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Objective: Patients with prolonged mechanical ventilation (PMV) are comprised of a

heterogeneous population, creating great challenges for clinical management and study

design. The study aimed to identify subclusters of PMV patients based on trajectories of

rapid shallow breathing index (RSBI), and to develop a machine learning model to predict

the cluster membership based on baseline variables.

Methods: This was a retrospective cohort study conducted in respiratory care center

(RCC) at a tertiary academic medical center. The RCC referral criteria were patients with

mechanical ventilation for at least 21 days with stable hemodynamic and oxygenation

status. Patients admitted to the RCC from April 2009 to December 2020 were screened.

Two-step clustering through linear regression modeling and k-means was employed

to find clusters of the trajectories of RSBI. The number of clusters was chosen by

statistical metrics and domain expertise. A gradient boostingmachine (GBM) was trained,

exploiting variables on RCC admission, to predict cluster membership.

Results: A total of 1371 subjects were included in the study. Four clusters were

identified: cluster A showed persistently high RSBI; cluster B was characterized by a

constant low RSBI over time; Cluster C was characterized by increasing RSBI; and

cluster D showed a declining RSBI. Cluster A showed the highest mortality rate (72%),

followed by cluster D (63%), C (62%) and B (61%; p = 0.005 for comparison between

4 clusters). GBM was able to predict cluster membership with an accuracy of >

0.95 in ten-fold cross validation. Highly ranked variables for the prediction of clusters

included thyroid-stimulating hormone (TSH), cortisol, platelet, free thyroxine (T4) and

serum magnesium.
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Conclusions: Patients with PMV are composed of a heterogeneous population that

can be classified into four clusters by using trajectories of RSBI. These clusters can be

easily predicted with baseline clinical variables.

Keywords: prolongedmechanical ventilation, rapid shallow breathing index, gradient boosting machine, mortality,

ICU

BACKGROUND

Prolonged mechanical ventilation (PMV) after critical illness has
long been noticed as an emerging public health challenge. It is
reported that patients with PMV have a 1-year mortality rate
of 50–70% (1). This group of patients is typically characterized
by old age, high comorbidity burden, high frailty score and
increased likelihood of in-hospital complications (2). Great
efforts have been made to improve the clinical outcomes of these
patients. For example, many hospitals established specialized
ventilator weaning unit such as respiratory care center (RCC)
to manage these patients (3). In the literature, there have been
many studies reporting the epidemiological characteristics of
PMV patients, including risk factors for PMV, prediction of
weaning probability, short and long-term mortality (4–6). The
results are inconsistent across studies due to the heterogeneity of
the PMV patients.

While PMV is well described in the literature, it has
been noted that PMV patients are heterogeneous, comprising
subclusters with distinct clinical characteristics and clinical
outcomes. The heterogeneity creates great challenges for the
clinical management and study designs. To the best of our
knowledge, there has been no study to address the heterogeneity
of PMV patients in the literature. Since MV liberation is the
primary aim in the management of these patients, many studies
have developed models and/or scores for the prediction of
ventilator weaning (7–10). Rapid shallow breathing index (RSBI),
defined as the ratio of respiratory frequency to tidal volume, is a
canonical index to predict weaning success (11, 12). People on
a ventilator who cannot tolerate independent breathing tend to
breathe rapidly and shallowly and will therefore have a high RSBI.
It is reasonable to characterized patients into subclusters based on
longitudinal changes of RSBI. The present study aimed to explore
the latent subclusters of PMV patients based on the trajectories
of RSBI. A machine learning (ML) model based on variables
collected upon RCC arrival was trained to predict cluster
membership of PMV patients. Important variables associated
with cluster assignment were explored in the ML model. We
hypothesized that PMV patients could be well separated into
several subtypes. The subtypes would have prognostic value
for weaning and mortality outcomes. More importantly, these

Abbreviations: RCC, respiratory care center; RSBI, Rapid shallow breathing

index; IMV, invasive mechanical ventilation; WBC, white blood cell count; RCC,

respiratory care center; Q1, the first quartile; Q3, the third quartile; BUN, blood

urea nitrogen; Cr, creatinine; RDW, red cell distribution width; MCV, mean

corpuscular volume; NLR, neutrophil to lymphocyte ratio; SD, standard deviation;

LIME, local interpretable model-agnostic explanations.

subtypes can be predicted early by using machine learning
method trained on routinely collected variables.

