting the ANS was given by Liu and Duricka (4).

The benefit of PEMF is that it is non-invasive, the patient

does not feel anything of the intervention (see below) and

no side effects are known (36, 39, 52). However, a successful

treatment will not be that easy in every Long COVID patient.

Some will have more severe pre-existing health issues which

might hinder the positive outcome of a single treatment.

From our current experience, three main factors in Long

COVID occur: dysautonomia, pre-existing, and/or current

mental stress and previous infections affecting the lymphatic

system, which might lead to lymphatic entrapments post-

COVID. Based on psychoneuroimmunology it is known that

those factors interact (53). This is underpinned by the present

case, since the patient relapsed after lymph drainage but could

be switched back by one re-treatment. The switching between

both states as immediate responses to disturbing or helping

interventions speaks for a regulative character of Long COVID

condition, at least in part. This would explain the instant

reversibility observed in some cases. It is suggested that the

complex psychoneuroimmunological network might still be

vulnerable after “rebooting” the ANS. Lymphatic and mental

stress might impede an immediate positive outcome or lead

to a relapse. Consequently, such conditions must be treated,

too. However, the ANS dysfunction—presumably triggered

by SARS-CoV-2 infection—could benefit from individualized

PEMF therapy determined by the holding capacity (AFisomax)

of the neuromuscular system.

AFisomax was suggested to be especially sensitive regarding

interfering inputs entering the complexmotor control processes.

At least the thalamus, cerebellum, inferior olivary nucleus, red

nucleus, basal ganglia, cingulate cortex, and the sensorimotor

cortex are involved in processing adaptive motor control

(54–95). Due to the strong interconnections between those

areas (73, 84) and since they also process other inputs (e.g.,

emotions/nociception) (63, 65, 68, 69, 73, 96–99), it was

proposed that the motor output in the sense of AFisomax can

be modified by different stimuli—positive and negative ones.

The pro-inflammatory cytokine/chemokine profile (100), organ

damage, lymphatic stress and/or the dysautonomia in Long

COVID might impair that motor function. In case this is based

on malfunction, it can be resolved immediately by applying the

helpful therapy, e.g., individualized PEMF. The instantaneous

improvement of AFisomax by 2.6 and 3.4-fold by applying the

individualized PEMF frequency clearly demonstrated this. This

effect cannot be reached by training. It must be the result of a

functional readjustment of the patient’s system. In contrast to

maximal forces (as AFmax or MVIC), which can be reached

also in dysfunctional state [as found here or in other studies

(46, 47)], the holding capacity might uncover the dysfunction.

In case the patient must adapt in an isometric holding manner

to an increasing external force, the maximal force cannot be

demanded under isometric conditions anymore. The adjustment

of tension under stable muscle length fails and the limb gives

way on significantly low forces. The AFisomax improved though

immediately by applying the helpful PEMF. As was postulated

by Mert (35), there is no rationale which PEMF parameters

should be applied. So, why not “ask” the patient’s system? The

holding capacity seems to lead the way to the individual helpful

parameters. Applying any frequency would not have this positive

effect. Therefore, it is necessary to test the PEMF frequency

individually by adequate biomarkers, as the neuromuscular

holding capacity.

9. Conclusion

In conclusion, we suggest (1) to include pre-existing health

issues of Long COVID individuals, especially concerning mental

stress and previous infections and to examine the lymphatic

system regarding flow restrictions. (2) The AF provides a

valuable biomarker which can be used as functional diagnostic

parameter for patients in post-infectious states, to determine

the individual appropriate cause-related therapy and to monitor

follow-up, since it seems to correlate with the patient’s condition.

(3) Soft, low-frequency PEMF with an individually tested
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frequency for each patient at the actual timepoint seems to

be useful to “reboot” the dysfunctional ANS and might be

an alternative non-invasive neural therapy. Further research is

needed to verify and pursue this approach.
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