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Objective: This paper focuses on simulator-based assessment of open surgery

suturing skill. We introduce a new surgical simulator designed to collect

synchronized force, motion, video and touch data during a radial suturing task

adapted from the Fundamentals of Vascular Surgery (FVS) skill assessment.

The synchronized data is analyzed to extract objective metrics for suturing

skill assessment.

Methods: The simulator has a camera positioned underneath the suturing

membrane, enabling visual tracking of the needle during suturing. Needle

tracking data enables extraction of meaningful metrics related to both the

process and the product of the suturing task. To better simulate surgical

conditions, the height of the system and the depth of the membrane are

both adjustable. Metrics for assessment of suturing skill based on force/torque,

motion, and physical contact are presented. Experimental data are presented

from a study comparing attending surgeons and surgery residents.

Results: Analysis shows force metrics (absolute maximum force/torque in

z-direction), motion metrics (yaw, pitch, roll), physical contact metric, and

image-enabled force metrics (orthogonal and tangential forces) are found to

be statistically significant in di�erentiating suturing skill between attendings

and residents.

Conclusion and significance: The results suggest that this simulator and

accompanying metrics could serve as a useful tool for assessing and teaching

open surgery suturing skill.

KEYWORDS

medical simulator, objective metrics, sensor informatics, suturing, skill assessment

1. Introduction

Objective measures of surgical skill have remained elusive because of a lack of

consensus regarding the optimal metrics. Surgical trainees are often evaluated by surgical

educators using subjective rating scales that often lack precision and reproducibility.

Precise quantification of metrics that define “best surgical practices” factors would
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have potential value to certifying organizations, credentialing

committees and surgical educators in addition to providing

surgeons in training with objective feedback. Quantification of

a surgeon’s skill has received attention in recent years due to

multiple factors including: duty hour restrictions on surgical

residents, limited training opportunities, a call for the reduction

in medical errors, and a need for structured training (1–4).

Surgical skill is important due to the direct relationship between

surgical performance and clinical outcomes such as hospital

readmission and complication rates (5). Surgical outcomes may

be improved through training to improve skill. For this purpose,

surgical simulators —capable of simulating an aspect of a

surgical procedure and of assessing and/or training the subject’s

skill on a given task— have received special attention in recent

years. One main advantage of using simulators is the ability

to train surgical skills without the use of humans or animals.

Another key advantage is the ability to measure skill and its

progression over time. Overall, evidence suggests that surgical

simulators are potentially effective in training surgical skills

(6, 7).

A variety of surgical simulators have been developed to

aid surgeons-in-training in the acquisition of a wide range

of surgical skills. Surgical simulators may be as basic as

simple devices that allow surgeons to practice suturing of

synthetic materials (e.g., sponges, plastic tubes) to highly

sophisticated computer-based virtual operating rooms. The

most effective currently available simulators focus on minimally

invasive techniques used in endovascular, laparoscopic, and

robotic procedures. Simulation of open surgical techniques has

historically relied on the use of animal or cadaver labs which

frequently lack object performance metrics (8–12). Suffice it to

say that there is a need for more precise, objective measures of

open surgical skill (13).

Traditional surgical training shares many features in

common with other apprenticeship-based skilled trades.

Promotion is often based on duration of service rather than

objective demonstration of specific objective performance

metrics. This type of training may be highly subjective since

feedback often depends on the expert surgeon’s preferences and

style. Further, training draws expert surgeons away from clinical

responsibilities (14). Simulators were developed to address these

problems and to standardize and automate assessment of a

surgeon’s skill. Researchers have focused on identifying objective

metrics for surgical skill and on developing devices to measure

these metrics. Objective metrics establish a basis for continued

practice in order to achieve defined performance goals.