METHODS

Source of Data
This is a retrospective study conducted in the RCC of the Chang
Gung Memorial Hospital from April 2009 to December 2020.
All patients admitted to the RCC was screened for potential
eligibility. The study was approved by the institutional review
board (IRB) of the Chang Gung Memorial Hospital (Approval
number: 202101862B0). The written informed consent was
waived by the IRB because the study did not involve any
interventions. Data were deidentified and stored in an encrypted
computer. One patient with positive for HIV was excluded for
confidential issues. The study was conducted according to the
Helsinki declaration and was reported in accordance to the
transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD) checklist (13).

Participants
All patients admitted to the RCC was screened for potential
eligibility. The indications for RCC admission must fulfill all
the following criteria: (1) patients with mechanical ventilation
for at least 21 days; (2) stable hemodynamic status (mean
blood pressure > 70 mmHg with normal serum lactate) without
vasopressors to maintain blood pressure; (3) stable oxygenation
status with FiO2 < 40% and positive end expiratory pressure
(PEEP) < 10 cm H2O. Patients met one of the following criteria
were excluded: (1) duplicated admissions to the RCC of the
same patient; (2) patients who declined weaning attempts; (3)
withdrawal of life support; (4) Transfer to other facility before
weaning attempt started and (5) no spontaneous breathing.

Patient Characteristics
Demographics, clinical and laboratory variables on RCC entry
were extracted from the medical records. Demographic and
clinical variables included age, sex, etiology of mechanical
ventilation, hospital days upon RCC arrival, ventilation days
upon RCC arrival, use of non-invasive ventilation (NIV) upon
RCC arrival, Glasgow coma scale (GCS) upon RCC arrival,
and comorbidities. Laboratory variables included blood gas,
white blood cell count (WBC), hemoglobin (Hb), hematocrit
(Hct), mean corpuscular volume (MCV), red cell distribution
width (RDW), platelet, segment, lymphocyte, monocyte,
eosinophil, basophil, neutrophil to lymphocyte ratio (NLR),
blood urea nitrogen (BUN), creatinine (Cr), ionized calcium
(Ca), phosphorus (P), magnesium (Mg), albumin, cortisol
(AM), cortisol (PM), thyroid-stimulating hormone (TSH),
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Free thyroxine (T4), pH, blood gas, dead-space fraction, and
prealbumin were extracted.

Weaning indices were measured upon RCC arrival and
then once a week as part of the routine practices to assess
the patient’s readiness for weaning, unless the patient was
in respiratory distress requiring FiO2 of 50% or higher,
or in unstable hemodynamic status requiring vasopressor.
Before measurement, the patient was disconnected from the
mechanical ventilator. A handheld haloscale respirometer
(Ferraris Medical, London, UK) was attached to the endotracheal
tube to measure the minute ventilation (L/min). The average
tidal volume (ml) was obtained by dividing the minute
ventilation by the respiratory rate. Rapid shallow breaths
index (RSBI) was calculated by dividing the respiratory rate
(breaths/min) by average tidal volume in liter. Maximal negative
inspiratory pressure (Pimax) was measured by inspiratory force
meter (Boehringer Laboratories, Norristown, PA) when the
patient was instructed to inhale forcefully and maximally.
Finally, we obtained ventilatory parameters including tidal
volume, respiratory rate, minute ventilation, maximal negative
inspiratory pressure, and RSBI (14).

Outcome Measurements
The following clinical outcomes were recorded for the study:
long-term mortality outcome followed until December 2021,
successful weaning from mechanical ventilation on RCC
discharge, post-weaning respiratory failure after RCC discharge,
days of duration from RCC discharge to respiratory failure,
post-weaning respiratory failure before hospital discharge,
days of duration from RCC discharge to respiratory failure
in hospital, non-invasive mechanical ventilation (NIV)
for post-weaning respiratory failure, invasive mechanical
ventilation (IMV) for post-weaning respiratory failure,
hospital length of stay, weaning and mortality outcome on
hospital discharge, and long-term outcome at most recent
follow up.

