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The differences between male and female immune systems are an under-researched
field, ripe for discovery. This is evidenced by the stark sex biases seen in autoimmunity
and infectious disease. Both the sex hormones (oestrogen and testosterone), as well
as the sex chromosomes have been demonstrated to impact immune responses, in
multiple ways. Historical shortcomings in reporting basic and clinical scientific findings in
a sex-disaggregated manner have led not only to limited discovery of disease aetiology,
but to potential inaccuracies in the estimation of the effects of diseases or interventions
on females and gender-diverse groups. Here we propose not only that research subjects
should include both cis-gender men and cis-gender women, but also transgender and
gender-diverse people alongside them. The known interaction between the hormonal
milieu and the sex chromosomes is inseparable in cis-gender human research, without
the confounders of puberty and age. By inclusion of those pursuing hormonal affirmation
of their gender identity- the individual and interactive investigation of hormones and
chromosomes is permitted. Not only does this allow for a fine-tuned dissection of these
individual effects, but it allows for discovery that is both pertinent and relevant to a far
wider portion of the population. There is an unmet need for detailed treatment follow-
up of the transgender community- little is known of the potential benefits and risks of
hormonal supplementation on the immune system, nor indeed on many other health and
disease outcomes. Our research team has pioneered the inclusion of gender-diverse
persons in our basic research in adolescent autoimmune rheumatic diseases. We review
here the many avenues that remain unexplored, and suggest ways in which other groups
and teams can broaden their horizons and invest in a future for medicine that is both
fruitful and inclusive.
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INTRODUCTION

The pertinent sex bias in the human immune system is a
phenomenon that may never have come to light, were it not
for significant policy changes that enforced the inclusion of
female participants alongside males in medical research (1).
Historically, clinical trials were conducted predominantly on
male subjects only, or failed to discriminate between outcomes
experienced by males vs. females (2). Justified by pragmatic
reasons, predominantly healthy young males were recruited to
avoid potential toxicity risks associated with pregnancy and
breastfeeding, while excluding more mature patients of both
sexes to decrease the risk of concomitant comorbidity. Little
differed in basic scientific research, where male-only mouse
models mitigated the outcome variability potentially resulting
from the menstrual cycle or pregnancy, and most in vitro
human work failed to report the sex of the cell lines used (3).
This approach is not only inaccurate in answering research
questions relevant to humans, irrespective of sex and gender,
but is also potentially harmful in underestimating the effects
of interventions on females and other gender-diverse groups.
Although medical understanding and subsequent research study
design have advanced significantly in recent years, this chronic
failure to recognise the importance of sex as a key biological
variable has by no means been fully overcome. Anecdotally,
in attempting to collect data on global COVID-19 morbidity
and mortality between the sexes, it was notable how few
countries or local authorities were reliably disaggregating their
outcome statistics according to patients’ sex, even at later
stages of the pandemic (4). Sophisticated national platforms
detailed deaths according to geographical regions, age groups
and occupational categories, but frequently neglected to mention
sex. Our meta-analysis (5), alongside several other studies (6–
8), showed a significant male bias in severe outcomes and
deaths from SARS-CoV-2; a pattern mirrored in the vast
majority of infectious diseases (9–11) and variously suggested
to relate to sex hormone levels (12–14). The enhanced ability
of the female immune system to clear invading pathogens is
further supported by its ability to mount generally stronger
responses to most vaccinations (15–17). For example, in adults
given the seasonal Trivalent Inactivated Influenza Vaccine,
female responses to a half-dose were comparable to those
of males given a full-dose (18). The inverse of this is of
course the female predisposition to developing autoimmune
disorders associated with a hyper-active immune system, such
as systemic lupus erythematosus (SLE), where the male:female
ratio is estimated at 4–13:1, according to different studies (19–
28).

