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Colorectal cancer (CRC) is one of the most commonly diagnosed and deadly

malignancies worldwide. The incidence of CRC has been increasing, especially in

young people. Although great advances have been made in managing CRC, the

prognosis is unfavorable. Numerous studies have shown that berberine (BBR) is a safe

and effective agent presenting significant antitumor effects. Nevertheless, the detailed

underlying mechanism in treating CRC remains indistinct. In this review, we herein

offer beneficial evidence for the utilization of BBR in the management and treatment

of CRC, and describe the underlying mechanism(s). The review emphasizes several

therapeutic effects of BBR and confirms that BBR could suppress CRC by modulating

gene expression, the cell cycle, the inflammatory response, oxidative stress, and several

signaling pathways. In addition, BBR also displays antitumor effects in CRC by regulating

the gut microbiota and mucosal barrier function. This review emphasizes BBR as a

potentially effective and safe drug for CRC therapy.
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INTRODUCTION

Colorectal cancer (CRC), one of the most common cancers worldwide, has been reported as
the third most common cancer in men (10%) and second most common in women (9.2%) (1),
accounting for the fourth most common cause of cancer-related death (2). It is a heterogeneous
disease with multifarious, hereditary, and biological characteristics. Subtypes of CRC have been
demonstrated to present different prognoses and therapeutic responses (3). The incidence rate of
CRC has been decreasing in many developed countries; nevertheless, the prevalence has increased
in adults younger than 50 years of age in numerous economically underdeveloped countries
(4, 5). Although tremendous improvements have been made in the diagnosis and management
of CRC, the prognosis remains poor (6). Currently, treatment for CRC mainly includes surgery,
radiotherapy, and chemotherapy (7). For unresectable tumors, chemotherapy is a fundamental
and indispensable therapeutic regimen. The common cytotoxic chemotherapy drugs include 5-
fluorouracil (5-FU), irinotecan, oxaliplatin, raltitrexed, and lonsurf, as well as molecular-targeted
agents, such as anti-vascular endothelial growth factor (VEGF) therapies (e.g., bevacizumab, Ziv-
aflibercept, ramucirumab, and regorafenib) and anti-epidermal growth factor receptor (EGFR)
drugs (e.g., cetuximab and panitumumab) (8). However, these cytotoxic chemotherapy drugs kill
tumor cells by direct cytotoxicity and have poor selectivity for tumors; therefore, these drugs not
only kill tumor cells but also kill normal cells (9). Moreover, the mucosal barrier tends to be
disrupted by common chemotherapeutic drugs, initiating intestinal mucositis (IM). This disruption
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is unfavorable for the later treatment of CRC (10). In addition,
chemotherapy usually causes gastrointestinal (GI) epithelium
injury, which is mediated at least in part by the activation of an
inflammatory cascade (10). Furthermore, several limitations and
adverse effects have also been reported duringmolecular-targeted
therapy. Molecular-targeted therapy is relatively expensive, and
patients might require multiple targeted agents. Level 3 or
level 4 adverse events can be infrequently detected, and their
incidence might increase when two or more targeted agents are
combined (11). Furthermore, CRC involves multiple pathways,
whereas conventional drugs only target one aspect. In addition,
there is a substantially increased economic burden due to
management. Therefore, more effective treatment approaches
and medical interferences with safety and high efficacy are
urgently needed. Traditional Chinese medicine (TCM) has
been extensively acknowledged as a typical complementary and
alternative treatment in China for patients with tumors (12).
As a typical Chinese herbal medicine-derived phytochemical,
berberine (BBR) and its derivatives have attracted increasing
attention in cancer treatment. The current review highlights
several beneficial properties of BBR and could provide novel
insights into CRC treatment (13, 14).

COLORECTAL CANCER

Epidemiology of Colorectal Cancer
According to a report from 40 European countries, an estimated
3.91 million new cases of cancer occurred in Europe in 2018,
including 500,000 CRC cases. There were ∼272,000 (13.2%)
cases in men and 228,000 (12.3%) cases in women (15). In
addition, 1.9 million incident cases and 0.9 million deaths
worldwide were estimated to occur in 2020 (3). The overall
incidence of CRC has been declining in many economically
advanced countries; however, reports from the United States
and other economically advanced countries, such as Australia,
Canada, and Norway, have demonstrated that the prevalence
is increasing in adults younger than 50 years of age (4, 5, 16–
20). For example, the incidence of colon cancer increased by
1.8, 2.9, 2.9, and 3.1% per year in the United Kingdom (UK),
New Zealand, Australia, and Denmark, respectively, in people
younger than 50 years old, and the incidence of rectal cancer
in the same age group also increased by 1.4, 2.6, and 3.4%
per year in the UK, Australia, and Canada, respectively (20).
Moreover, it has been reported that the incidence of colon cancer
in individuals aged 20–29 years old increased by 9.3% every year
from 2004 to 2014 in Australia, while the incidence of rectal
cancer increased by 7.1% each year between 1993 and 2014 (17).
The mortality of CRC has been reported to be decreased in
many longstanding and economically advanced countries, such
as the United States, Australia, New Zealand, most Western
European countries (Austria and the UK.), some Asian countries
(Japan), and Eastern European countries (the Czech Republic
and Slovakia.) (21, 22). Effective prevention, early diagnosis
through screening, interventions to reduce risk factors, and/or
improvement of treatment strategies could contribute to reduced
mortality (23). Nevertheless, mortality is still on the rise in both
men and women in many low-income countries and regions,