Two-Step Clustering Through Linear
Regression Modeling and K-Means
Two-step clustering through linear regression modeling
and k-means was employed to identified clusters of the
RSBI trajectories. Each trajectory was represented by the
coefficients of an individually fitted linear regression model.
The trajectories are then clustered based on the coefficients
using k-means clustering (15, 16). The best number of
clusters was determined by multiple metrics including log
likelihood value, Bayesian information criterion (BIC), and
Akaike’s information criterion (AIC). We also considered
to merge the cluster with fewer than 20 subjects. The
trajectories of weaning indices were visualized for each
latent cluster.

Statistical Analysis
Baseline characteristics and laboratory variables were
compared across the identified latent clusters. Categorical
variables were reported as number (percentage) and
were compared across latent clusters with χ2 test.

Numeric variables were firstly tested for normality
distribution and then compared across latent clusters
using analysis of variance or Kruskal-Wallis rank sum
test as appropriate (17). A P < 0.05 was considered as
statistical significance.

Model Development and Cross Validation
To predict RSBI trajectory clusters on RCC admission, we
trained a GBM to predict cluster membership. Since the response
was multiclass variable, cross entropy was employed as the
loss function. The metric accuracy was used to evaluate the
model performance in ten-fold cross validation procedure. GBMs
build an ensemble of shallow and weak successive trees with
each tree learning and improving on the previous (18, 19).
The advantage of GBM includes its flexibility in allowing
optimization on different loss functions and providing several
hyperparameter tuning options that make the function fit very
flexible. No data pre-processing is required that GBM often
works great with categorical and numerical values as is. The
hyperparameters in our GBM include the number of trees (from
1 to 15 at step 1), learning rate (0.1), and the interaction
depth (depth of trees: 10, 15, 20, and 25). The minimum
number of observations in terminal nodes was set to 30. A grid
search strategy was employed to tune the hyperparameters. The
accuracy was used in the 10-fold cross validation process for the
hyperparameter tuning.

To understand the potential association between risk
factors and latent clusters, we reported model specific variable
importance for the GBM model. Variable importance is
determined by calculating the relative influence of each
variable: whether that variable was selected to split on
during the tree building process, and how much the
squared error (over all trees) improved (decreased) as a
result. A greater value of variable importance indicates its
higher association with latent clusters. Model interpretation
was also performed by using local interpretable model-
agnostic explanations (LIME) and iBreakdown algorithms
(20). The intuition behind LIME is to learn the behavior
of the underlying model (model-agnostic) by perturbing
the predictors to see how the predictions change (21, 22).
However, the explanation in LIME is additive while some
complex relationships between predictors and clusters are
non-additive. To address this limitation of LIME, we employed
iBreakdown algorithm to detect interactions for instance-level
explanations (23). All statistical analyses were performed with R
(version 4.1.1).

RESULTS

Participants
A total number of 1,720 RCC admissions were screened
from April 2009 to December 2020. 349 admissions
were excluded due to reasons such as duplicated RCC
admission, decline weaning attempt, transfer to other
facility before weaning attempt started, no spontaneous
breathing, withdrawal of life support and missing data on
ventilator parameters (Figure 1). A number of 1,371 RCC
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FIGURE 1 | Flowchart of patient enrollment and schematic illustration of the analysis workflow. RSBI, Rapid shallow breathing index; RCC, respiratory care center;

LIME, local interpretable model-agnostic explanations.

admissions were included for the analysis. The median age
of the study population was 76 (65–83) years. The median
Charlson comorbidity index was 4 (3–7) and the most
commonly reason for MV was acute lung injury (37%).
The median follow-up days after RCC arrival was 105 (42–512)
days (Table 1).

Clusters of RSBI Trajectory
The 4-cluster model was considered as the best model it
showed low BIC and AIC values, and high Log likelihood value
(Figure 2A). Cluster B accounted for the largest proportion of
patients and showed a constantly low RSBI during RCC stay.
Cluster C was characterized by increasing RSBI (Figures 2B,C).

The clinical characteristics were compared across the clusters.
Cluster B showed the highest proportion of male, while cluster D
showed the lowest proportion of male patients (63% vs. 51%; p
= 0.008). The APACHE II upon RCC arrival was the highest in
cluster A and was the lowest in cluster D [median [Q1, Q3]: 24
(20, 28) vs. 23 (19, 26); p= 0.021, Table 1]. Interestingly, patients
in cluster C showed lower plasma magnesium on RCC entry than
that in cluster A (1.87 (1.63, 2.17) vs. 1.99 (1.72, 2.27) mg/dl;
p = 0.007). The serum cortisone level on RCC entry was also
associated with subsequent trajectory clusters (Table 2).