Both hormonal and chromosomal factors are suggested
to contribute to immunological sex differences. Oestradiol is
broadly thought of as immunostimulatory, with testosterone
having a more regulatory effect (29), though both have
demonstrated either capability, as reviewed elsewhere (30–33).
Meanwhile the X chromosome encodes the most immune-
related genes of any chromosome (34) such as TLR7 [toll like
receptor, responsible for sensing viral and endogenous nucleic
acids to trigger release of type 1 interferons, and implicated in

extrafollicular B cell class switch recombination (35)], CD40-
L [co-stimulatory T cell molecule, essential for B cell class
switching (36)], FoxP3 [controls regulatory T cells (37)] and
CXCR3 [chemokine receptor, recruits effector T cells to sites
of inflammation (38)]. This is highlighted by the abundance
of X-linked immune disorders such as immunodysregulation
polyendocrinopathy enteropathy X-linked (or IPEX) syndrome,
X-linked agammaglobulinemia and Wiskott Aldrich Syndrome,
which are associated with cellular and humoral immune
deficiencies and increased risk of infections from childhood (39).
Several immune genes on the X chromosome may escape the
X-inactivation of one chromosome in 46,XX individuals, and
thus be bi-allelically expressed, potentially resulting in altered
immune regulation (40–43). Whilst studies have sought to
investigate the contributions of hormonal and/or chromosomal
influences on the immune response, it is recognised that it is a
complex nexus and mutual interaction of the two that ultimately
leads to such notable sex biases in infection and autoimmunity.
With this in mind, this review seeks to highlight the importance
of including subjects of both sexes, as well as transgender people
in immunological research, to enable evaluation of sex-biased
clinical outcomes and provide benefit to our understanding
of the biology of the immune system with relevance for both
science and health.

GENDER IDENTITIES AND PHYSICAL
PHENOTYPES

For the majority of the population, the terms sex and gender
describe the binary categories of “cisgender male” and “cisgender
female”; with experienced gender matching the sex registered
at birth, which is itself based upon simple observation of
the genitalia of the new-born baby. Frequently assimilated
within the category of “other,” however, are a multitude of
gender identities and physical phenotypes. By “transgender”
we refer broadly to those whose experienced gender identity
does not match that in which they were registered at birth.
Thus, trans-males, are registered female at birth, typically
carry a 46,XX chromosomal background, and may pursue
virilisation via testosterone treatment and/or oestradiol blockade.
Trans-females, are registered male at birth, typically of 46,XY
chromosomal background, and may pursue gender-affirming
oestradiol treatment and/or testosterone blockade (44). Specific
treatment pathways and medications recommended by the
Endocrine Society (45) are summarised in Figure 1. A third
main category are those who are non-binary/gender fluid (not
identifying exclusively and/or permanently as either gender);
some of whom may seek hormonal blockade via treatments
such as the gonadotropin releasing hormone analogs (GnRHa),
or specific hormonal blockades. There is also the category of
differences/disorders of sex development (previously known as
‘intersex’), where people may have physical characteristics of both
sexes (gonadal structures, genitalia) and this umbrella term also
includes those with karyotype variations of sex development such
as Klinefelter syndrome [47,XXY] and Turner syndrome [45,X]
(46). Lastly but by no means exhaustively are those classified as
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“agender”- not identifying with any gender at all. Many other
gender-related groupings exist, beyond the scope of this review,
but we have included here the main categories pertinent to
immunological research.

To refer again to international COVID statistics, even
fewer countries reported outcomes in those who were not
cisgender. In some countries, the catch-all ‘other’ category was
reported alongside cisgender males and females; but this was
representative of so many diverse groups that granular analyses
of differential gender-related outcomes could not be possible.
Such is the case for the vast majority of outcome reporting
in health and disease, suggesting that better characterisation of
populations pertaining to self-reported gender is warranted. In
the United Kingdom alone, referrals to the NHS young people’s
Gender Identity Development Service (GIDS) have increased by
over 2000% in the last 10 years (47); this represents a growing
proportion of society who are frequently not even adequately
recognised in statistics, let alone included in basic science or
relevant clinical research. Here we examine potential ways in
which inclusion of a broader spectrum of gender groups can
improve our scientific understanding of the pathogenesis of
both infectious diseases and autoimmune disorders, as well as
providing potentially pertinent clinical information for under-
represented groups and the physicians involved in their care.

