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Background: Deep learning methods have demonstrated remarkable performance in

pathology image analysis, but they are computationally very demanding. The aim of our

study is to reduce their computational cost to enable their use with large tissue image

datasets.

Methods: We propose a method called Network Auto-Reduction (NAR) that simplifies

a Convolutional Neural Network (CNN) by reducing the network to minimize the

computational cost of doing a prediction. NAR performs a compound scaling in which the

width, depth, and resolution dimensions of the network are reduced together to maintain

a balance among them in the resulting simplified network. We compare our method with

a state-of-the-art solution called ResRep. The evaluation is carried out with popular CNN

architectures and a real-world application that identifies distributions of tumor-infiltrating

lymphocytes in tissue images.

Results: The experimental results show that both ResRep and NAR are able to generate

simplified, more efficient versions of ResNet50 V2. The simplified versions by ResRep and

NAR require 1.32× and 3.26× fewer floating-point operations (FLOPs), respectively, than

the original network without a loss in classification power as measured by the Area under

the Curve (AUC) metric. When applied to a deeper and more computationally expensive

network, Inception V4, NAR is able to generate a version that requires 4× lower than the

original version with the same AUC performance.

Conclusions: NAR is able to achieve substantial reductions in the execution cost of

two popular CNN architectures, while resulting in small or no loss in model accuracy.

Such cost savings can significantly improve the use of deep learning methods in digital

pathology. They can enable studies with larger tissue image datasets and facilitate the use

of less expensive and more accessible graphics processing units (GPUs), thus reducing

the computing costs of a study.
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1. INTRODUCTION

Pathology image analysis is quickly evolving thanks to advances
in scanner technologies that now enable rapidly digitizing glass
slides into high resolution whole slide images (WSIs). This has
also been followed by several developments in computer aided
diagnosis analysis tools and methods, which have improved
the use of information computed from tissue characteristics in
WSIs in disease classification, prediction of clinical outcomes,
etc. (1–3). Deep learning methods have demonstrated significant
improvements over traditionalmachine learning and other image
analysis methods in a wide range of tissue image analysis tasks (4–
10). Consequently, deep learning-based image analysis is rapidly
becoming a mainstream approach in digital pathology.

The advances attained with the deep learning methods have
also been accompanied by multiple challenges in order to
make them more routinely used in pathology image analysis.
For instance, these methods require a significant amount of
annotated data to be used in training, which is particularly
costly in digital pathology as it requires an expert pathologist
to manually annotate large volumes of data (11, 12). Also,
applications developed with deep learning should consider
explainability to improve confidence in their use (13, 14).

We address another challenge with application of deep
learning in digital pathology; the high computational cost of deep
learning inference, which has adversely impacted the effective
use of deep learning in many application domains (15). This
problem is particularly more pronounced in digital pathology
because WSIs are extremely high resolution images (in the
range of 100K×100K pixels). A study analyzing thousands
of WSIs would require substantial computing capacity. High
computing requirements can significantly limit the use of deep
learning in research and as a routine component of digital
pathology workflows.

The demanding computational costs of deep learning models
can be addressed by CNN simplification and acceleration
techniques, such as: network pruning (16–18), sparsification (19,
20), quantization (21, 22), etc. Among network pruning
solutions, there are those that concentrate on removing filters
in the convolutional layers, which are referred to as channel or
filter pruning (23–25). Other techniques act on a broader range
of structures, removing full layers or even blocks of layers (26).

Network pruning solutions have been the focus of a number
of publications, presenting good results in CNN speedup and
also enabling lossless model compression (27). Filter pruning
techniques and network pruning in general offer varying
possibilities to select which filters from which layers should be
excluded from the network or which structures to be removed.
However, this is not performed in a balanced manner taking into
consideration all model dimensions together, whichmay limit the
performance and accuracy of the reduced network (28–30).