Many metrics for skill assessment have been presented in

the literature. These metrics can be classified as force-based

metrics (15–23), motion-basedmetrics (8, 18, 23–30) and image-

basedmetrics (29, 31–39). Force-basedmetrics, such as absolute,

mean, and peak forces and force volume (16–18, 23), have been

most successful at distinguishing novice vs. expert performance

at surgical tasks. Hand and/or surgical tool motion obtained

via sensor-based kinematic data were also examined to extract

motion-based metrics, which can distinguish skill level (8, 18,

28–30). Acceleration of the hand and rotation of the wrist

were found to distinguish expert surgeons from novices (18,

28). In addition, hand and/or surgical tool motion obtained

from external video using Artificial Intelligence (AI) were

also examined to extract motion-based metrics (36–39). Total

duration, path length, and number of movements were found to

be important for distinguishing between attendings and medical

students (37). Further, computer vision has also been used to

extract image-based metrics as a means to quantify surgical skill

(31, 32, 34, 35). Frischknecht et al. (31) analyzed photographs

taken post-procedure to assess suturing performance. Metrics

that proved most meaningful in ranking the quality of suturing

included the number of stitches, stitch length, total bite size, and

stitch orientation.

Suturing is a fundamental surgical skill required in a variety

of operations, ranging from wound repair in trauma care to

delicate vascular reconstruction in vascular surgery (40). The

process of suturing can be divided into the following phases:

(i) puncturing a needle into the tissue perpendicularly, (ii)

driving the needle through the tissue following the curvature

of the needle, (iii) exiting the tissue from an exit point, and

(iv) withdrawing the needle from the tissue completely prior

to tightening the suture. Learning skilled suturing is essential

for novice medical practitioners and has been incorporated

into most fundamental skills training curricula, for example,

the Fundamentals of Laparoscopic Surgery (FLS) (6, 41, 42)

and Fundamentals of Vascular Surgery (FVS) curricula (43).

However, most currently available simulators for teaching

suturing have been developed for minimally invasive surgery

(44); only a handful of attempts have focused on open surgery

(45–47). Furthermore, the majority of studies that examine

suturing skill focus on product metrics, i.e., metrics based

on analyzing the final results of the task. Process metrics,

i.e., metrics that quantify skill by analyzing how the task

was performed, provide significantly more insight for skill

training and assessment than product metrics but are also more

technically challenging to obtain.

To address the limitations of current surgical simulators,

we have developed a suturing simulator which collects

synchronized force, motion, touch, and video data as trainees

perform a prespecified suturing task. Product and process

metrics are extracted from these data and are used to distinguish

suturing skill level. A feature of this system is that standard

surgical tools (needle holder, needle with surgical thread, etc.)

are used on the platform in contrast to simulators which require

the use of modified surgical tools (for example needle coloring,

dots for computer vision tracking, etc.). Inspired by suggestions

from collaborators in vascular surgery, the system simulates

suturing at various depth levels, which represent surgery inside

a body cavity or at the surface. Suturing at depth is especially

important in vascular surgery and requires significantly different
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and less intuitive hand motions as compared to suturing at the

surface (48).

The suturing simulator presented here extends a preliminary

version of the platform presented in Kavathekar et al. (49) and

Singapogu et al. (50) that featured a single external camera,

a force sensor, and a motion sensor. This paper presents the

construction of the simulator, metrics based on force, motion

and touch, and a study of attending and resident surgeons

toward skill assessment using these metrics. The study was

carried out with three main objectives: (1) to validate the

simulator’s capability of collecting synchronized force, motion,

touch, and video data, (2) to extract metrics from data collected

from a population with open surgery suturing experience,

(3) to test the construct validity of the various metrics. The

paper is organized as follows. Section 2 describes the simulator,

FIGURE 1

Suturing simulator overview.

experimental setup, and methods used in the study. Section 3

presents the experimental results, along with a discussion of the

force- and motion-based metrics. Section 4 presents conclusions

and future work.

2. Materials and methods

2.1. The suturing simulator

2.1.1. Simulator platform

The physical system was designed with the following main

components: (a) membrane housing, and (b) height adjustable

table (see Figure 1). The cylindrical membrane housing was

constructed from clear acrylic and its sides were shielded

externally with an aluminum sheet. Eight metal latches along the

upper exterior of the membrane housing were used to secure the

membrane, a material such as GoreTex R©, artificial leather, or

other fabric, on which suturing is performed (see Figure 2A).