The multitude of gender-related social factors that may
contribute to increased vulnerability to different medical
conditions are beyond the scope of this paper and reviewed
elsewhere (48). However, the physiological impact of a person’s
sex chromosomal makeup combined with their hormonal milieu
(be this endogenous or medically supplemented) is what we
propose to be an important focus of future research. In cis-gender
people, the contributions of sex chromosomes and hormones
are inextricably linked. We know both to be of significance, but
researchers currently are able to separate these factors to examine
how they interact and separately contribute only in animal
models and in vitro research. By inclusion of trans or gender-
diverse persons pursuing hormonal affirmation of their gender,
we are able to investigate the effects of hormonal manipulation
on the immune system in healthy individuals of a wide age range
(usually older than 16 in the United Kingdom).

SEX BIAS IN THE EPIDEMIOLOGY AND
OUTCOMES OF AUTOIMMUNE
RHEUMATIC DISEASES

The majority of autoimmune rheumatic disorders (ARDs) affect
cis-females in greater number than cis-males, as is the case
with SLE, Sjögren’s syndrome (SS) (49), scleroderma (SSc)
(50) and rheumatoid arthritis (RA) (51). SLE predominantly
affects females of child-bearing age, with incidence pre-puberty
significantly lower (52) and pregnancy associated with increased
flares in patients with recently active disease (53, 54). Taken
together, these epidemiological observations strongly suggest a
role for the sex hormones in disease pathogenesis. However,
juvenile rheumatic diseases, defined as having onset before
the age of 16–18 years depending on phenotype, such as
juvenile idiopathic arthritis (JIA), juvenile lupus (JSLE), juvenile

Sjögren’s syndrome (JSS) and juvenile dermatomyositis (JDM)
also exhibit sex bias, but this is less prominent than in their
corresponding adult-onset phenotypes (55). JIA, for example,
has no significant sex bias overall as an umbrella term, but
different disease sub-types are characterised by different age at
onset and sex-predominance: e.g., Enthesitis Related Arthritis
(ERA) affects predominantly boys and has onset around puberty,
while subtypes oligo- and poly-arthritis are more common in
pre-pubertal and post-pubertal girls, respectively (56). As pre-
pubertal cis-boys and cis-girls have similar serum sex hormone
levels, a potential role for the sex chromosomes in the disease
pathogenesis is thus also supported.

Several studies have investigated the effect of hormonal
medications in SLE, where one might expect to see exacerbation
of disease upon use of the oral contraceptive (OC), or hormone
replacement therapy with oestradiol (HRT) given to alleviate
menopausal symptoms. Commonly cited is the Nurse Health
Study, which followed thousands of ciswomen, and reported
an elevated relative risk for the development of SLE of 1.9 for
women who had ever used hormonal OC (57) and of 2.1 in post-
menopausal women who had ever used (HRT) (58). Although
hormonal treatments have been purported to cause flares in SLE
in older studies (59), recent literature has demonstrated little
to no impact of OC usage on mild to moderate SLE, with the
potential for unplanned pregnancies deemed a more significant
risk for patients than OC use (60, 61). Several studies have
demonstrated reduced androgen levels in SLE patients (62, 63),
and this has been suggested to play a role in disease development
or severity. Therein, the use of various forms of androgen as
therapeutic agents has been tested in several incidences – with
some trials showing mild efficacy (64–68) while others showed
no difference from placebo (69). Thus, the current literature on
in vivo manipulation of hormones does not provide a conclusive
picture. Several case studies (70–77) detail the development of
autoimmunity in trans-females upon commencement of gender-
affirming oestradiol treatment, or the improvement of symptoms
when taking gender-affirming testosterone (78). However, one
cannot infer causality from these instances, nor can individual
case studies be extrapolated to the wider population. Inclusion
of trans people in bigger cohort studies on autoimmunity
development is thus strongly supported – whether the increased
relative risk seen in post-menopausal cis-females on HRT would
be the same or similar in trans-women with an XY chromosomal
background is yet unknown.