such as Mexico, Chile, and elsewhere in Latin America (21, 24,
25). CRC represents a huge burden globally on family and society
and has a positive relationship with socioeconomic status (26–
28). This burden is estimated to continue to increase due to
the growth and aging of the population, as well as due to the
adoption of high-risk behaviors and lifestyles, particularly in less
economically developed countries (29, 30).

Prevalent Sites and Risk Factors of
Colorectal Cancer
Colorectal cancer is usually observed in the proximal colon
(41%), distal colon (22%), and rectum (28%) (31). Nevertheless,
there can be differences in the location depending on age and
gender (32). It has been reported that the most frequent sites of
CRC in young patients are the rectum and the sigmoid colon (33).
Genetic and environmental risk factors have been demonstrated
to play critical roles in the progression and development of CRC.
A number of molecular genetic markers have been identified for
the diagnosis, prognosis, and treatment of CRC, such as KRAS,
ERBB2,MLH, and NAV2/TCF7L (34, 35). An increasing amount
of evidence has supported associations between a positive family
history of CRC and an increased risk for CRC (36–38). The
reported heritability of CRC ranges from 12 to 35% according to
twin and family studies (39, 40). Although tremendous advances
have been made in the genome-wide association studies of CRC
(41, 42), there remain many elusive factors affecting heritability
(43). Hereditary colorectal cancer syndromes affect people with
a high lifetime risk of developing CRC caused by an inherited or
de novo germline mutation, accounting for 5–10% of all CRCs
(44, 45). This subgroup can be divided into nonpolyposis and
polyposis syndromes. The former includes Lynch syndrome, and
the latter contains familial adenomatous polyposis (FAP), Peutz-
Jeghers syndrome, and MUTYH-associated polyposis (MAP).
Polyposis syndromes are more effortlessly diagnosed by doctors
due to the number of polyps; however, nonpolyposis syndromes
are commonly overlooked because these patients present few
adenomas, and these adenomas are morphologically similar to
sporadic lesions. Hence, systematic molecular investigation in
subjects of any age or subgroup of subjects <70 years of age
might improve the diagnosis of this genetic syndrome. Moreover,
some basic diseases, such as inflammatory bowel disease (IBD)
and type 2 diabetes mellitus (T2DM), are also well known to
be associated with CRC (46, 47). In addition, several acquired
environmental lifestyles have been recognized as important
risk factors for CRC, such as obesity and overweight (48),
lack of physical exercise (49), excessive drinking (50), smoking
(51, 52), high Diet Inflammatory Index (DII) scores (53, 54),
and sedentary lifestyles (55). Additionally, some factors, such
as healthy diet structure (e.g., fiber-containing foods, calcium
supplements, milk intake, vitamins, fish intake, and phenol
intake) and physical activity, have been described to reduce the
risk factors of CRC (56–59). However, some of the data have
been inconsistent, and the effect on rectal cancer vs. colorectal
cancer may also be different. Furthermore, healthy lifestyle habits
have been shown to improve the prognosis and mortality of CRC
survivors (60, 61). In addition, male sex, increasing age, race, and
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FIGURE 1 | Risk factors of CRC. CRC, colorectal cancer.

FIGURE 2 | The three distinctive oncogenic pathways involving CRC. CRC, colorectal cancer.

medical intake have also been demonstrated to play critical roles
in the progression and development of CRC (62–64) (Figure 1).

Carcinogenic Pathways of Colorectal
Cancer
There are three distinctive oncogenic pathways involved in CRC,
including the adenoma-carcinoma sequence, serrated pathway,
and inflammatory pathway (Figure 2). The adenoma-carcinoma
sequence is a typical pathway that can explain ∼60–90% of
sporadic CRC. In this classic pathway, normal cells are driven
to transfer to small adenomas, then to large adenomas, and
finally to malignancies by the gradual accumulation of genetic
and epigenetic changes (65). Several factors have been confirmed
to play imperative roles in this pathway, including male sex,
increasing age, positioning in the distal colon, tobacco and

alcohol use, and a high-fat diet (66, 67). This pathway is
primarily characterized by chromosomal instability (CIN) and

is related to the development of the CIN-positive subtype.
Inactivating mutations in adenomatous polyposis coli (APC),

a well-known tumor suppressor gene, have been demonstrated

in more than 70% of adenomas and CRCs (68, 69). In
addition, some mutations in other genes, such as KRAS, TP53,

SMAD4, and PIK3CA, also contribute to this model (70, 71).