Similar to the radial suturing task in the Fundamentals of

Vascular Surgery (43, 51), the suture membrane (see Figure 2B)

was designed such that suturing is performed in a radial and

uninterrupted fashion. A circle, representing an incision, was

drawn on the membrane. The circle was partitioned by radial

lines into equal sections each spanning 30◦, similar to a clock

face. Needle entry points were marked on the radial lines. The

distance of the entry mark from the incision line is based on

the diameter of the needle. The marks indicated where suturing

was to be performed (entry on one side, exit on the other). All

membranes were made of artificial leather using a laser cutter.

An internal camera (Firefly MV USB 2.0, Point Grey

Research Inc., British Columbia, Canada) was positioned

inside the membrane holder and used to record needle and

thread movement from underneath the membrane. White LED

FIGURE 2

(A) membrane housing, (B) suture membrane.

Frontiers inMedicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2022.897219
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Kil et al. 10.3389/fmed.2022.897219

strips were mounted inside the membrane housing to provide

consistent lighting conditions. In addition, an external camera

(C920 HD USB 2.0, Logitech International S.A., Lausanne,

Switzerland) was positioned above the membrane to record the

membrane and hand movement of the subjects during suturing.

A 6-axis force/torque sensor (ATI MINI 40, ATI Industrial

Automation Inc., NC, USA) was placed under the housing to

measure forces and torques applied to the membrane during

suturing (see Figure 1). An InertiaCube4 sensor (InterSense Inc.,

MA, USA) was used to record hand motion during suturing (see

Figure 3).

To simulate suturing in a body cavity or at the surface of

the body, a transparent acrylic cylinder is positioned around the

membrane holder. The vertical position of the cylinder can be

adjusted to simulate suturing at different depths (see Figure 2A).

Capacitive sensing was employed to detect physical contact,

i.e., touch, between the subjects’ body or the surgical instrument

FIGURE 3

Motion data collected using InertiaCube4 sensor placed on

dorsum of subject’s hand.

and the cylinder. The interior and top of the cylinder was lined

with flexible conductive film (Indium Tin Oxide coated plastic

sheet) and aluminum foil, respectively. The conductive materials

were attached to a simple capacitive sensing circuit and read

using an Arduino.

The membrane housing was mounted onto an adjustable

height table. This allows subjects to set the height of the

platform as desired for comfort during the suturing exercise

(48). Ergonomic studies of the height of operating tables show

that the optimum height of the table lies between 55 cm and 100

cm from the floor up to table surface (52–54). The table for the

suturing simulator was modified to permit heights between 71

cm and 99 cm.

The system processes of the suturing simulator (see Figure 1)

are categorized into two main stages: (i) Data Collection, and

(ii) Data Processing (Figure 4). In the Data-Collection stage,

the system synchronizes and logs force, motion, video, and

touch data during suturing. The Data-Processing stage uses the

collected data to extract metrics of suturing skill.

2.1.2. Data-collection stage

Data were collected from the four sensing modes:

force/torque, motion, video, and physical contact. Force/torque

data were collected using the 6-axis force/torque sensor and

logged at 1 kHz during suturing. To obtain force/torque data

from the sensor, software was written using the NI-DAQ

Software Development Kit (SDK). Collected force/torque data

were filtered offline with a 10th-order Butterworth lowpass

zero-phase filter with a cutoff frequency of 50 Hz to remove

noise and smooth the data. To record hand motion, the

InertiaCube4 sensor was placed on the dorsum of the subject’s

dominant hand as shown in Figure 3 and logged at 200 Hz

during suturing. InterSense SDK was used to obtain θyaw,

θpitch, and θroll measurements of the subject’s wrist motion.

The internal camera with FlyCapture SDK was used to record

FIGURE 4

System process flow-chart, consisting of two stages. In the Data Collection Stage, raw data from multiple sensors were synchronized and

logged. In the Data Processing Stage, the collected data were used to extract metrics for suturing skill.
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FIGURE 5

Graphical User Interface (GUI) designed to show the synchronized force and motion data, along with videos from external and internal cameras.