Although the majority of autoimmune diseases are
characterised by female bias, there is evidence that type
I diabetes mellitus and Crohn’s disease are characterised
by a male predominance, irrespective of age at onset (79,
80). Additionally, some conditions have differential disease
phenotypes according to sex, which has implications in disease
recognition and epidemiological data collection. This is the
case with spondyloarthritis (81), which had been considered a
male-predominant disease for many decades before evidence
about a different clinical presentation and delays in diagnosing
females with spondyloarthritis emerged (82). Further, certain
treatments may be more efficacious in one sex compared to
the other [recently reviewed extensively by Klein and Morgan
(83)], e.g., TNF inhibitors tend to work better for males with RA
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than for females (84) and female patients may be more likely to
stop such drugs following the side effects they experience from
them (85). Moreover, there is evidence that spontaneous puberty
can completely reverse the sex bias in disorders of immune
regulation such as asthma and atopy, characterised by male
preponderance prepuberty, followed by a significantly increased
female prevalence during reproductive years (86).

IMPACT OF AGE, PUBERTY AND
MENOPAUSE ON AUTOIMMUNITY

Throughout the various life stages from infancy to old age,
the immune system is also subject to great change (87, 88),
and these changes are known to differ between cisgender males
and females (89). The ageing immune system is a growing
area of research, but less is known specifically about the
immune changes that may occur during/after puberty and
menopause. The coincidence of the average age of onset of
several juvenile rheumatic diseases (90) with the average age of
puberty onset (91) suggests that it is not merely the maturation
process itself that alters one’s immune system, but that the
rise in sex hormone levels seen in puberty is also involved.
Our systematic review of the bidirectional relationship between
puberty and autoimmune rheumatic disorders demonstrated
how poorly these relationships are documented in the literature,
but highlighted the differences in disease outcome in those with
onset pre- vs. post-puberty (92) and symptomatic differences
have been noted between different age groups of SLE patients
(93), with adolescent onset JSLE noted for its greater severity
(94, 95). In the case of menopause, RA (96) and SSc (97) both
have their peak incidence in the over 50 age bracket. SLE has
classically been considered to have its peak incidence within the
childbearing years in females, but a 10-year incidence study of
United Kingdom patients found the peak onset to be between
50 and 54 years in females and 70–74 in males (98), and this
was supported by two other shorter studies (21, 99). However,
these studies were of predominantly white populations, and in
studies including black (100), Arab (101) and American Indian
(102) patients, younger ages of peak onset between 30.4 and
39.2 have been observed. It is unclear exactly why this might
be, but this highlights the complexity of sex-based influences
on the immune system, which may interact with both age-
and ethnicity-related factors to give rise to autoimmunity. With
the inclusion of transgender subjects of different ages and
pubertal/menopausal stages among basic and clinical research,
these factors could be separated out, and the impact of sex be
examined without the confounders of immunosenescence and
ethnically inherited risk factors.