There were significant differences in clinical outcomes
between the four clusters (Table 1). For the mortality outcome,
cluster B showed the lowest mortality rate and cluster A showed
the highest mortality (72 vs. 61%; p = 0.005). The weaning
probability was highest in cluster B and the lowest in cluster A on

hospital discharge (52 vs. 40%; p = 0.007). However, there was
no significant difference on respiratory failure rate across clusters
after successful weaning (p= 0.231).

Predicting Trajectory Clusters on RCC
Admission
The model hyperparameters of the GBM model were chosen
by grid search to achieve the highest accuracy (> 0.95;
Figure 3A). The top variables that are predictive of trajectory
clusters included age, serum cortisol, BUN, platelet, and serum
magnesium upon RCC arrival (Figure 3B). Four representative
samples (sample ID = 1, 2, 4 and 5) were explored by LIME
algorithm, which showed variables supporting or contradicting
the assignment to a specific cluster (Figures 3C,D). The
result indicated that TSH, cortisol, platelet, free T4 and
serum magnesium were important predictors of clusters in
many instances.

We also trained random forest (RF) and LASSO regression
models, against which the GBMmodel was compared. The results
showed that the GBM model outperformed LASSO and RF
models with resampling method (Figure 4).

DISCUSSION

The study for the first time explored the latent trajectories
of patients with PMV (IMV duration > 21 days with stable
hemodynamic and respiratory conditions) using RSBI. Four
clusters were identified for the study population, namely, cluster
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TABLE 1 | Baseline characteristics in the total population and across clusters.

Variables Total (n = 1,371) A (n = 349) B (n = 461) C (n = 323) D (n = 238) p

Gender, Male (%) 799 (58) 178 (51) 289 (63) 194 (60) 138 (58) 0.008

Age (years), Median (Q1,Q3) 75.99 (64.89, 82.55) 76.84 (66.39, 82.61) 75.1 (65.08, 82.83) 75.71 (62.3, 82.57) 76.36 (64.41, 82.04) 0.403

APACHE II upon RCC arrival,

Median (Q1,Q3)

23 (20, 27) 24 (20, 28) 23 (20, 28) 23 (19.5, 27) 23 (19, 26) 0.021

Tracheostomy, n (%) 371 (27) 94 (27) 127 (28) 92 (28) 58 (24) 0.738

Pre-Albumin (mg/dl, RCC Day 1),

Median (Q1,Q3)

16.3 (11.4, 21.4) 16.21 (11.12, 20.65) 16.9 (11.9, 22) 16.2 (11.4, 22.15) 15 (11.52, 21.78) 0.292

Charlson comorbidity index,

Median (Q1,Q3)

4 (3, 7) 5 (3, 7) 4 (3, 7) 4 (3, 7) 4 (3, 6) 0.251

GCS upon RCC arrival, Median

(Q1,Q3)

9 (7, 11) 9 (7, 11) 9 (7, 11) 10 (8, 11) 10 (9, 11) 0.085

Etiology of mechanical

ventilation, n (%)

0.107

Acute lung injury 505 (37) 120 (34) 161 (35) 140 (43) 84 (35)

Neurologic disease 331 (24) 69 (20) 120 (26) 76 (24) 66 (28)

Miscellaneous 210 (15) 60 (17) 69 (15) 47 (15) 34 (14)

Cardiac disease 156 (11) 51 (15) 56 (12) 26 (8) 23 (10)

Post-thoracic or abdominal

surgery

100 (7) 27 (8) 30 (7) 22 (7) 21 (9)

Chronic lung injury 69 (5) 22 (6) 25 (5) 12 (4) 10 (4)

Equivalent hydrocortisone steroid

dose (mg), Median (Q1,Q3)

60 (40, 100) 60 (40, 80) 60 (40, 100) 80 (40, 100) 60 (40, 100) 0.572

Hospital days upon RCC arrival,

Median (Q1,Q3)

24 (21, 33) 24 (21, 34) 24 (21, 33) 25 (21, 34) 23 (20, 31) 0.162

Ventilation days upon RCC arrival,

Median (Q1,Q3)