Recently, the serrated pathway was described as one of the

CRC subsets, accounting for ∼10–15% of sporadic CRCs (30).
In this model, serrated polyps are considered precursor lesions
to CRC, and they are characterized by the transformation
of normal cells to hyperplastic polyps (HPs), then to sessile
serrated adenoma (SSA), and ultimately to CRC (72, 73). The
BRAF mutation and CpG island methylator phenotype (CIMP)
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have significant involvement in this pathway (72, 74). The
inflammatory pathway is another distinctive oncogenic pathway
involved in CRC. It is highlighted by the progression of normal
cells to indefinite dysplasia, then to low-grade dysplasia, next to
high-grade dysplasia, and finally to CRC, stimulated by chronic
inflammation (75). However, this pathway only accounts for
<2% of all CRCs (30, 76). IBD, especially ulcerative colitis (UC),
is representative of this pathway. Unlike the above two precursor
lesions, chronic inflammation-induced dysplasia usually appears
as a flat mucosa with multifocality. Different from the adenoma-
carcinoma sequence, mutations of TP53 are an early event in this
model (75).

Management of Colorectal Cancer
Endoscopic resection can be performed as a minimally invasive
method for early-stage colon cancer. It includes endoscopic
mucosal resection (EMR), endoscopic submucosal dissection
(ESD), and endoscopic full-thickness resection. The choice of
endoscopic resection method depends on the size of T1 cancers.
However, some individuals with T1 cancers who experience
endoscopic resection require additional colectomy with lymph
node dissection due to lymph nodemetastases (77). Surgery is the
cornerstone and one of the most effective management options
for CRC. However, the surgical approach for colon cancer is
dependent on the tumor location and anatomic relationship
with blood vessels. Currently, laparoscopy has become a
standard method for CRC in many countries. Compared
to conventional open surgery, laparoscopic resection is a
minimally invasive technique that can expedite gastrointestinal
function recovery and reduce the length of hospital stay,
particularly for elderly patients (78). In addition, it has been
shown that laparoscopic resection is associated with reduced
postoperative mortality, and there are no adverse effects on
long-term survival (79, 80). More recently, robotic colectomy
has emerged as a popular method for the treatment of CRC
(81). Although robotic colectomy can decrease the length
of stay, it costs more and requires a longer operation time
than laparoscopic colectomy, and no significant differences
have been observed in perioperative and short- or long-term
outcomes (82, 83). In addition to surgery for CRC, several
drugs have been permitted for CRC management in clinical
trials. The Food and Drug Administration (FDA)-approved
anticancer drugs include 5 cytotoxics (5-FU, capecitabine,
TAS-102, irinotecan, and oxaliplatin) and eight biologics/targets
(cetuximab, panitumumab, bevacizumab, Ziv-aflibercept,
regorafenib, ramucirumab, pembrolizumab, and nivolumab). As
a standard first-line chemotherapy drug, 5-FU plays significant
role in palliative and adjuvant systemic therapy for CRC.
Nevertheless, some adverse effects of these drug treatments have
been reported, such as diarrhea, gastrointestinal tract injury,
stomachache, and fever (84–86). Compared to chemotherapy,
immunotherapy could prompt the memory function of the
adaptive immune system and trigger the immune system against
tumors, achieving long-term durable responses. Furthermore,
fewer adverse effects have been observed in immunotherapy
because of immune tolerance.

Berberine
Source and Metabolites of Berberine
Berberine, also known as Coptis rhizome, is a pentacyclic
isoquinoline alkaloid. It can be found in the Chinese herb
Coptis chinensis and numerous Berberis plants, such as Berberis
aristata (81), Berberis vulgaris (87), and Berberis darwinii
(88). The molecular formula of BBR is C20H18NO4, and the
molecular weight is 336.337 g/mol. The isoquinoline alkaloids
in Huanglian extracts include BBR, xanthophylline, epiberberine,
and pharmacophorine. BBR is mainly metabolized in the
intestine and liver (89, 90). With the involvement of cytochrome
and UDP glucuronosyltransferase (UGT), BBR could be
metabolized in liver cells (91). There are four major types of BBR
metabolites: berberrubine, thalifendine, demethyleneberberine,
and jatrorrhizine (92). However, the number ofmetabolites varies
by species. For example, 16 and 11 metabolites were identified in
rats (93) and mice (91), respectively.

Pharmacological Effects of Berberine
Berberine has been used as an important TCM for a long
period of time owing to its extraordinary efficiency, such as
in alleviating fever, dispelling fire, drying dampness, cooling
blood, and detoxifying toxins. Recently, an increasing number
of studies have reported regarding the novel pharmacological
effects of BBR. For instance, BBR exerts remarkable anti-
inflammatory (94–96), antiviral (97), antioxidant (98),
antidiabetic (99), immunosuppressive (100), cardiovascular
(101, 102), and neuroprotective (103) activities. Therefore,
BBR could be utilized to treat various disorders (104–107),
including metabolic, cardiovascular, digestive, and neurological
diseases. It has been demonstrated that BBR displays protective
effects against digestive diseases by inhibiting toxins and
bacteria and fortifying the intestinal mucosa (108). Moreover,
BBR has been confirmed to regulate glucolipid metabolism,
ameliorate energy consumption, and decrease body weight (106).
Furthermore, BBR also presents strong cardiovascular protection
and neuroprotective effects by improving cardiovascular
hemodynamics, reducing hypertension, and attenuating
atherosclerosis progression (101, 109).