DIFFERENTIAL EFFECT OF SEX
DETERMINANTS ON IMMUNE
ACTIVATION PATHWAYS

The investigation of the impact of sex-determinants on certain
immune activation pathways, such as specific cell populations

or pro-inflammatory pathways, where both sex chromosomal
and hormonal elements have been separately suggested to be of
influence is an area with great scope for new discovery. Work
from our lab, published in 2019 (103), pioneered the inclusion
of gender-diverse cohorts to address questions relevant to SLE,
using a cohort of healthy trans- (n = 13 male, 7 female) and
cisgender (n = 48 male, 51 female) young volunteers, alongside
individuals with Turner Syndrome (n = 9), who are missing
an X chromosome (45,X). Young transgender healthy controls
were recruited from the University College London Hospital
GIDS and treatment pathways are shown in Figure 1. Production
of the antiviral cytokine family known as type 1 interferons
(IFN)- predominantly by plasmacytoid dendritic cells (pDC)- is
known to contribute significantly to the pathogenesis of both
SLE and JSLE. We demonstrated that pDC from healthy cis-
females produced more T1 IFN in response to TLR-7 signalling
than pDC from cis-males, even before puberty. Using our
inclusive volunteer cohort, we were additionally able to show
that this related to X chromosome dosage and serum testosterone
concentration, in a manner that was dependent upon the number
of X chromosomes present. Overall, we showed that both factors
were associated not just individually, but also interactively with
the T1 IFN response.

More recently, we used a similar cohort (n = 17 cis-male; 22
cis-female; 10 trans-male and 10 trans-female) to examine the
effects of sex and hormones on regulatory and responder CD4 + T
cells (Tregs and Tresps, respectively) (104). Sex differences in
Tregs are well-reported (105–109), and we firstly confirmed
the observation that healthy cis-males have higher levels of
Tregs compared to Tresps than cis-females both pre- and post-
puberty. We then demonstrated that the ability of cis-male Tregs
to suppress the division of Tresps was significantly enhanced
compared to that of cis-female Tregs, supporting the concept of
a pro-inflammatory phenotype in females that could contribute
to autoimmunity. Then, using RNA sequencing (RNAseq), we
found a significant number of differentially expressed genes
(DEGs) in sorted Tregs from cis-males compared to females.
Using our transgender healthy controls, we observed significant
differences in related immune pathways following hormone
treatment, demonstrating the potential for both oestradiol and
testosterone to impact Tregs at a transcriptional level, even at the
early stages of their treatment.

The COVID-19 pandemic has prompted several interesting
studies on sex differences in viral responses, and how these
translate into clinical outcomes. Takahashi et al. (8) demonstrated
a more robust T cell response in females with the disease,
compared to males- with poor T cell responses associated
with a worse disease trajectory in males. Meanwhile males
had higher levels of innate inflammatory cytokines, but
higher levels of these in females were associated with more
severe outcomes. Supporting these findings, Liu et al. (110)
compared transcriptional differences in healthy males and
females, demonstrating that males had higher expression
of proinflammatory cytokines and chemokines, which they
hypothesise may contribute to the ‘cytokine storm’ that is
detrimental in COVID-19 pathogenesis. Females in this study
were found to have higher expression of IFN genes, supporting
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FIGURE 1 | Treatment pathway for gender incongruence, as recommended by the Endocrine Society (42). Treatment is prescribed on a case-by-case basis, based
on individual country guidelines. This flowchart outlines the most commonly pursued routes. NB- Parenteral oestradiol not currently used in Europe. MHP, Mental
health professional; GnRHa, Gonadotropin releasing hormone analogs; LH, Luteinising hormone; FSH, Follicle stimulating hormone; IM, Intramuscular; SC,
Subcutaneous.

what is already known about the sex bias in IFN production in
health and in autoimmunity. These data demonstrate a clear link
between sexual dimorphism in the immunological systems that
serve to protect us, that may also lead to damage in the context
of an autoimmune disease. Inclusion of trans and gender-diverse
cohorts in infection response studies, is thus equally warranted
alongside those in autoimmunity.