21 (20, 25) 21 (20, 25) 21 (20, 26) 22 (20, 25) 21 (20, 24) 0.191

Ventialtor days upon extubation,

Median (Q1,Q3)

38 (32, 47) 38 (32, 49) 39 (34, 47) 39 (32, 49) 35 (31, 42) < 0.001

Post-weaning respiratory failure

after RCC discharge, n (%)

456 (33) 105 (30) 164 (36) 97 (30) 90 (38) < 0.001

Follow up days after RCC arrival,

Median (Q1,Q3)

105 (42, 512) 119 (45, 513) 111 (44, 524) 96 (40, 428) 84 (36, 612.5) 0.542

Last follow up condition, n (%) 0.005

Dead 885 (65) 250 (72) 283 (61) 201 (62) 151 (63)

No ventilator 451 (33) 90 (26) 168 (36) 108 (33) 85 (36)

On ventilator 35 (3) 9 (3) 10 (2) 14 (4) 2 (1)

In-hospital mortality, n (%) 363 (26) 86 (25) 125 (27) 84 (26) 68 (29) 0.735

Hospital length of stay, Median

(Q1,Q3)

65 (53, 82) 65 (54, 83) 65 (55, 81) 65 (56, 86) 61 (49, 76.75) 0.019

Weaning from MV in hospital or

RCC, n (%)

654 (48) 141 (40) 239 (52) 151 (47) 123 (52) 0.007

IMV for post-weaning respiratory

failure, n (%)

283 (21) 67 (19) 99 (21) 57 (18) 60 (25) 0.231

IMV, invasive mechanical ventilation; Q1, the first quartile; Q3, the third quartile; RCC, respiratory care center; GCS, Glasgow coma scale; APACHE II, The Acute Physiology and Chronic

Health Evaluation II.

A, B, C andD. Cluster B was characterized by a constant low RSBI
over time; Cluster C was characterized by increasing RSBI; cluster
D showed a declining RSBI, and cluster A showed persistently
high RSBI. Many variables on RCC entry were associated with
cluster membership including TSH, cortisol, platelet, free T4 and
serum magnesium. These variables were also confirmed to be
top ranked variables in GBM to classify trajectory clusters. It
is feasible to predict the trajectories of RSBI upon RCC arrival

using machine learning methods. Further external validation
of the GBM is mandatory before this model can be used in
clinical practice.

The identification of clusters for PMV patients has several
implications. First, the heterogeneity of the population is
addressed by classifying patients into clinically meaningful
subgroups. These subgroups showed distinct clinical
characteristics and outcomes, which is helpful for risk

Frontiers in Medicine | www.frontiersin.org 5 July 2022 | Volume 9 | Article 880896

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Yang et al. Novel Clusters of PMV

FIGURE 2 | Clustering to identify clusters of patients with prolonged mechanical ventilation. (A) The best number of clusters was chosen by using statistical metrics.

Greater values of log likelihood indicate better model fit, whereas lower values of BIC and AIC indicate better model fit. (B) Trajectory characteristics of each cluster.

Individual trajectories are represented by black lines and the cluster trajectory is colored. The cluster label and percentage are shown on the top of each panel. (C)

Trajectory and 90% confidence interval for each of the ventilator parameters, stratified by the cluster membership. BIC, Bayesian information criterion; AIC, Akaike’s

information criterion; MV, minute ventilation; Pimax, maximum inspiratory pressure; RR, respiratory rate; RSBI, Rapid shallow breathing index; TV, tidal volume.

stratification and clinical decision making (24). Cluster
A showed the lowest survival probability as compared
to other clusters. Since it is feasible to predict patient
trajectory on RCC admission, such early risk stratification
can help resource allocation and family consultation. Second,
individualized treatment strategy can be implemented for
different subgroups. For example, we observed that low
serum magnesium was associated with increased risk of
cluster C trajectory with worsening RBSI during RCC
treatment. This unfavorable outcome might be addressed
by supplementing magnesium for this group of patients.
Third, the identification of subtypes of patients can help
to design clinical trials. Some interventions may have

beneficial effects in a subgroup of patients, and trials
investigating such interventions should target this subgroup.
Such implementation of trial design has been explored in
sepsis, showing that the probability of obtaining statistically
significant beneficial/harmful effects vary by the proportion of
subtypes (25).