GUI allows for convenient, interactive investigation of synchronized data.

needle and suture motion from under the membrane at 60 fps.

The external camera was used to record membrane and hand

movement at 30 fps. An open source computer vision library

(OpenCV 3.0.0) was used to capture and log the external video.

For logging touch data, the Arduino capacitive sensing (55) and

serial communication libraries (56) were used.

We modified the previous system to include an internal

camera, enabling extraction of vision-based metrics. In

the previous system, synchronization of the data stream

was achieved in post-processing, whereas our current

platform synchronizes data collection on a single PC using a

multithreaded implementation and timestamping. The Data

Collection Stage software was written in C++ using Microsoft

Visual Studio 2013 (57).

During suturing, all unprocessed (raw) data is synchronized

and logged. Logging allows for revisiting the raw data at any time

for additional investigation and analysis. The raw data were then

used in the Data-Processing stage.

2.1.3. Data-processing stage

In this stage (see Figure 4), internal video was first processed

with a computer vision algorithm to obtain information about

needle and thread movement (33). This information was then

used to identify the individual suture cycles. Next, collected raw

data were used to extract metrics for each time the subject is

actively suturing.

2.1.3.1. Vision-enabled partitioning of suture cycle

During continuous suturing, a single suture cycle can be

divided into two distinct periods of time: active suturing time

and idle time. Active suturing time is the time between needle

entry into the membrane and complete needle removal from

the membrane. Idle time is the time between the end of one

active suturing time to the start of the next. In other words,

active suturing is the time taken by subjects to complete one

suture, whereas idle time is the time spent preparing for the next

suture. Active suturing time may be further decomposed into 4

phases: a) entry phase—puncturing the needle into the tissue;

b) driving phase—driving the needle along some path under the

membrane; c) exit phase—exiting the needle tip from the tissue;

and d) pull-out phase—pulling the needle completely from the

tissue and then tightening the thread.

Dividing each suture cycle into distinct phases allows for

context-specific interpretation of the sensor data. Needle entry

and exit times obtained from the computer vision algorithm

were used to extract each suture cycle for individual analysis.

In addition, a Graphical User Interface (GUI) in MATLAB

(Figure 5) was created to display synchronized force, motion,

and touch data, as well as video from external and internal

cameras. The interface also labels the needle entry, needle exit
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FIGURE 6

Example of synchronized force, torque, motion, and touch data for one active suturing time with suture sub-events labeled. (Note: Blue

diamond symbol (⋄) in touch data indicates the time instance of the physical touch).

and thread entry times automatically determined by computer

vision. The interface enables convenient, interactive exploration

of the synchronized data. An example of synchronized data for

one active suturing time with the suture sub-events identified

(entry, driving, exit, and pull-out phase) is shown in Figure 6.

2.1.4. Metrics for skill assessment

Many of the metrics presented in this paper are computed

from time series data of a scalar signal X(t) using one of the

following functions:

PEAK+(X) = max
t

(X(t)) (1)

PEAK-(X) = max
t

(-X(t)) = −min
t
(X(t)) (2)

PP(X) = PEAK+(X)+ PEAK-(X) (3)

INTABS(X) =

∫

t
|X(t)|dt (4)

DER(X) =

√

∫

t

(

dX(t)

dt

)2

dt (5)

The time interval over which the maximum is taken is specified

in the definition of the specific metric. Typically the time

interval corresponds to one whole active suture time. Note that

PEAK+(X) is the maximum value that signal X took over the

time interval and PEAK-(X) is the negative of the minimum

value that signal X took during the time interval. If signal X(t) is

negative at some point, then PEAK-(X) can be interpreted as the

magnitude of peak negative value of X(t). PP(X) is the peak-to-

peak amplitude of signal X. As in Trejos et al. (15) and Horeman

et al. (16), INTABS(X) is related to the impulse for a force signal

X(t). This quantity will be high when X(t) is high in magnitude

over a long period of time. DER(X) is the derivative of the signal

X(t) calculated similar to Trejos et al. (15) and can be interpreted

as the consistency of signal X(t) during the time interval.