There remain myriad of cell types and mechanisms that
have been identified as potentially influenced by sex hormones
or chromosomes, thus meriting in vivo interrogation. In
addition to the further work necessitated on pDCs, the T1
IFN pathway, and Tregs/Tresps, obvious suggestions for future
research directions (based on preliminary evidence of sex
hormonal/chromosomal effect in animal or non-diverse cohorts)
are B cells and antibody/autoantibody production (111–120), B
regulatory (Breg) cells (121), CD4 T cells (116, 122–124), and
specific T helper subsets (89, 125–131), CD8 cytotoxic T cells
(122, 132–135), dendritic cells (136–140), Natural Killer (NK)

cells (116, 141–145), neutrophils (146–149), monocytes (150) and
macrophages (149, 151, 152). Table 1 summarises a selection of
notable effects of sex determinants on immune processes and cell
types known to be relevant to autoimmune rheumatic disease-
this is by no means an exhaustive review of the literature, and
many extensive reviews are available (89, 182, 183). As a field in
its relative infancy, there remain so many avenues ripe for gender-
disaggregated interrogation and scintillating project proposals.

UNANSWERED QUESTIONS AND
FUTURE DIRECTIONS

There is an unmet need for better understanding of the long-
term outcomes of sex hormone manipulation on the health
of trans and gender-diverse people. This includes the effects
of gender-affirming treatment on responses to natural and
vaccine immunisations, on bone and muscle health, as well
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TABLE 1 | Summary of notable immune system elements known to be regulated by sex determinants and their relevance to autoimmune rheumatic disease.

Cis-female Cis-male Relevance to autoimmune rheumatic
diseases (ARD)

Immune cells

B cells Oestrogens shown to: alter the threshold
for B cell apoptosis/activation (112);
increase capacity for class-switch
recombination (114, 115, 117, 113, 119).

Androgens act via GPR174 to divert B
cells from germinal centre formation and
subsequent class-switching (120).
Testosterone regulates BAFF – important
in survival of autoreactive B cells (118).

Production of autoantibodies central to
pathogenesis of many ARDs.

Immunoglobulins Higher plasma Ig levels in females (111,
116).

–

CD8 T cells Lower cell frequency but higher cytotoxic
capacity in females (135).

Higher cell frequencies in males (122,
123, 132).

Multiple roles across ARDs (153, 154).

CD4 T cells Higher cell frequencies in females (116,
122, 123, 132).

– Subset imbalance (155) and functional
abnormalities in SLE (156). Pathogenic
role in JIA uveitis (157).

Treg subset Androgens enhance female CD4 + T cell
FoxP3 expression in vitro (158).

Male Tregs had greater suppressive
ability (104).

Impaired immune regulation in SLE and
RA (125).

Th17 subset Oestrogens both stimulatory (126, 127)
and suppressive (128) of proliferation and
IL-17 production. Activation via ERβ

enhances Th17 response, via ERα

suppresses (130).

Frequency of IL-17A and Th17 cells
increased in males with AS compared to
females with AS (129).

Role in SLE disease manifestations (159)
and IL-17 in RA (160). Initiation of SS
(161). Th17 axis implicated in AS
pathology (162).

Th1 subset Oestrogen and progesterone
decrease Th1:Th2 and Th17:Th2
cytokine production ratios (131). Male
V female Th1 or Th2 predominance
varies, reviewed in (89).

SS initiation (Th1) and progression (Th2)
Psianou et al. (161) Th1:Th2 imbalance in
RA (163).

Th2 subset

Macrophages and
Monocytes

Macrophage phagocytic activity higher in
females (146).

Testosterone increases monocyte counts
in men (149).

Inflammatory damage to cartilage and
bone in RA etc. (164). Defects in
phagocytosis and clearance of cellular
debris in SLE (165).

Dendritic Cells (DC) E2 enhanced ability of DCs to activate
CD4 + Th cells in vitro (136, 138).

Higher levels in hypogonadic males
inversely correlated to testosterone levels
(140).

Presentation of self-antigen.

Plasmacytoid Dendritic Cells
(pDC)

More activated in females and produce
more IFN-α (103, 166).

– IFN production prominent role in SLE
pathogenesis (167).