Antitumor Effects of Berberine
Emerging evidence has shown that BBR exerts anticancer
effects in several malignancies (110–112). BBR has been
reported to inhibit cancer cell proliferation by affecting the
cell cycle and autophagy and stimulating cell apoptosis. For
example, BBR could induce G1 cycle arrest in A549 lung
cancer cells by decreasing the levels of cyclin D1 and cyclin
E1 (113). BBR could inhibit the expression of cyclin D1
in HepG2 liver cancer cells (114). BBR also induced G1
cycle arrest by inhibiting cyclin B1 expression and CDC2
kinase in some cancer cells (115). Moreover, BBR has been
suggested to induce autophagy in glioblastoma by targeting the
AMP-activated protein kinase (AMPK)/mechanistic target of
rapamycin (mTOR)/ULK1 pathway (116) and in liver cancer cells
by stimulating the release of beclin-1 from the Bcl-2/beclin-1
complex (117). In addition, BBR has been revealed to stimulate
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FIGURE 3 | Molecular mechanism of BBR in the treatment of CRC. CRC, colorectal cancer; BBR, berberine; ROS, reactive oxygen species; AMPK, AMP-activated

protein kinase; STAT3, signal transducer and activator of transcription 3; COX-2, cyclooxygenase-2; PGE2, prostaglandin E2; IL-6, interleukin 6; NF-κB, nuclear factor

kappa B.

apoptosis in leukemia by upregulation of caspase-8 and caspase-
9 (118) and in skin squamous cell carcinoma A431 cells by
increasing cytochrome C levels (119). In addition, BBR has been
confirmed to inhibit cell migration and invasion by inhibiting
the expression of epithelial–mesenchymal transition (EMT) and
metastasis-related proteins, such as matrix metalloproteinases
(MMPs) and E-cadherin, the tumor microenvironment, and/or
the caspase-1/interleukin (IL)-1β and nuclear factor kappa B
(NF-κB) signaling pathways (120–123). Interestingly, canadine,
a derivative of flavopiridol, has been shown to improve cancer-
induced muscle wasting (124). Furthermore, BBR has shown
antitumor effects by interacting with microRNAs (125) and
inhibiting telomerase activity (126).

Molecular Mechanism of Berberine in the Treatment

of Colorectal Cancer
Numerous studies have revealed that BBR is a safe and effective
treatment for CRC (127–129). The reported mechanisms include
regulation of gene expression (microRNAs, long noncoding
RNAs (lncRNAs), and mRNAs) (130–133), growth factors
(EGFR) (134), cell cycles (135), signaling pathways (AMPK,
JAK2/signal transducer and activator of transcription 3 (STAT3),
Wnt/β-catenin, IL-6/STAT3/NF-κB, and cyclooxygenase-2
(COX-2)/prostaglandin E2 (PGE2) pathways) (13, 129, 136),
inflammation, and oxidative stress (Figure 3). The effects and
molecular mechanism of BBR in the treatment of CRC are
summarized in Table 1.

Effects of Berberine on Gene Expression and Cell

Cycle in Colorectal Cancer
Abnormal expression of miRNAs, lncRNAs, and mRNAs has
been implicated in cancer development, including CRC. Based

on the recently established evidence, BBR shows important
regulatory effects on gene expression that are dysregulated in
CRC, making it a potential agent for managing cancers. For

example, BBR was reported to regulate the miR-21/integrin

β4 (ITGβ4)/programmed cell death 4 (PDCD4) axis to exert
anticancer effects on the CRC cell line HCT116 (137). In
addition, BBR could decrease the expression levels of miR-429
while upregulating the expression of E-cadherin and partitioning

defective 3 (Par-3) in CRC (132). Moreover, the combination

of NVP-AUY922 and BBR induced cell growth arrest by
suppressing cyclin-dependent kinase 4 (CDK4) expression and

inducing miR-296-5p-mediated inhibition of the peptidylprolyl
cis/trans isomerase NIMA-interacting 1 (Pin1)-β-catenin-cyclin

D1 signaling pathway in CRC (129). In addition, BBR has been
confirmed to prevent the proliferation and migration of CRC
cells by decreasing glucose-regulated protein 78 (GRP78) (131).

Furthermore, the lncRNA cancer susceptibility 2 (CASC2)/zeste

2 polycomb repressive complex 2 subunit (EZH2) /Bcl-2 axis
was identified in BBR-induced CRC cell apoptosis (138). Huang
et al. also suggested that DNA (cytosine-5)-methyltransferase
PliMCI (DNMTs) and its targeted miRNAs were involved in
the therapeutic effects of BBR on CRC (139). The cell cycle
is an extremely conserved, ordered, and complex process that
controls DNA replication and mitosis. It is regulated by many
mechanisms to ensure that correct cell division occurs (146).
Several reports have suggested that BBR can induce cell cycle
arrest to inhibit cancer development. For instance, Huang et
al. demonstrated that BBR induced G0/G1 cell cycle arrest in
CRC and then further inhibited cell proliferation (130). Samad
et al. found that BBR could also cause G0/G1 cell cycle arrest by
regulating CCDN1 and CDK4 in the CRC cell line HCT116 and
inhibiting telomerase activity (135). Soffar suggested that BBR
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TABLE 1 | The effects and molecular mechanism of BBR in the treatment of CRC.