2.1.4.1. Force/torque-based metrics

For each active suturing time, (1)–(5) were used to compute

metrics based on time series for force components Fx, Fy, and Fz ,

and torque components Tx, Ty, and Tz . Based on the coordinate
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FIGURE 7

Decomposition of horizontal forces into forces orthogonal and tangential to stitch direction: (A) view of the needle taken from internal camera

with force sensor coordinate system overlaid; (B) side view of the needle along with orthogonal and tangential force direction; (C) zoomed in

view of the needle, together with the force sensor, orthogonal and tangential forces; (D) X and Y directional forces at suture location in (A), for

one active suture time; (E) corresponding orthogonal and tangential forces from (A), for one active suture time.

axes (shown in Figure 7), PEAK+(Fz) is the maximum force

component applied upward on the membrane while PEAK-(Fz)

is the maximum force component applied downward (49).

2.1.4.2. Vision-enabled force metrics

Force applied orthogonal to the stitch directionmay increase

tissue tearing and should therefore be minimized. The axes of

the force sensor are not generally aligned with the directions

of the radial stitches, so a change of coordinates is required

to determine the force components orthogonal and tangential

to the stitch direction. Using the suture entry and exit points

detected by computer vision (33), the suture direction at each

suture location can be identified. Then, a change of coordinates

can be applied to compute the force tangential to stitch direction

and orthogonal to stitch direction (see Figure 7). Calculations of

the orthogonal and tangential forces were achieved as follows.

Total force, EF, can be expressed in the vision coordinate

system as:

EF = FxEex + FyEey (6)

where Fx and Fy are the component forces in x and y direction,

respectively, as read from the force sensor, and Eex and Eey are

the unit vectors in the vision coordinate frame aligned with

the x- and y- axes of the force sensor, respectively. Since the

coordinate system of the force sensor is constant, Eex and Eey were

also constant, independent of suture location. The unit vectors

Eex and Eey were precomputed based on a calibration experiment.

The same force can also be represented as

EF = FoEeo + FtEet (7)

where Fo and Ft are the component forces orthogonal and

tangential to the stitch direction in vision coordinate frame,

respectively, and Eeo and Eet are the corresponding unit vectors

in the vision coordinate frame.

Thus, (6) and (7) can be rearranged as follows to obtain

orthogonal and tangential component forces, Fo and Ft :

[

Fo

Ft

]

=
[

Eeo Eet

]−1 [

Eex Eey

]

[

Fx

Fy

]

. (8)

Contrary to Eex and Eey, the direction of unit vectors Eeo and Eet
depend on suture location. The vectors Eeo and Eet are calculated

from the suture entry and exit points, whose values are obtained

using the computer vision algorithm (33).

Using the aforementioned calculations, orthogonal and

tangential forces for each suture location were obtained. For

each active suturing time, (1)–(3) were used to compute metrics

based on Fo and Ft .

2.1.4.3. Motion-based metrics

Metrics on total range of hand motion were extracted

from IMU orientation data using (3), specifically

PP(θyaw), PP(θpitch) and PP(θroll) for each active suturing

time (49).
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2.1.4.4. Physical contact metrics

The capacitive touch sensor was used to identify

and count each instance of physical contact between

the subject and the top and/or internal wall of the

cylinder around the membrane holder. The total number

of touches (Cn) made during a suture cycle is used

as a metric.

2.2. Experimental setup and protocol

Approval for the study was obtained from the applicable

Institutional Review Board (Reference # Pro00011886). A total

of 15 subjects (6 Attending Surgeons, 8 Surgery Residents

and 1 Medical Student) were recruited from a local hospital

to participate in the study. Informed consent was obtained

from participants prior to participation. Each subject was

asked to complete a questionnaire on their background

and experiences. The data from 12 subjects (5 Attending

Surgeons, 7 Surgery Residents) were used in analysis. The

range of surgical suturing experience for attending surgeons

was from 7 to 25 years, whereas the range of surgical

suturing experience for residents was from 2 to 5 years.