In this work, we present a novel approach that can
generate more efficient Convolutional Neural Network (CNN)
architectures to speed up the execution of model training
and inference. Our approach, called Network Auto-Reduction
(NAR), performs transformations in a given CNN architecture
in order to reduce its width, depth, and resolution dimensions

(also called components) to generate a novel architecture with
the desired computational cost (in terms of number of FLOPs)
and with minimal loss of accuracy. This simplification employs a
compound scaling method with a set of fixed scaling coefficients.
The goal is to maintain a balance among the components of the
network—for instance, a larger input resolution would require
more receptive fields and a larger number of channels to capture
details of the input image as is theoretically shown in (28). NAR
differs from most of the previous works that focus on reducing a
single or a couple of the dimensions of the network (25, 27, 29,
31–33).

We experimentally evaluate our approach in a real-world
application that classifies tumor-infiltrating lymphocytes (TILs)
in WSIs (34, 35) (presented in Section 2.1). TILs are a type
of white blood cells in the immune system, whose patterns
found in the tissue images have been shown to have consistent
correlations with patient overall survival in multiple cancer
types (36–40). In our evaluation, we use ResNet50 V2 and
Inception V4 as full, baseline networks and simplify them
with NAR. We compare NAR to a state-of-the-art method,
called ResRep (27). ResRep is designed to carry out lossless
channel pruning (filter pruning) to slim down a CNN through
a reduction in the width or number of output channels of
convolutional layers. The experimental evaluation shows that
NAR can generate CNNs with demands up to 4× lower
than the original CNN, while delivering the same classification
quality (AUC). The simplified networks generated by NAR
are more efficient, with smaller requirements for the same
AUC values when compared with the networks generated
by ResRep.

The rest of this document is organized as follows: Section 2
presents the motivating TIL classification application, the NAR
strategy proposed here and summarizes the ResRep approach.
Section 3 shows the performance evaluation in detail and
Section 4 discusses the main finds and promising directions for
future work.

2. MATERIALS AND METHODS

2.1. Tumor-Infiltrating Lymphocytes (TIL)
Classification Using Deep Learning
This work is motivated by analyses carried with deep learning
models of WSIs to identify and classify spatial patterns
of TILs (34, 35). There is increasing evidence that TIL
patterns in cancer tissue correlate with clinical outcomes;
for example, high densities of TILs indicate favorable outcomes,
such as longer survivals for patients (37). Quantitative
analyses of TIL patterns can provide valuable information
about interactions between cancer and immune system
and novel bio-markers for prediction of prognosis and
treatment response.

WSIs allow a researcher to carry out quantitative
investigations of the tumor microenvironment at the
subcellular level. This has motivated the development
of image analysis methods to extract and characterize
quantitative imaging features from WSIs (1–3, 41, 42).

Frontiers in Medicine | www.frontiersin.org 2 May 2022 | Volume 9 | Article 894430

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Meirelles et al. Building Efficient CNN Architectures

FIGURE 1 | Use-case TIL analysis workflow. CNN is trained to identify TIL rich tissue based on patches annotated by expert pathologist (top). The CNN model is then

used to classify input WSI in a patch basis. The result is a TIL map presenting TIL rich regions in the input tissue.

Deep learning methods based on Convolutional Neural
Networks (CNNs) have emerged as an effective approach
for image analysis in several domains. CNNs have been
employed for a variety of tissue image analysis tasks, including
object identification, segmentation, and recognition of spatial
patterns (34, 43–49).

Figure 1 shows a TIL analysis pipeline, based on the work
done in (34), that predicts distributions of TILs in images of
hematoxylin and eosin (H&E) stained tissue specimens. In this
pipeline, an input image is partitioned into small patches—the
size of a patch is 50 × 50 square microns in our application. A
CNN classification model classifies the patches into TIL-positive
and TIL-negative classes (a binary classification operation). As is
shown in the figure, the pipeline is composed of a training phase
and a prediction phase. In the training phase (shown in the top),
the CNN learns to classify input image patches. In this process,
patches are extracted from multiple WSIs, pathologists review
and annotate them, and the CNN classification model is trained.
The selection of patches and model training is repeated until the
desired accuracy level is reached. The prediction phase (bottom
part of the image) applies the trainedmodel to input patches from
unseen WSIs to compute TIL maps that identify tissue regions
with TILs—TIL-positive patches are shown as Red dots on a Blue
background, which represents tissue.