Authors and

references

Publish year Cell line/animals/tissues Effect of BBR Mechanism Experimental model

Zhang (130) 2020 HCT116 and SW480 cell lines, male

BALB/c nude mice

Anti-proliferation, induces apoptosis

and cell cycle arrest

Downregulates IGF2BP3 In vitro and in vivo

Gong (131) 2020 SW480 and HT-29 cell lines Anti-proliferation, anti-migration, and

induces apoptosis

Downregulates GRP78 In vitro

Liu (132) 2016 In vitro culture of colorectal tissue / Reduces miR-429, E-cadherin, and Par3 In vitro

Dai (133) 2019 HT29 and HCT116 cell lines Promotes apoptosis Increases lncRNA CASC2 In vitro

Wang (134) 2013 IMCE and HT-29 cell lines, nude

mice, and APC min/+ mice

Anti-proliferation, induces apoptosis

and cell cycle arrest

Downregulates EGFR and activates Cbl In vitro and in vivo

Samad (135) 2021 HCT116 cell line Anti-proliferation, inhibits telomerase

activity and induces cell cycle arrest

and telomere Erosion

Increases CCND1 and downregulates

CDK4, TERT, and TERC

In vitro

Liu (136) 2015 SW620 and LoVo cell lines, male

BALB/C nude mice

Anti-proliferation, inhibits invasion and

metastasis

Reduces levels of COX-2/PGE2,

phosphorylation of JAK2 and STAT3, and

expression of MMP-2/-9.

In vitro and in vivo

Lü (137) 2018 HCT116 cell line Anti-proliferation, and induces

apoptosis

Regulates the

microRNA-21-ITG?4-PDCD4 axis

In vitro

Su (129) 2015 HCT-15, HCT116WT, and HT-29 cell

lines

Anti-proliferation Enhances the antitumor activity of

NVP-AUY922

In vitro

Dai (138) 2019 HT-29, HCT116, SW480, SW620 and

LoVo cell lines

Anti-proliferation, promotes

apoptosis, and inhibits migration and

invasion

Increases lncRNA CASC2 and regulates

EZH2/Bcl-2 axis

In vitro

Huang (139) 2017 Primary culture of colon tissues from

neonatal rats

Anti-proliferation Mediates the expression of DNMTs and

target miRNAs

In vitro

Soffar (140) 2019 HCT116 spheroids Anti-proliferation, induces cell cycle

arrest

Induces G1-phase cell cycle delay and

decreases the S-phase fraction of cells

In vitro

Liu (141) 2020 DLD-1 and Caco-2 cell lines Anti-proliferation, induces cell cycle

arrest

Inhibits the SCAP/SREBP-1 signaling

pathway-mediated lipogenesis

In vitro

Li (142) 2015 HCT116, SW480 and LOVO cell

lines, female FVB mice

Anti-inflammation, anti-proliferation,

and induces apoptosis

Suppresses COX-2 expression via

regulating AMPK pathway

In vitro and in vivo

Li (143) 2017 IMCE, RAW 264.7 macrophages, and

HCT116 cell lines,

C57BL/6J-APCmin/+ mice

Anti-inflammation, and

anti-proliferation

Interferes with inflammatory

response-driven EGFR signaling pathway

In vitro and in vivo

Wu (144) 2012 HCT116 cell line, female SD rats Anti-proliferation, induces apoptosis

and cell cycle arrest

Targets Wnt/β-catenin signaling pathway In vitro and in vivo

Deng (145) 2022 C57BL/6 male mice Anti-inflammation, improves intestinal

barrier function, modulates gut

microbiota dysbiosis

Inhibition of the JNK/STAT3 and β-Catenin

pathways

In vivo

BBR, berberine; CRC, colorectal cancer; IGF2BP3, insulin like growth factor 2 mRNA binding protein 3; GRP78, glucose-regulated protein 78; miR, microRNA; lncRNA, long non-coding RNA; CASC2, cancer susceptibility candidate

2; EGFR, epidermal growth factor receptor; Cb1, cannabinoid receptor 1; CCND1, cyclin D1; CDK4, cyclin-dependent kinase; TERT, telomerase reverse transcriptase; TERC telomerase RNA component; COX-2, cyclooxygenase-2;

PGE2, prostaglandin E2; STAT, signal transducer and activator of transcription; MMP, matrix metalloproteinase; ITG?4, integrin subunit beta 4; PDCD4, programmed cell death 4; EZH2, zeste 2 polycomb repressive complex 2 subunit;

DNMTs, DNA methyltransferases; SCAP, SREBP cleavage-activating protein; SREBP1, sterol-regulatory element binding protein 1; AMPK, AMP activated protein kinase; SD, sprague dawely.
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diminished CRC cancer cell growth by modulating G1-phase cell
cycle delay (140). In addition, Liu and coauthors observed that
BBR suppressed cell proliferation by inducing G0/G1 phase cell
cycle arrest in CRC cells (141). Therefore, the anti-proliferation
effect of BBR might largely contribute to G0/G1 cell cycle arrest
in CRC.