Three subjects did not meet the study criteria and were

removed from analysis; 1 attending surgeon (did not meet

subject pool definition, not actively practicing), 1 surgery

resident (trial interruption), and 1 medical student (did not

meet subject pool definition). All attendings in this study

specialized in vascular surgery, except one who was a trauma

surgery specialist.

Before suturing, subjects were encouraged to adjust the

height of the table (Figure 1) to a comfortable level. The

rationale for height adjustment was to allow users to choose a

suitable height based on their individual physical characteristics

and preferences. Participants were instructed to begin at 10

o’clock on the clock face and suture in a counter-clockwise

fashion at each hour to complete a 12 hour cycle. At each

hour, the needle is inserted at the marked location and

withdrawn to make a stitch symmetric about the incision line.

Subjects were instructed to perform continuous, uninterrupted

suturing on the membrane using a Prolene suture needle (SH,

26 mm, 3-0) (Ethicon Inc., Somerville, NJ, USA). Subjects

performed this procedure at two different membrane depths:

at “surface” (i.e., 0 in. depth) and at “depth” (i.e., 4 in. depth)

(Figure 2A).

Since the observed distribution of the metrics was

not Gaussian (tested with Lilliefors test), the data

were analyzed using the Wilcoxon rank sum test (5%

significance level) to identify which metrics showed

statistically different performance between attending

and resident surgeons. Each stitch was considered as a

separate trial. Suturing at the surface and at depth are

analyzed separately.

TABLE 1 Statistical results for force/torque-based metrics.

p value

Time series data Metric Surface Depth

PEAK+(Fx) 0.30 0.49

PEAK-(Fx) 0.18 0.75

Fx(t) PP(Fx) 0.65 0.99

INTABS(Fx) 0.01∗∗∗ 0.25

DER(Fx) <0.001∗∗∗ 0.51

PEAK+(Fy) 0.95 0.92

PEAK-(Fy) 0.14 0.24

Fy(t) PP(Fy) 0.34 0.77

INTABS(Fy) 0.02∗∗∗ 0.06

DER(Fy) <0.001∗∗∗ 0.34

PEAK+(Fz) 0.77 <0.001∗∗∗

PEAK-(Fz) <0.001∗∗∗ 0.01∗∗∗

Fz(t) PP(Fz) 0.01∗∗∗ <0.001∗∗∗

INTABS(Fz) <0.001∗∗∗ <0.001∗∗∗

DER(Fz) <0.001∗∗∗ <0.001∗∗∗

PEAK+(Tx) 0.54 0.17

PEAK-(Tx) 0.87 0.99

Tx(t) PP(Tx) 0.39 0.43

INTABS(Tx) 0.04∗∗∗ 0.06

DER(Tx) <0.001∗∗∗ 0.16

PEAK+(Ty) 0.29 0.40

PEAK-(Ty) 0.25 0.61

Ty(t) PP(Ty) 0.12 0.84

INTABS(Ty) 0.01∗∗∗ 0.23

DER(Ty) <0.001∗∗∗ 0.44

PEAK+(Tz) <0.001∗∗∗ 0.01∗∗∗

PEAK-(Tz) <0.001∗∗∗ <0.001∗∗∗

Tz(t) PP(Tz) <0.001∗∗∗ <0.001∗∗∗

INTABS(Tz) <0.001∗∗∗ <0.001∗∗∗

DER(Tz) <0.001∗∗∗ <0.001∗∗∗

Metrics with statistical significance are shown with ***.

3. Results and discussion

3.1. Metrics for skill assessments

Tables 1, 2 show the p-values for statistical difference

between attending and resident surgeons on various force,

motion and touch metrics at surface level and at depth

level. For selected metrics, Figures 8, 9 provide box plots of

performance of attending and resident surgeons at surface level

and at depth level. Interpretation and discussion of results are

provided below.