While CNNs have been applied successfully for TIL
analysis (34, 35), scaling the analysis to thousands of WSIs is
challenging, because of the CNNs high computational cost. This
poses a major limitation to a broader adoption of CNN-based
methods in the digital pathology domain. We propose a method
that intelligently simplifies a CNN to reduce its computational
cost while minimizing loss of model accuracy. The proposed
method is discussed in the next section.

2.2. Network Auto-Reduction (NAR)
We propose Network Auto-Reduction (NAR) to simplify CNNs
and reduce their execution cost in the inference (prediction)
phase. Several approaches have been proposed for CNN
simplification. Most of the prior approaches aim to reduce

one of the dimensions of the CNN: depth, width or input
resolution (27). Some studies proposed removing specific CNN
filters (25, 29, 31–33), or introducing weight sparsity (18) or
applying a combination of both (26, 27). In most of those
cases, the CNN is re-trained multiple times while the reduction
operations are iteratively applied. This is computationally
expensive and may not even be feasible in applications that
employ large training datasets.

NAR simplifies a CNN by modifying the depth, width, and
input resolution of the model together. The goal is to maintain
a balance between network building blocks in order for the
simplified CNN to attain good accuracy, as demonstrated in
previous work (28, 50, 51). The compound simplification process
is illustrated in Figure 2.

Our method is inspired by the approach proposed by Tan
et al. (52) to scale up simple CNNs. Their method was designed
to increase the size of a simple CNN in order to improve its
prediction performance. Here, on the other hand, we address the
problem of simplifying a CNN that is already known to perform
well in the target domain, but has a high computation cost. Tan
et al. (52) formulated the problem of scaling-up a CNN as an
optimization problem defined in Equation (1), given a target
memory consumption (TM) and (TF):

maxd,w,r Accuracy(M(d,w, r))

s.t M(d,w, r) =
⊙

i=1,...,s

F̂
d.L̂i
i

(

X〈r.Ĥi ,r.Ŵi ,w.Ĉi〉

)

Memory(M) ≤ TM;

(M) ≤ TF,

(1)

Here,
⊙

i=1,...,s is the composition of the layers of a given CNN
M. Each layer i can be viewed as the application of function
F̂i on its input tensor Xi, with dimensions Ĥi, Ŵi, Ĉi (height,
width, channels). The layers can be repeated in a sequence of
L̂i occurrences. The transformation process changes all three
components of a network simultaneously, depth (the number of
layers L̂i), width (the number of channels Ĉi) and resolution (the
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FIGURE 2 | NAR compound CNN simplification modifies depth, width, and input resolution in order to have a balance among CNN components.

height Ĥi and width Ŵi of tensor Xi) in a balanced way. The
scaling coefficients d,w, r used by Tan et al., enabled creating
a bigger network M with d.L̂i occurrences of layer i and input
size r.Ĥi, r.Ŵi,w.Ĉi, except for layer i = 0, in which the input
dimensions are the same as the input image dimensions and
channels. For given values of d,w, r, the cost of the scaled-up
CNN is increased proportionally to d.w2.r2.

According to Tan et al., it is critical to balance the scaling
coefficients in order to obtain the best accuracy/efficiency relation
for a given resource constraint. To that end, a uniform compound
scaling strategy is used to distribute the cost increase among these
parameters through a φ coefficient, such that d = αφ ,w = βφ ,
and r = γ φ with a restriction that α.β2.γ 2 ≈ 2. The values of
α,β , and γ that produce the best accuracy are determined by a
model grid search (52).

In NAR, we apply a reduction factor to each CNN component
such that d = α−φ ,w = β−φ , and r = γ−φ with the
same restriction valid for α, β , and γ . This results in a theoretical
reduction of 1

2φ for every value of φ. Therefore, NAR generates
reduced versions of any block based CNN.