Effects of Berberine on Inflammation, Oxidative

Stress, and Signaling Pathways in Colorectal Cancer
An important relationship has been confirmed between chronic
inflammation and CRC development. It has been estimated
that ∼15–20% of cancer-related deaths involve an inflammatory
response (147). CRC is colitis-associated cancer and patients
with Crohn’s disease (CD) or UC who develop CRC present
an unfavorable prognosis (148, 149). This phenomenon might
be explained by the chronic inflammatory response in the
intestinal tract being able to trigger tumorigenesis and stimulate
malignancy development (13). In addition, oxidative stress
also plays a very important role in IBD carcinogenesis (66).
During inflammation, activated inflammatory cells (neutrophils,
macrophages, etc.) produce high levels of reactive oxygen
species (ROS), including superoxide radicals, hydroxyl radicals,
and hydrogen peroxide, which are important substances that
contribute to tumorigenesis. Oxygen radicals can lead to
abnormal DNA and RNA synthesis, and abnormal protein
assembly and DNA repair (150). Moreover, oxygen radicals
can also cause microsatellite instability (MSI) (151) and
hypermethylation (152). In addition, oxygen radicals can activate
genes that promote the production of free radicals, such as nitric
oxide (NO) synthase and COX-2, allowing for a progressive
inflammatory response and carcinogenesis (153). Therefore,
inhibition of the inflammatory response and oxidative stress
are beneficial for cancer treatment. BBR was reported to inhibit
azoxymethane and dextran sulfate sodium (AOM/DSS)-induced
CRC in a mouse model by suppressing COX-2 expression
and regulating the AMPK pathway (142). Another discovery
indicated that BBR inhibited the migration and invasion of
CRC cells via the COX-2/PGE2-mediated JAK2/STAT3 signaling
pathway (136). Additionally, Li and coauthors confirmed that
BBR inhibited colitis-associated CRC by inhibiting inflammatory
responses and subsequently suppressed EGFR signaling-involved
tumor cell growth (143). Furthermore, BBR exerts its anti-
inflammatory role in UC by modulating the IL-6/STAT3/NF-
κB signaling pathway (154). BBR was described to inhibit the
proliferation of CRC cells by inactivating the Wnt/β-catenin
signaling pathway (144). Thus, BBR could be used as a critical
anti-inflammatory and antioxidant agent in CRC.

Gut Microbiota, Mucosal Barrier, and
Colorectal Cancer
Gut Microbiota and Colorectal Cancer
The colon is covered with a mass of microorganisms. It
has been reported that more than 500–1,000 species and a
total of 1013 bacteria settle in the colon and other parts
of the large intestine of adult humans. The diversity and
composition of the microbiota could be changed by a variety
of factors, such as age, dietary habits, pharmacotherapy, and

psychological stress. (155, 156). The intestinal microflora is often
considered an important organ acquired by the human body,
which can protect the host from pathogenic bacteria, promote
the host’s digestion and absorption, affect drug metabolism
and carcinogenesis, influence the absorption and distribution
of fat, and regulate energy metabolism and the innate and
acquired immune systems (157). Dysbiosis is an imbalance
in the function or structure of gut microbiota and has been
responsible for many disorders, including CRC. Noteworthy
changes have been reported in specific bacterial clusters in
CRC subjects (158). For instance, commensal bacterial species
(such as Faecalibacterium, Blautia, and Roseburia) are found
to be decreased, while harmful bacterial inhabitants (such
as Akkermansia, Fusobacterium nucleatum, and Clostridium
difficile) are extensively enriched in CRC (159). Dysbiosis in
the gut microbiota could contribute to the development of
CRC by modulating several different mechanisms, such as
the inflammatory response, immune regulation, DNA damage,
and the production of metabolites responsible for cancer
development or suppression (160–164). Beneficial bacteria might
compete for attachment sites to reduce the abundance of
pathogenic bacteria and avoid infection. However, the pathogenic
bacteria could increase intestinal permeation and are very closely
related to the colon inflammatory response, which might be an
important issue for the promotion of CRC (165). Furthermore,
microbial metabolites, such as short-chain fatty acids (SCFAs),
might also participate in the development of CRC. SCFAs
have been reported to regulate the differentiation of Th1/Th17
cells and production of IL-10 by increasing the expression of
transcription factor B lymphocyte-induced maturation protein
1 (Blimp-1) to maintain intestinal homeostasis (166). In
addition, Fusobacterium nucleatum changed microbial structures
and activated JAK-STAT and mitogen-activated protein kinase
(MAPK) pathways, promoting the release of inflammatory
factors (128). Moreover, the gut microbiota causes immune
repair by modulating the intestinal barrier.