3.1.1. Force/torque-based metrics

Results for force-based metrics show that INTABS(Fx),

DER(Fx), INTABS(Fy) and DER(Fy) were significantly different
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TABLE 2 Statistical results for motion-based, physical contact and

vision-enabled force metrics.

p-value

Time series data Metric Surface Depth

PEAK+(Fo) <0.001∗∗∗ 0.02∗∗∗

Fo(t) PEAK-(Fo) <0.001∗∗∗ 0.02∗∗∗

PP(Fo) <0.001∗∗∗ <0.001∗∗∗

PEAK+(Ft) 0.05∗∗∗ 0.12

Ft(t) PEAK-(Ft) 0.02∗∗∗ 0.07

PP(Ft) 0.16 0.22

θyaw(t) PP(θyaw) <0.001∗∗∗ <0.001∗∗∗

θpitch(t) PP(θpitch) 0.67 0.02∗∗∗

θroll(t) PP(θroll) <0.001∗∗∗ <0.001∗∗∗

C(t) Cn <0.001∗∗∗ 0.76

Metrics with statistical significance are shown with ***.

between attendings and residents at surface level. In addition,

a statistical difference in performance between attending and

resident surgeons was found for metrics PEAK-(Fz), PP(Fz),

INTABS(Fz) and DER(Fz) at both depth and surface as well as

for metric PEAK+(Fz) at depth. For z-directional force metrics,

the medians of attendings at both surface and depth level were

found to be lower as compared to residents. Similar to an earlier

study in laparoscopic suturing (17), our results show that z-

directional force was found to be important for distinguishing

between experience levels. In contrast to z-directional forces, in

our study, metrics calculated for x and y direction forces at both

surface and depth level were found to be non-significant.

Similarly, results for torque-based metrics show that

INTABS(Tx), DER(Tx), INTABS(Ty) and DER(Ty) were

significantly different between attendings and residents at

surface level. In particular, results for torque-based metrics

show that z directional torques (PEAK+(Tz), PEAK-(Tz), PP(Tz),

INTABS(Tz) and DER(Tz)) were significantly different between

attendings and residents, at both the depth and surface level.

The z-axis is vertical, so Tz is associated with forces orthogonal

to the z-axis applied with a non-zero moment arm. Given the

radial suturing pattern, that means Tz is most closely associated

with forces orthogonal to the stitch direction. This motivates

direct measurement of the orthogonal force Fo, as explained

in 2.1.4.2.

3.1.2. Vision-enabled force metrics

Results show that the metrics obtained from orthogonal

force (Fo) were statistically different between attendings and

residents on both surface and depth levels (see Table 2). In

addition, tangential force (Ft)metrics were significantly different

between attendings and residents at surface, with the exceptions

of PP(Ft). Orthogonal forces applied by attendings were lower

than those applied by residents, whereas tangential forces

applied by attendings were higher.

InHoreman et al. (17), subjectsmade parallel sutures aligned

with the y axis of the force sensor. It was observed that the

maximum absolute forces in x and y directions were important

for distinguishing between experience levels. Since the stitch

direction was unchanged, x and y force directions were always

orthogonal and tangential to the stitch direction, respectively.

The study presented here uses a radial suture membrane with

stitches in 12 different directions (see Figure 2B). This radial

membrane is based on the one used in FVS training and

is intended to test the subject’s dexterity and preparedness

for vascular anastomosis. Since the force sensor was fixed in

place, x and y force directions were not generally aligned with

stitch direction. Even though x and y directional force metrics

were not found to be statistically significant in our study,

measurements of forces in x and y directions are required to

calculate orthogonal and tangential forces. Reinterpreting the

x and y for axes from Horeman et al. (17) as orthogonal and

tangential to stitch direction, the present study supports that

orthogonal forces, and to a lesser extent tangential forces, are

important for distinguishing skilled performance.

3.1.3. Motion-based metrics

Previous studies suggest that there is a significant difference

in hand movement between expert and novice surgeons during

suturing. The rotation of the wrist, indicated by θroll, was

previously found to be particularly useful in assessment of

suturing skill (17, 18). In the present study, similar to earlier

studies, the total range of hand movement for PP(θyaw) and

PP(θroll) at both surface and depth, and for PP(θpitch) at

depth were found to be statistically significant in differentiating

attendings from residents. This suggests that yaw, pitch and roll

might be useful for assessment of suturing skill.