The associations of several variables with cluster membership
are supported by the literature. Serum magnesium has long been
noticed to be associated with prolonged mechanical ventilation
(26, 27). Hypomagnesemia is common in mechanically
ventilated patients, and there is strong, consistent observational
evidence that hypomagnesemia is significantly associated with
increased need for prolonged mechanical ventilation and
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TABLE 2 | Laboratory findings on RCC entry.

Variables Total (n = 1,371) A (n = 349) B (n = 461) C (n = 323) D (n = 238) p

WBC (×109/L), median (Q1,Q3) 9.3 (7.05, 12.4) 9.2 (7.1, 12.1) 9.4 (7, 12.5) 9.5 (7.1, 12.55) 9.35 (7.12, 12.2) 0.943

Hb (mg/dl), median (Q1,Q3) 9.7 (8.9, 10.5) 9.6 (8.9, 10.3) 9.7 (9, 10.6) 9.7 (8.9, 10.45) 9.75 (8.9, 10.7) 0.396

Hct, median (Q1,Q3) 0.3 (0.28, 0.32) 0.3 (0.28, 0.32) 0.3 (0.28, 0.33) 0.3 (0.27, 0.32) 0.3 (0.28, 0.33) 0.349

MCV, median (Q1,Q3) 90.6 (87, 94.3) 90.9 (87.1, 95) 90.5 (87.1, 93.9) 90.5 (86.65, 93.7) 90.5 (87.23, 94.27) 0.339

RDW, median (Q1,Q3) 0.16 (0.15, 0.18) 0.16 (0.15, 0.18) 0.16 (0.15, 0.18) 0.16 (0.15, 0.18) 0.16 (0.15, 0.17) 0.024

Platelet (×109/L), median (Q1,Q3) 218 (147, 307.5) 210 (138, 299) 224 (154, 314) 213 (142, 295) 223.5 (160.5, 316.5) 0.057

Segment (×109/L), median

(Q1,Q3)

0.79 (0.72, 0.86) 0.79 (0.71, 0.86) 0.79 (0.72, 0.85) 0.8 (0.73, 0.86) 0.79 (0.73, 0.86) 0.9

Lymohocyte (×109/L), median

(Q1,Q3)

0.1 (0.06, 0.16) 0.11 (0.06, 0.15) 0.1 (0.06, 0.16) 0.1 (0.07, 0.15) 0.11 (0.06, 0.16) 0.946

Monocyte (×109/L), median

(Q1,Q3)

0.06 (0.04, 0.08) 0.06 (0.04, 0.08) 0.06 (0.04, 0.08) 0.06 (0.04, 0.08) 0.06 (0.04, 0.08) 0.893

Eosinophil (×109/L), median

(Q1,Q3)

0.01 (0, 0.03) 0.01 (0, 0.03) 0.01 (0, 0.03) 0.01 (0, 0.03) 0.01 (0, 0.03) 0.753

Basophil (×109/L), median

(Q1,Q3)

0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0.571

NLR, median (Q1,Q3) 7.5 (4.66, 13) 7.41 (4.79, 13.23) 7.55 (4.62, 12.43) 7.8 (4.66, 12.91) 7.45 (4.52, 13.42) 0.936

BUN (mg/dl), median (Q1,Q3) 27.8 (16.3, 54) 32.1 (17.5, 59.4) 27.7 (15.9, 54.9) 26.2 (16.55, 50.55) 25.3 (15.93, 49.3) 0.174

Cr (mg/dl), median (Q1,Q3) 0.75 (0.48, 1.71) 0.78 (0.47, 1.69) 0.75 (0.49, 1.93) 0.73 (0.46, 1.79) 0.74 (0.47, 1.46) 0.652

Ca (mg/dl), median (Q1,Q3) 8.2 (7.9, 8.7) 8.3 (7.9, 8.8) 8.3 (7.9, 8.7) 8.2 (7.8, 8.6) 8.2 (7.9, 8.6) 0.23

P (mg/dl), median (Q1,Q3) 3.5 (2.9, 4.2) 3.6 (2.9, 4.2) 3.5 (2.9, 4.2) 3.5 (2.9, 4.4) 3.4 (2.8, 4.1) 0.59