Effects of Berberine on Gut Microbiota and Mucosal

Barrier
Common chemotherapeutic drugs tend to disrupt the mucosal
barrier, which is detrimental to the late treatment of CRC (10). In
addition, chemotherapy generally induces gastrointestinal (GI)
epithelium damage that is at least partially intermediated by the
activation of the inflammatory cascade (10). For example, 5-FU,
a standard first-line treatment for CRC individuals, promotes
apoptosis of epithelial cells and inhibits mucosal proliferation,
while apoptotic cells can further promote inflammation. In
contrast, BBR can inhibit tumor growth through meditation
of the intestinal flora and mucosal barrier, and generally and
ultimately improve weight loss (167). Moreover, BBR has been
reported to modulate the composition of intestinal flora and
significantly reduce flora diversity. For instance, BBR was
demonstrated to inhibit the relative abundance of some of the
intestinal flora, such as Desulfovibrio, Lactobacillus acidophilus,
Eubacterium, Lactococcus lactis, and Bacteroides (168, 169), while
it enriched Bacteroides in the colon and terminal ileum of
C57BL/6 mice (169). In addition, it has been also demonstrated
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that BBR significantly reduced the relative abundances of both
Firmicutes (such as Lactobacillus sp.) and Bacteroidetes in the gut
of high-fat diet (HFD)-fed mice, indicating that the antimicrobial
activity of BBR may be responsible for its anti-obesity effects
(170). Akkermansia muciniphila (A. muciniphila) is a member of
beneficial microbiota and a dedicated intestinal mucin degrader
(171). Abnormal production and expression of mucin damage
the mucinous layer, bringing bacteria into close contact with
the intestinal epithelial cells and possibly triggering adverse
host response and subsequent CRC development (172). BBR
has been revealed to increase the growth of the populations
of the symbiotic genus Akkermansia (173) and may further
have effects on mucin expression. Moreover, BBR could
modulate the gut microbiota in the colon by impacting the
Treg/Th17 balance, reducing the levels of proinflammatory
factors, including IL-17, IL-21, IL-22, IL-23, and IL-25, and
increasing the levels of anti-inflammatory factors, such as IL-10
(174). In addition, BBR reduced bacterial endotoxins in the blood
and alleviated the inflammatory response (175). Furthermore, it
has been demonstrated that BBR decreases mucosal damage by
modulating the levels of polyamines. Wu et al. (176) found that
BBR could downregulate the levels of polyamine metabolism-
associated proteins, including ornithine decarboxylase (ODC),
c-myc, and hypoxia-inducible factor 1 subunit alpha (HIF-1α),
and upregulate the levels of polyamine metabolic enzymes,
including ornithine decarboxylase antizyme 1 (OAZ1) and
spermidine/spermine N1-acetyltransferase (SSAT). At the same
time, BBR could decrease the permeability of intestinal
mucosa by modulating zonula occludens-1 (ZO1) and occludin
(OCLN) (176). More recently, Deng and coauthors found
that preadministration of BBR suppressed CRC development
by inhibiting inflammation and proliferation and maintaining
intestinal homeostasis (145).

Indoleamine-2, 3-Dioxygenase, Colorectal Cancer,

and Berberine
Indoleamine 2,3-dioxygenase (IDO) is a key inflammatory
cytokine-inducible rate-limiting enzyme of tryptophan
catabolism, which includes three types, namely, IDO1,
IDO2, and tryptophan 2,3-dioxygenase (TDO2). IDO has
been demonstrated to play significant roles in the inhibition
of intracellular pathogen replication and immunomodulation
(177, 178). IDO is constitutively expressed in several human
and mouse cells. It can catalyze the oxidative catabolism of
tryptophan to kynurenine (179). In addition, IDO1 exerts
its immunosuppressive effect by inhibiting the macrophage
response and effector T cells by tryptophan starvation
of sensitive T cells or accumulation of toxic metabolites
(kynurenine) produced by tryptophan metabolism, subsequently
inducing cell cycle arrest and effector T-cell death in the tumor
microenvironment (180). In addition, the activity of IDO1
has been reported to directly stimulate cancer growth and
proliferation by the production of kynurenine and the activation
of β-catenin signaling (181). Previous studies discovered that
IDO1 was highly expressed in CRC and was also correlated
with impaired clinical outcomes (182–185). Therefore, targeting
IDO1 for the treatment of cancer could be considered as an

immunosuppressive-targeted strategy (177). Interestingly, BBR
revealed uncompetitive and reversible inhibitory activity on
IDO1, which might be due to direct binding to heme iron or
occupation of the presumed tryptophan-binding site (186).
Recently, a series of novel BBR derivatives targeting IDO1
has been designed to reduce the activity of IDO1. Wang et al.
observed that compounds 2i and 2n of BBR displayed anticancer
activity by increasing the specific lysis of natural killer (NK) cells
to A549 cells through IDO1 (187). Both compounds repressed
interferon (IFN)-γ-induced IDO1 expression via activation of
AMPK and inhibition of STAT1 phosphorylation. Nevertheless,
there have been no related studies about the effects of BBR on
CRC via inhibition of IDO1 activity. Hence, compounds 2i and
2n could be selected as IDO1 modulators for small-molecule
CRC immunotherapy for further investigation.