Neutrophils Phagocytic activity higher in females
(146). Oestrogens and progesterone can
affect lifespan (147) and numbers
increased during luteal phase of
menstruation and in pregnancy (148).

Testosterone increases counts in men
(149).

Release of proinflammatory cytokines
and NET formation externalises
autoantigens (168).

Natural Killer Cells (NK) Higher cell number in females (154).
Progesterone contributes to
accumulation during pregnancy (144).

Increased CNS NK inflammation in males
vs. females in ALS mouse model- NK
depletion benefitted females but not
males (145).

Cytotoxicity in inflammation and role in
immunoregulation/immune homeostasis
(169).

Cytokines and Immune Mediators

Type 1 Interferons IFN-α production higher in female cells
post TLR stimulation (103, 170).

Testosterone correlates with IFN-α
independently from X chromosome (103).

Prominent role in SLE pathogenesis
(167).

Type 2 Interferons E2 treatment in mice increased DC
production of IFN-γ (138).

IFN-γ higher in stimulated lymphocyte
supernatant from males (170).

Inflammatory role in SLE, SS, SSc and
dermatomyositis (171).

IL-10 Higher production in stimulated
lymphocyte supernatant from females
(170).

Higher production in males and
correlates with testosterone (172).

Breg and IL-10 role in SLE, RA and SSC
(173).

Microbiota Bi-directional relationship between hormones and microbiota, with immune impact (174, 175). Known impact of microbiota on
rheumatic disorders (176).

Transcriptional Differences

Macrophages (MF) Higher expression of MF IFN-stimulated
genes in female mice, with sig. bias in
antiviral response genes (177).

– IFN role in SLE, SS, SSc, RA and
dermatomyositis (178).

CD8 Cytotoxic cells Greater toxicity post-stimulation in female
cells: antiviral and inflammatory gene exp
increased, many with oestrogen response
elements in their promoters (134).

– Multiple roles across ARDs (155, 156).

AIRE (autoimmune regulator)
expression

Oestrogens inhibit (179). Androgens enhance (180). Necessary for self-tolerance induction in
the thymus (181).

BAFF, B cell Activating Factor; Ig, Immunoglobulins; ERα, Oestrogen Receptor Alpha; ERβ, Oestrogen Receptor Beta; AS, Ankylosing Spondylitis; CNS, Central Nervous
System; ALS, Amyotrophic Lateral Sclerosis; IFN, Interferon; TLR, Toll-like Receptor.
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as their impact on mental health and quality of life, before
moving into investigating infective and autoimmunity risk in
these populations. Without accurate gender classifications in
population studies, these relevant outcomes cannot be studied.
There are many specific questions which need answering in
relation to the impact of sex determinants on immune system
functions, in particular around exposure to and timings of
exposure to sex hormones. We do not know if the length of
exposure to/blockade of a particular sex hormone is different
from the physiological sex hormone fluctuations, especially
those related to menstruation, pregnancy, or early stages of
puberty/menopause. There is no research into the impact of
age at which a person is first exposed to (or begins blocking)
sex hormones on their risk of infections, autoimmunity, or
other adverse health outcomes. Our group identified a significant
impact of sex hormones in driving a pro-atherogenic lipid profile
in healthy cis- and trans-male adolescents post-puberty (184).
Therefore, investigating the impact of sex-affirming hormone
therapy on the cardio-vascular risk of trans people has a clear
clinical rationale. Further research is needed to investigate
the effects of lifetime exposure to higher exogenous oestrogen
or androgen therapies, especially in the context of potential
reversibility and dose-dependent long-term effects. In some
countries, young people are able to commence puberty blockade