2.3. ResRep
ResRep (27) is a state-of-the-art CNN pruning strategy that
uses structural re-parameterization to reduce a network’s width.
It implements a two step solution, referred to as remembering
and forgetting steps inspired by neurobiology research. In the
remembering step, the network is trained with the addition
of compactor layers attached to the original convolutional
layers. The goal is to identify filters that contribute little to
the learning process. The compactors are 1×1 convolutional
layers that apply gradient penalties, making some channels’
gradients approach zero. The forgetting step is executed
after the remembering step and reconstructs the original
model based on the compactor trained network, but without
some channels.

A key feature of ResRep is the mechanism by which channels
are selected to be removed from the original network. The
selection process uses a “gradient resetting” scheme, applied to
the compactors’ gradients only. A group Lasso penalty is used
in conjunction with the training objective function to produce
a channel-wide sparsity. The gradient resetting operation is
formulated in Equation (1).

Ltotal(X,Y ,2) = Lperf (X,Y ,2) + λP(K) (2)

G(F) =
∂Ltotal(X,Y ,2)

∂F
←

∂Lperf (X,Y ,2)

∂F

∗m + λ
F

||F||E
. (3)

Here, Ltotal is the objective function applied to input X with
label Y, given current network weights 2. The λ is a penalty
strength factor and P(K) is the Lasso penalty added to the
regular cost function Lperf . The gradients for each filter (F) of the
convolutional layer may be zeroed with a binary mask m. The
final gradient G(F) is compared to a threshold value (ǫ). If it is
below the threshold, the filter is removed. It is expected that G(F)
will be close to zero for filters for which the binary mask m is 0,
since only the penalties are considered.

3. RESULTS

The network cost reduction techniques were evaluated with
the TIL classification application described in Section 2.1
and two popular CNN architectures, ResNet50 V2 (53) and
Inception V4 (54)—the two CNNs had been successfully
employed for whole slide image analysis in a previous work (35).
The CNNs were trained with 4,300 image patches extracted from
a set of 56 WSIs from 10 tumor tissue types, including breast,
prostate and pancreatic cancer, in The Cancer Genome Atlas
(TCGA) repository (55). Fifteen thousand patches extracted from
another set of 5 WSIs comprised the test dataset. The full list
of the WSIs is given in Supplementary Tables 3, 4, which also
includes the percentage of TIL positive patches in each WSI.
The images were downloaded in their native Aperio SVS file
format. SVS files have a hierarchical representation that stores
multiple resolutions of the same image. We used the highest
resolution available for each WSI. If an image is obtained at
40x or 20x magnifications, the physical dimensions of a pixel
are 0.25×0.25 µm or 0.5×0.5 µm, respectively. We employed
the OpenSlide library (http://openslide.org/formats/aperio/) to
read the images and extract patches. The images along with
their TIL classification (Map) are publicly available (https://
cancerimagingarchive.net/datascope/TCGA_TilMap/).
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TABLE 1 | Number of parameters and layers organization in original ResNet50 V2 and NAR simplified networks.

CNN ORIGINAL NAR φ = 1 NAR φ = 2 NAR φ = 3

ResNet50 V2 (53)

# Params 23,568,898 14,583,140 11,274,413 8,514,988

Conv 1 7 × 7, 64, stride 2

Stage 1





1 × 1, 64

3 × 3, 64

1 × 1, 256



 ×

3





1 × 1, 58

3 × 3, 58

1 × 1, 232



 × 2





1 × 1, 53

3 × 3, 53

1 × 1, 212



 × 2





1 × 1, 48

3 × 3, 48

1 × 1, 192



 × 2

Stage 2





1 × 1, 128

3 × 3, 128

1 × 1, 512



 ×

4





1 × 1, 106

3 × 3, 106

1 × 1, 424



 × 3





1 × 1, 116

3 × 3, 116

1 × 1, 464



 × 3





1 × 1, 96

3 × 3, 96

1 × 1, 384



 × 2

Stage 3





1 × 1, 256

3 × 3, 256

1 × 1, 1024





× 6





1 × 1, 233

3 × 3, 233

1 × 1, 932



 ×

5





1 × 1, 212

3 × 3, 212

1 × 1, 848



 ×

4





1 × 1, 192

3 × 3, 192

1 × 1, 768



 × 3

Stage 4





1 × 1, 512

3 × 3, 512

1 × 1, 2048





× 3





1 × 1, 465

3 × 3, 465

1 × 1, 1860



 ×

2





1 × 1, 423

3 × 3, 423

1 × 1, 1692



 ×

2





1 × 1, 385

3 × 3, 385

1 × 1, 1540



 × 2

The parameter count considers a binary classification problem.