Results for yaw, pitch, and roll show that total range of

hand movement by attendings are consistently lower than that

of residents, regardless of depth. In Dubrowski et al. (18) and

Horeman et al. (17), it was found that experts use greater

wrist rotation during suturing. In contrast, our results show

that attendings use less wrist rotation. This may be explained

by the fact that the majority of attendings in this study were

experts in the field of vascular surgery. Due to the intricate

nature of this type of surgery, it may be reasonable to assume

that significant wrist rotation is not necessary in achieving

accurate suturing during the surgical procedure. Also, pitch

was found to be statistically significant, but only at depth,

possibly because hand motion is more complicated when a

subject sutures at depth. Moreover, during the experiments, it

was observed that inexperienced participants tend to reposition

the needle holder more often while suturing at depth. The

complexity of hand movement during suturing deserves further
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FIGURE 8

Experimental Results for Force/Torque-based Metrics: * indicates statistical significance for p < 0.05. (On each box, the middle line indicates the

median, and the bottom and top edges of the box indicate the 25 and 75th percentiles, respectively. The whiskers are extended to the most

extreme data points including outliers).

investigation, specifically for suturing at depth, an essential

aspect of vascular suturing.

3.1.4. Physical contact metrics

We examined the number of times subjects made physical

contact with the platform at both surface and depth conditions.

Results indicate that the total number of physical touches

(Cn) on surface level for attendings was significantly lower

than for residents, whereas there was no statistical difference

between attendings and residents at depth. It should be noted

that suturing at depth was introduced to mimic more realistic

surgical conditions; however, feedback from attendings after

the experiment revealed that requiring a surgeon to suture

accurately without touching the top and/or the walls of

the cylinder was an overly restrictive constraint. In fact, in

certain conditions during surgery, surgeons strategically use

boundaries of body cavities, for instance, to augment their forces

during suturing.

4. Conclusion

In this paper, we presented a suturing simulator with

the capability of collecting synchronized force, motion,

touch, and video data to allow for the assessment of suturing

skill in open surgery. Data collected from the simulator

during suturing allowed for the extraction of metrics for

quantifying suturing skill between different levels of trainees.

Force-based, torque-based, motion-based, and physical

contact metrics were presented. Combining force data

with computer vision information, vision-enabled force

metrics were found, specifically for forces orthogonal and

tangential to stitch direction which provide deeper insight
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FIGURE 9

Experimental Results for Motion-based, Physical Contact and Vision-enabled Force Metrics: * indicates statistical significance for p < 0.05. (On

each box, the middle line indicates the median, and the bottom and top edges of the box indicate the 25 and 75th percentiles, respectively. The

whiskers are extended to the most extreme data points including outliers).

into suturing performance. Also, the vision algorithm aided

in the identification of suture events and the segmentation of

corresponding sensor data.

Experimental data collected from both attendings and

residents were presented. Presented metrics were used to

compare attendings’ and residents’ performance. Analysis

shows that force metrics (force and torque in z direction),

motion metrics (yaw, pitch, roll), physical contact metric,

and image-enabled metrics (orthogonal and tangential forces)

were statistically significant in differentiating suturing skill

between attendings and residents. These results demonstrate

the feasibility of distinguishing fine skill differences between

attendings and residents, as compared to experienced vs.

completely inexperienced personnel.

Limitations and Future Work: One key limitation of the

current study is the small sample size. Consequently, while

the results indicate the feasibility of the methods and metrics

used, one cannot draw generalizable results regarding suture

skill assessment from these results alone. Furthermore, the pool

of attending surgeons in the study included mostly vascular

surgeons. We are currently performing a large scale study of

suturing skill assessment using the simulator with a wider range

of surgical specialties. We hope that future work along these

lines will enable the development of training methodologies to

accelerate skill acquisition.
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