Limitations and Side Effects of Berberine
Although BBR presents valuable and promising biological effects
in the management of cancers, the side effects of BBR cannot
be overlooked (188). BBR should not be administered to infants
with jaundice, pregnant women, or nursing women because of
the potential risk of bilirubin-induced brain injury (189). In
addition, intravenous administration of BBR can cause allergic
reactions (190). Additionally, arrhythmia has been reported
in hypervagotonic individuals after the administration of BBR
(191). Other side effects, including nausea, cramping, diarrhea,
flatulence, vomiting, rash, fever, constipation, and stomachache,
have also been reported (192–194). Furthermore, a high dosage of
BBR could cause low blood pressure, dyspnea, flu-like symptoms,
and cardiac injury (190). Moreover, BBR can regulate the activity
of P-glycoprotein (P-gp), and potential drug-drug interactions
(DDIs) are observed when BBR is coadministered with P-
gp substrates (195–197). For example, BBR in combination
with P-gp inhibitor tetrandrine (Tet) can significantly improve
the pharmacokinetics and hypoglycemic efficacy of BBR (196).
Codelivery of the P-gp inhibitor tariquidar and BBR reversed
the multiple drug resistance (MDR) in the K562/DOXO cell line
(198). In addition, the efficiency of BBR is limited by its low
bioavailability due to its poor absorption rate in the gut, low
solubility in water, and fast metabolism. Studies have shown that
the oral bioavailability of BBR is 0.68% in rats (199). Therefore,
searching for novel methods to improve the absorption of BBR in
the gut might be beneficial for the treatment of cancer. Previous
studies have suggested complexation with C60 fullerene (200),
solid lipid nanoparticles (SLNs) encompassing BBR by the spray-
drying method (201), combining it with p-gp inhibitors (such
as tariquidar and tetrandrine) (196, 198), and modification to
berberine organic acid salts (BOAs) (168). However, the above-
mentioned strategies were mostly tested in animals and must be
demonstrated in human clinical trials.

In recent years, increasing evidence has suggested that
nanoparticle (NP)-based delivery systems could be a great
potential strategy to improve the therapeutic effects of BBR as
an anticancer drug (202, 203). NPs, with a small diameter of
5–200 nm, are important artificial components of nanomedicine
and play a key role as a therapeutic drug delivery system.
NPs can effectively detect cancer and elucidate cancer-related
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mechanisms, especially as therapeutic delivery vehicles (204).
NPs have unique physical and chemical properties, as well
as powerful biological functions. They can effectively protect
cargo from the degradation of enzymes and mechanisms (205).
Several categories of nanoscale drug delivery vehicles have
been demonstrated, and some of them have been applied
in nanomedicine for tumor management, such as liposomes,
carbon nanotubes, hydrogels, polymeric nanoparticles, and
magnetic nanoparticles (206). BBR-loaded polymeric NPs
(polyamidoamine dendrimers, chitosan NPs, and dextran NPs),
metal NPs (iron-oxide NPs and mesoporous silica NPs), lipid
NPs (liposomes), and carbon NPs (carbon dots and graphene
NPs) have been revealed to have potential antitumor effects
in different trials and experiments (203). Nonetheless, further
studies regarding the efficacy of BBR in combination with
different conventional anticancer drugs will pave the way for the
use of BBR as a component of cancer chemotherapy.

CONCLUSION AND FUTURE
CHALLENGES

Berberine exerts widespread pharmacological activities in
different disorders. In this review, the functions of BBR are
systematically explored and the antitumor effects on CRC, as
well as the underlying mechanisms, are delineated. This review
confirms that BBR has antibacterial, anti-inflammatory,

antioxidant, antitumor, and hypoglycemic effects and
cardiovascular and cerebrovascular protective functions.
Furthermore, BBR exerts antitumor effects in CRC by
modulating miRNA, lncRNA, and mRNA expression, inducing
cell cycle arrest, inhibiting cell proliferation, stimulating cell
apoptosis, and suppressing inflammation and oxidative stress via
several signaling pathways. In addition to the above-mentioned
functions, BBR has also revealed powerful antitumor activity
in CRC by modulating the gut microbiota and mucosal barrier,
which is good news for the search for natural antitumor drugs;
however, to date, studies of the antitumor effects of BBR have
been mainly performed in in vitro and a few in vivo models.
Hence, in vivo studies, especially human studies, are warranted
to further elucidate and confirm the therapeutic effects of BBR.
Moreover, innovative approaches to adjust the BBR structure
into more promising derivatives with stronger antitumor effects
or to synergize with other chemotherapeutic drugs to improve
the anticancer effects of BBR are needed. In summary, BBR is
a safe, inexpensive, and effective long-term application for the
treatment of cancers.
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