In all of the original and simplified CNN configurations, an
input image patch covers a tissue area of 50×50µm, which was
resized to the expected input image size of each CNN. The
number of patches that a CNN has to process to analyze a WSI is
the same as the other CNNs, regardless of the input size required
by each CNN.

The deep learning models were trained and tested on a

machine running Linux, equipped with 2 Intel Xeon Gold 6248
“Cascade Lake” CPUs (with 20 cores each), 512 GB of DDR4

RAM, and an NVIDIA Tesla V100 GPU with 32 GB of dedicated

memory. In all of the experiments, the models were trained from
scratch for a varying number of epochs (50 for NAR and 180 for

ResRep, which requires a larger number of epochs to simplify
the CNN) using Adam optimization algorithm, a learning rate

of 0.0005, and weight decay of 0.0005. StepLR was used as

learning rate scheduler for ResRep, with step size of 5 epochs
and gamma as 0.5 (learning rate reduction factor). In addition

to NAR and ResRep, we have also evaluated a reduction strategy
in which only the input image is reduced. This strategy is called

input reduction (IR). With IR, we evaluated the impact of the

compound reduction implemented by NAR against input data
reduction only. The IR strategy results in smaller feature maps in
memory but does not require changes to the CNN architecture,
which remains exactly the same as the original.

The classification performances of the models trained with the
simplified CNNs generated by ResRep and NAR were evaluated
using the Area Under the ROC Curve (AUC) metric, the values
of which were computed as the mean of values from 3 runs. The
values of α = 1.2,β = 1.1 and γ = 1.15 used here that lead to
the best performance were determined using a grid search (52).
The execution cost of each model was measured in terms of
the number of Giga- (G) required to process a given input
patch covering an area of 50×50µm. The total count considers
both convolutional and dense layers, given, respectively, by the
relations Fconv = 2 ∗ Number of channels ∗ Kernel shape ∗

Output shape and Fdense = 2 ∗ Input size ∗ Output size. The
NAR codes were developed using Keras and Tensorflow, while
ResRep was implemented with PyTorch.

3.1. Simplification of ResNet50 V2 by NAR,
ResRep, and IR
This set of experiments compare NAR, ResRep, and the Input
Reduction (IR) approaches in simplifying the ResNet50 V2. The
value of φ in NARwas varied between 1 and 3. Values greater than
3 generated simplified architectures that were purely sequential
models that did not resemble the original model at all. Moreover,
φ = 3 resulted in significant drop in classification performance.

The simplified CNNs generated by different configurations of
NAR and ResRep are summarized in Tables 1, 2, respectively. As
is shown in Table 1, NAR reduces multiple components of the
network; this is illustrated by different number of blocks in each
stage and different filter quantity in each convolutional layer.
ResRep, on the other hand, primarily prunes the filters in the
last stages of the network. In Table 2, P marks positions where
filters have been pruned. The filters in stage 2 are not pruned until
ǫ = 0.90 and no filters are pruned in stage 1.

Table 3 shows the computational requirements and
classification performances of the models generated from
the simplified networks. NAR with φ = 2 generated a network
with 70% reduction in computational requirements compared to
the original network. Additionally, the AUC value obtained by
the simplified model is the same as that achieved by the original
model. ResRep also was able to generate simplified networks with
no loss of AUC performance. However, as is shown in the table,
these networks had higher computational requirements than the
networks generated by NAR. Further, the IR strategy achieved
competitive results as compared to ResRep, although it is a
relatively simple approach. NAR has attained an overall better
performance (smaller G) than IR for the same AUC. Further, it is
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TABLE 3 | AUC, Giga- (G) correspondent to model input size, number of

parameter layers, and total of model layers of ResNet50 V2 and simplified

networks by ResRep, IR, and NAR.