Mg (mg/dl), median (Q1,Q3) 1.91 (1.68, 2.2) 1.99 (1.72, 2.27) 1.88 (1.67, 2.18) 1.87 (1.63, 2.17) 1.92 (1.72, 2.17) 0.007

Albumin (mg/dl), median (Q1,Q3) 2.5 (2, 2.9) 2.4 (2, 2.8) 2.5 (2.1, 2.9) 2.5 (2.02, 2.9) 2.5 (2, 2.8) 0.089

Cortisol (mcg/dl, AM), median

(Q1,Q3)

14.32 (10.39, 18.15) 14.51 (10.62, 19.12) 14.97 (10.89, 18.2) 13.91 (10.66, 17.91) 13.04 (9.33, 16.86) 0.013

Cortisol (mcg/dl, PM), median

(Q1,Q3)

15.07 (10.6, 20.03) 15.45 (10.52, 20.52) 14.78 (10.72, 20.01) 15.46 (11.31, 20.03) 14.5 (10.19, 18.98) 0.313

TSH (mIU/L), median (Q1,Q3) 2.19 (1.18, 4.24) 2.51 (1.24, 4.46) 2.05 (1.09, 4.32) 2.11 (1.17, 4.18) 2.13 (1.19, 3.9) 0.26

Free T4 (Free T4), median (Q1,Q3) 0.97 (0.8, 1.16) 0.95 (0.79, 1.13) 0.98 (0.8, 1.16) 0.98 (0.82, 1.17) 0.99 (0.8, 1.14) 0.737

pH (Upon RCC arrival), median

(Q1,Q3)

7.49 (7.46, 7.52) 7.49 (7.45, 7.51) 7.49 (7.46, 7.52) 7.49 (7.46, 7.52) 7.49 (7.46, 7.52) 0.178

PaCO2 (mmHg, Upon RCC

arrival), median (Q1,Q3)

38 (32.92, 43.18) 38.45 (33.7, 44.42) 37.5 (32.4, 42.6) 38 (32.75, 42.8) 37.8 (33.12, 43.1) 0.072

PaO2 (mmHg, Upon RCC arrival),

median (Q1,Q3)

101.8 (84.53, 121.92) 101 (85.6, 120.12) 101.3 (83.1, 123.5) 103.8 (86.45, 124.45) 102 (87.82, 119.65) 0.607

HCO3 (mmol/L, Upon RCC

arrival), median (Q1,Q3)

29.3 (25.4, 32.9) 29.7 (25.5, 33.6) 29 (25.4, 32.6) 29.1 (25.35, 32.65) 29.65 (25.92, 33.2) 0.263

SaO2 (Upon RCC arrival), median

(Q1,Q3)

0.98 (0.97, 0.99) 0.98 (0.97, 0.99) 0.98 (0.97, 0.99) 0.98 (0.97, 0.99) 0.98 (0.97, 0.99) 0.64

FiO2 (Upon RCC arrival), Median

(Q1,Q3)

0.35 (0.3, 0.35) 0.35 (0.35, 0.35) 0.35 (0.3, 0.35) 0.35 (0.3, 0.35) 0.35 (0.35, 0.35) 0.268

End-tidal CO2 (mmHg, Upon

RCC arrival), median (Q1,Q3)

34 (30, 38) 33 (31, 41) 34 (31, 38) 33.5 (29, 37) 34.5 (30.75, 38) 0.578

Dead space fraction (Upon RCC

arrival), mean ± SD

0.08 ± 0.18 0.1 ± 0.17 0.08 ± 0.19 0.08 ± 0.17 0.08 ± 0.18 0.858

Pre-Alb (mg/dl, RCC Day 1),

median (Q1,Q3)

16.3 (11.4, 21.4) 16.21 (11.12, 20.65) 16.9 (11.9, 22) 16.2 (11.4, 22.15) 15 (11.52, 21.78) 0.292

Pre-Alb (mg/dl, RCC Day 14),

median (Q1,Q3)

17.85 (13.1, 23.7) 17.9 (13.5, 23.85) 17.75 (13.03, 23.62) 16.65 (12.23, 22.2) 20 (15.5, 25.2) 0.022

WBC, white blood cell count; Hb, hemoglobin; Hct, hematocrit; RCC, respiratory care center; Q1, the first quartile; Q3, the third quartile; BUN, blood urea nitrogen; Cr, creatinine;