and gender-affirming sex hormones prior to the commencement
of their natural puberty. Meanwhile in the United Kingdom, only
those aged 16 + and thus likely already post-pubertal can legally
be consented to start on gender-affirming hormone treatments.
Others still, may not access treatment until much later into
adulthood. It is important to establish whether outcomes
(immunological or otherwise) would be similar or different in
these groups, when their hormonal transitions have commenced
at such widespread life stages. Furthermore, it is possible that
different routes of hormone administration (oral, patch, gel, IM,
SC.) and dosages of these may impact the systems of the human
body differently. Innovative clinical trial study design, including
volunteers of all gender categories, across various age ranges is
required to be able to examine the relative importance of sex
hormone exposure at different stages of life, against both sex
chromosomal backgrounds, on various interventions or health
and disease outcomes. In addition, the inclusion of subjects with
altered sex chromosomal complement (such as Klinefelter and
Turner syndromes) could provide suitable controls for these
studies aiming to tease out the distinct effects of various sex
chromosome determinants.

First steps would be establishing national and international
registries with associated biological sample repositories capturing
patients of various gender categories, sex chromosomal

FIGURE 2 | Suggested adaptations to facilitate future research encompassing trans and gender-diverse individuals, and key research pathways proposed.
Hx, Hormones; GnRHa, Gonadotropin Releasing Hormone Agonists (“Blockers”); CVD, Cardiovascular Disease.
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backgrounds and demographic diversity to enable long-term
follow-up. A number of social barriers exist, well-documented
in the United States, that prevent the trans population from
accessing healthcare and thus participating in research (185).
Thus, it is important for such registries to be set up with advice
and input from transgender charities and organisations such
as WPATH (World Professional Association for Transgender
Health) on how to overcome these barriers. This should include
ensuring that all health professionals and researchers involved
are trained in LGBTQ + cultural competency (186), so that all
elements of study design- from language used on questionnaires,
to subtlety when approaching people for recruitment- are
optimised to help participants feel secure and respected. Further,
recruitment must extend beyond private healthcare patients,
encompassing public healthcare clinics as well as community
support groups, in order to capture the true breadth of the trans
population. Hospital and clinic record databases must be updated
in order to capture gender definitions and associated medications
more accurately, and reference ranges for clinical and laboratory
tests need to be reviewed and established for gender-diverse
people, as it is highly likely that they may differ from those
appropriate for cis persons (187). If these changes were made
across the world, they would not only facilitate far more impactful
retrospective review of outcomes, but would vastly improve the
lives and healthcare of transgender persons, who have tolerated
systems that weren’t designed to accommodate them for far
too long. In Figure 2, we propose several streams of research,
both clinical and immunological, as starting points for future
projects. Researchers and clinicians should join forces to give
people of all gender identities a voice and create opportunities
for their involvement in clinical data collection and research.
As more countries develop their gender identity services, and
adapt to the changes outlined above, we look forward to seeing
the results from further large studies such as 2021 Michelson
Prize recipient Dr. Camila Consiglio’s multi-parameter analysis
of the effect of testosterone treatment on the immune systems of
trans-men at the Karolinska Institutet, Sweden (188), and that of
Professor Guy T’Sjoen’s ENIGI consortium across Ghent, Oslo,
Florence, and Amsterdam (189, 190), where long-term follow-
up of participants pursuing hormonal gender affirmation will
provide us with a wealth of information, pertinent to everyone –
not just those it is convenient to study.

CONCLUDING REMARKS

We advocate that research should celebrate gender diversity and
be as inclusive as possible to ensure that it is relevant to human
society as a whole. We can only hope that in coming years,
more labs and clinical teams will join us in the interrogation

of sex determinants as biological variables. As personalised
medicine becomes an increasingly viable and beneficial approach
to healthcare, it is research like this that will be equipped to
inform and steer innovation in the appropriate direction.

DISCLAIMER

Gender-related terminology is continually evolving, and terms
vary in their usage between individuals and between groups
across the world. Language and definitions used throughout this
article have been adapted from the Gender Identity Research and
Education Society (GIRES) website at time of writing (191) – we
have made every effort to be inclusive, but acknowledge that these
may not capture the preferences and experiences of all.
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