CNN AUC G Input size Param. layers # of layers

ResNet50 V2 (53) 0.86 9.65 240 × 240 50 225

ResNet ResRep ǫ = 0.82 0.87 8.34

240 × 240 50 225

ResNet ResRep ǫ = 0.84 0.82 7.91

ResNet ResRep ǫ = 0.86 0.84 7.63

ResNet ResRep ǫ = 0.88 0.81 7.68

ResNet ResRep ǫ = 0.90 0.86 7.27

ResNet ResRep ǫ = 0.92 0.69 6.10

ResNet ResRep ǫ = 0.94 0.73 6.09

ResNet50 V2 IR 1 0.88 7.90 209 × 209

50 225

ResNet50 V2 IR 2 0.88 5.83 181 × 181

ResNet50 V2 IR 3 0.86 4.24 157 × 157

ResNet50 V2 IR 4 0.84 3.49 137 × 137

ResNet50 V2 IR 5 0.81 2.56 119 × 119

ResNet50 V2 IR 6 0.79 2.03 104 × 104

ResNet NAR φ = 1 0.84 5.15 209×209 42 170

ResNet NAR φ = 2 0.86 2.96 181×181 36 160

ResNet NAR φ = 3 0.80 1.53 157× 157 30 134

Bold values are those with good quality/performance trade offs.

noticeable that when the input image is reduced bellow a certain
size (e.g., 119×119), the AUC of IR is significantly impacted.

An interesting configuration of ResRep occurred when ǫ was
set to 0.90. The computational requirements of the simplified
network was 75.0% of that of the original network, and the
simplified network attained an equivalent AUC level. However,
when a higher simplification value was used, there was a
significant drop in AUC. For the same AUC values (e.g., 0.86),
NAR generated CNNs with smaller computational requirements.

3.2. NAR and IR Performance for the
Inception V4 CNN
This set of experiments measures the performance of NAR and
IR with Inception V4 (54). The Inception is a deeper network
than ResNet50 V2 and has a higher computational cost, thus
it is another interesting case for evaluating our approach. We
unfortunately have not been able to use ResRep to simplify the
Inception. This CNN has a more complex architecture with
multiple shortcuts and the ResRep code/documentation available
does not implement Inception neither it provides clear directions
on how to apply the method to other complex architectures (27).

The results of the NAR simplified networks as the φ parameter
is varied are shown in Table 4. First, it is noticeable that the
original Inception showed a better classification performance
as compared to ResNet (0.92 vs. 0.87). As compared to the IR
strategy, NAR has again attained better performance for the
same AUC level. Once again, for the best AUC score of each
strategy and 0.87 AUC values, NAR requires, respectively, about
2.35× and 4.93× less FLOPs to compute an inference. These
observations once again show the importance of a balanced
compound network reduction as performed by NAR.
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TABLE 4 | AUC, Giga-FLOPs (GFLOPs) correspondent to input sizes, number of

parameter layers, and total layers of Inception V4 and simplified networks

produced by NAR.

CNN AUC G Input size Param. layers # of layers

Inception V4 (54) 0.92 15.48 240 × 240 245 861

Inception IR 1 0.91 9.80 209 × 209

245 861

Inception IR 2 0.89 6.64 181 × 181

Inception IR 3 0.88 4.79 158 × 158

Inception IR 4 0.87 2.76 137 × 137

Inception IR 5 0.86 1.92 119 × 119

Inception IR 6 0.77 1.14 104 × 104

Inception NAR φ = 1 0.91 8.14 209 × 209 206 723

Inception NAR φ = 2 0.92 4.17 181 × 181 179 627

Inception NAR φ = 3 0.90 2.21 158 × 158 145 507

Inception NAR φ = 4 0.88 1.02 137 × 137 123 429

Inception NAR φ = 5 0.87 0.56 119 × 119 101 351

Inception NAR φ = 6 0.84 0.28 104 × 104 91 315

Bold values are those with good quality/performance trade offs.