RDW, red distribution width; MCV, mean corpuscular volume; NLR, neutrophil to lymphocyte ratio; P, phosphorus; Mg, magnesium; TSH, thyroid-stimulating hormone; T4, thyroxine;

PaCO2, arterial partial pressure of carbon dioxide; PaO2, arterial partial pressure of oxygen; HCO3, Bicarbonate; SaO2, arterial oxygen saturation; FiO2, inspired oxygen fraction; SD,

standard deviation.
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FIGURE 3 | Gradient boosting machine training and interpretation. (A) Hyperparameter tuning for the gradient boosting machine model. We used grid search strategy

to select hyperparameters with the highest accuracy. (B) Variable importance in the GBM model. Higher importance value indicates greater influence of the variable in

differentiating the clusters. (C) LIME interpretation for four sample subjects. The horizontal axis is labeled by the sample ID. The observed cluster membership for

patients 1, 2, 4 and 5 were A, B, C and D respectively. Blue (red) color indicates the variable is supporting for (contradicting against) a given cluster. For example, the

subject 4 has magnesium < 1.92 supporting for cluster C. (D) The iBreakdown explainer for patient #4 showed that there was more support for allocation to cluster C

than to other clusters. The feature TSH = 0.023 strongly supports its assignment to cluster C, whereas the APACHE II = 30 on RCC arrival contradicts its assignment

to cluster C. The short bar indicates the confidence interval for uncertainty. LIME, local interpretable model-agnostic explanations; HCT, hematocrit; WBC, white blood

cell count; BUN, blood urea nitrogen; Cr, creatinine; RDW, red distribution width; MCV, mean corpuscular volume; GCS, Glasgow coma scale; GCSM, motion

component of GCS.

increased mortality (28). The causality of hypomagnesemia
and PMV has not been firmly established in the critical
care literature. In a randomized controlled trial involving

liver transplantation, Gucyetmez B and colleagues reported
that intravenous magnesium sulfate administration was
associated with shortened duration of mechanical ventilation
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FIGURE 4 | Comparisons of the Gradient boosting machine with other models. The performance metrics of accuracy and kappa was reported. The boxplot shows

the median and range of the performance metrics in resampled datasets. GBM, gradient boosting machine; LASSO, Least Absolute Shrinkage and Selection

Operator; RF, random forest.

(29). However, the association of magnesium and trajectory
clusters in RCC has not been explored and this is a novelty
in our study. Although our latent clusters were identified
by using longitudinal RSBI, changes of other ventilator
parameters also have important clinical implications. For
example, the cluster A shows constant RR with slightly
increasing Pimax (i.e., less negative value indicates less
inspiratory efforts) over RCC treatment, indicating less
demand of ventilation with recovered critical illness. It is
reasonable to deduce that oxygen consumption will decline
after resolution of critical illness, which is reflected by reduced
minute ventilation. Collectively, these changes in ventilator
parameters indicate recovered overall condition and improved
lung function.

Several limitations must be acknowledged in the study. First,
the study was retrospective in design and there are many
missing values in ventilator parameters. We had to exclude
these patients due to missingness. It is largely unknown whether
this exclusion will compromise the representativeness of our
sample for the study population. Second, although we trained a
GBM model for the prediction of subsequent trajectory clusters,
the model was not validated in external dataset. We used 10-
fold cross validation for training the model, but this cannot

preclude the possibility of poor performance in other datasets.
Third, the causality of baseline characteristic variables and cluster
assignment cannot be fully confirmed in the present study
design due to potential unmeasured confounding factors. Further
randomized controlled trials are mandatory to confirm potential
causal associations. P1.0 is another important parameter to
predict weaning failure. It was not included in the analysis
because this variable was not routinely measured. Finally, RSBI
was the primary index used for trajectory clustering, which
had its inherent strengths and limitations. RSBI is widely
used to predict the weaning success and its measurement is
easy at bedside. However, RSBI can be affected by pressure
augmentation, PEEP, and a bias flow (30, 31).

CONCLUSIONS

The study identified four clusters of patients requiring PMV
based on longitudinal RSBI. These clusters have distinct clinical
characteristics and outcomes, which is implicative for the
implementation of precise medicine for this study population.
It is also feasible to predict cluster assignment with variables
collected upon RCC arrival with machine learning algorithms.
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