Further, the NAR simplified version had a far better trade-
off in terms of the GFLOPs required to attain a certain AUC
when compared to ResNet. For instance, NAR φ = 5 reached an
AUC of 0.87 with only 0.56 GFLOPs. A comparable performance
level required at least 8.34 GFLOPs and 2.96 GFLOPs with the
simplified ResNet networks, respectively, with ResRep and NAR.
The results also show that the simplified Inception V4 can sustain
the same AUC level as the original network with a computational
cost reduction of about 4× (NAR φ = 2).

4. DISCUSSION

Overall, the experimental evaluation shows that it is possible
to simplify a classification CNN to reduce its computational
requirements in the inference phase, while maintaining model
performance comparable to the original CNN. The ResNet50
models generated by ResRep with ǫ = 0.90 and by NAR
with φ = 2 practically achieved the same AUC scores as
the models from the original ResNet50 V2 network and were
computationally 1.32× and 3.26× cheaper, respectively. Our
method, NAR, produced more efficient networks than ResRep.
We attribute this improvement to the fact that NAR employs an
approach that simplifies the multiple components of a network
in a more balanced manner. The analysis of the shape structure
of the simplified CNNs with both methods (shown in Tables 1,
2) highlights the main differences among their simplification
strategies. ResRep mainly modified the latest layers of the CNNs,
while NAR carried out a more homogeneous simplification over
all of the network stages. Previous work (28, 50, 51) demonstrated
that such a balance among the CNN components is important to
maximize classification quality. The better compromises of NAR
vs. IR strategy also demonstrate in practice that the compound
reduction performed by the first is important into maximizing
AUC while reducing the FLOPs demand.

This observation aligns well with the goal of our NARmethod,
which is to modify the width, depth, and input resolution
components of a network together and in a simple way.
Additionally, NAR is easier to use, requiring few alterations to
an original network, without the need to change the training
dynamics. ResRep, on the other hand, is harder to use as it
requires changing the network with extra layers and also includes
new CNN training penalties etc. This is even harder with deeper
CNNs that are becoming more popular.

In the experiments with Inception V4, which is a deeper
network than ResNet50, we observed that the original
Inception V4 has achieved overall better AUC than the
original ResNet50, but it was about 1.6× more expensive.
The simplified version generated by NAR with φ = 5
achieved an AUC value of 0.87, which is comparable to
the original ResNet50 network, and was faster than the
simplified ResNet with the same AUC value; the simplified
Inception V4 model required 0.56 GFLOPs while the
simplified ResNet50 model required 2.96 GFLOPs (about
5.3× more expensive). Our experimental evaluation suggests
that during the development of a deep learning network,
it may be better to focus on the classification performance
of the network and worry less about its computational
requirements and further apply a network simplification
step after the network architecture has been fine-tuned fo
r classification performance.

In our work we used classification of TILs in whole
slide images as the driving application use case. We expect
that our method can be generalized to other classification
problems in digital pathology. Characterization of TIL patterns
in whole slide images is an important use case. Multiple
studies have shown that there is a correlation between
the density and spatial organization of TILs and clinical
outcomes (37, 38, 56, 57). Characterizations of TIL patterns
can lead to better understanding of cancer mechanisms and
improve cancer staging (58). There is an increasing number
of computational pathology approaches to generate such
characterizations (34, 59, 60).

Applications of deep learning methods for TIL analysis on
a large number of whole slide images is desirable, as they can
result in a better understanding of TIL patterns. It is important
to employ effective and efficient deep learning methods in
order to facilitate such applications. We have shown that our
approach can reduce computational requirements by roughly
of 4× without impacting overall classification quality for two
real-world CNN networks. This is a significant improvement
in execution cost and can enable a broader use of these
techniques in digital pathology. We also believe this paper
opens multiple interesting directions for future work. First, as
briefly discussed, it would be important to evaluate a larger
number of CNN architectures to analyze how simplification
methods would affect their AUC and count. This could answer
the question regarding whether the developer should worry or
not about the FLOPs required or network complexity during
the development, or if this could be resolved by simplification
methods in all cases. Second, we also want to expand this
analysis with additional pathology image analysis applications,
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including not only additional classification applications but also
segmentation tasks, for instance.
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