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Purpose: To develop handcrafted radiomics (HCR) and deep learning (DL) based
automated diagnostic tools that can differentiate between idiopathic pulmonary fibrosis
(IPF) and non-IPF interstitial lung diseases (ILDs) in patients using high-resolution
computed tomography (HRCT) scans.

Material and Methods: In this retrospective study, 474 HRCT scans were included
(mean age, 64.10 years ± 9.57 [SD]). Five-fold cross-validation was performed on
365 HRCT scans. Furthermore, an external dataset comprising 109 patients was
used as a test set. An HCR model, a DL model, and an ensemble of HCR and DL
model were developed. A virtual in-silico trial was conducted with two radiologists
and one pulmonologist on the same external test set for performance comparison.
The performance was compared using DeLong method and McNemar test. Shapley
Additive exPlanations (SHAP) plots and Grad-CAM heatmaps were used for the
post-hoc interpretability of HCR and DL models, respectively.

Results: In five-fold cross-validation, the HCR model, DL model, and the ensemble of
HCR and DL models achieved accuracies of 76.2 ± 6.8, 77.9 ± 4.6, and 85.2 ± 2.7%,
respectively. For the diagnosis of IPF and non-IPF ILDs on the external test set, the HCR,
DL, and the ensemble of HCR and DL models achieved accuracies of 76.1, 77.9, and
85.3%, respectively. The ensemble model outperformed the diagnostic performance
of clinicians who achieved a mean accuracy of 66.3 ± 6.7% (p < 0.05) during the
in-silico trial. The area under the receiver operating characteristic curve (AUC) for the
ensemble model on the test set was 0.917 which was significantly higher than the HCR
model (0.817, p = 0.02) and the DL model (0.823, p = 0.005). The agreement between
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HCR and DL models was 61.4%, and the accuracy and specificity for the predictions
when both the models agree were 93 and 97%, respectively. SHAP analysis showed
the texture features as the most important features for IPF diagnosis and Grad-CAM
showed that the model focused on the clinically relevant part of the image.

Conclusion: Deep learning and HCR models can complement each other and serve
as useful clinical aids for the diagnosis of IPF and non-IPF ILDs.

Keywords: artificial intelligence (AI), radiomics, computed tomography, interpretability, idiopathic pulmonary
fibrosis, interstitial lung disease

INTRODUCTION

Interstitial lung disorders (ILDs) are a diverse group of ailments
with an estimated 200 distinct entities and are linked with
high morbidity and death (1). Many different parenchymal
lung disorders have similar clinical signs and patterns of
lung injury. Several disorders, including idiopathic pulmonary
fibrosis (IPF), have unknown etiology and are labeled idiopathic
or cryptogenic, while the rest are linked to other diseases,
particularly connective tissue diseases, or to environmental
exposures (2–6). One of the most common types of ILDs is
IPF, a progressive illness marked by decreased lung function
(7). IPF has an estimated incidence rate between 2.8 and 18
cases per 100,000 per year in Europe and North America
(8). The median survival rate of patients with IPF is between
2 and 4 years from diagnosis (9). A prompt diagnosis and
management are crucial for slowing down the progression of
these lung disorders.

Medical imaging is becoming increasingly crucial for disease
diagnosis, prognosis, and treatment planning in precision
medicine (10). Computed tomography (CT) provides visual
data that may be used to enhance decision-making (4, 11).
However, qualitative CT evaluation remains challenging and
frequently varies amongst experts (12). The diagnosis of
idiopathic pulmonary fibrosis using high-resolution computed
tomography (HRCT) is a difficult task and high inter-
observer variability is associated with it even with experienced
radiologists (13). Consequently, there is a need for an
automated clinical tool that can aid clinicians for accurate and
timely diagnosis.

Artificial intelligence is becoming increasingly popular
due to the increasing amount of imaging data and available
computational resources (14). The use of quantitative
imaging techniques in medical imaging has grown at
an exponential rate (15). Handcrafted radiomics (HCR)
is a quantitative approach that measures and extracts
high-dimensional imaging characteristics to aid clinical
decision-making (15, 16). Deep learning (DL) methods
learn different features and representations from the image
data without the need for explicit feature engineering
(17). Convolutional neural networks (CNNs) have shown
remarkable results on numerous diagnostic tasks using
medical image data including the diagnosis of fibrotic lung
disease (18).

Despite promising results demonstrated by HCR and DL
models for various medical imaging tasks, the clinical utility
of such models is limited due to their lack of interpretability
(19). Shapley Additive exPlanations (SHAP) (20) and Gradient-
weighted class activation maps (Grad-CAM) (21) are post-hoc
interpretability methods that are useful for understanding the
decision-making process of HCR and DL models, respectively.

In this paper, we propose a machine learning-based HCR
pipeline and a DL pipeline for the automated diagnosis of IPF
and non-IPF ILDs patients. We also perform an in-silico trial
with experienced radiologists to compare the performance of
HCR and DL on a test dataset. Furthermore, we use post-
hoc interpretability methods to aid the incorporation of these
automated diagnostic tools in the clinical workflow.

MATERIALS AND METHODS

Patients
A total of 652 HRCT scans were obtained from Site 1 (University
Liege hospital) and 205 HRCT scans were obtained from
database A [The Lung tissue research consortium database
(LTCR)]. The inclusion criteria were: the availability of non-
contrast enhanced HRCT and the availability of HRCT with
slices thickness of less than 1.5 mm. The exclusion criteria
were: the use of contrast enhancement, images containing
metal or motion artifacts, and images reconstructed with
a slice thickness larger than 1.5 mm. All diagnoses were
confirmed by the Multidisciplinary discussion (MDD) that
included a histopathologist, pulmonologist, thoracic radiologist,
and rheumatologist. Lung biopsy is only required in case of
ILD inconsistent with IPF. Figure 1 shows the patient selection
process. Demographic data, clinical data, and measurements of
pulmonary function tests (PFT) were acquired for each patient.
Demographic and clinical data include age, gender, body mass
index (BMI), forced expiratory volume in 1 s (FEV1), forced vital
capacity (FVC), and diffusion capacity of the lungs for carbon
monoxide (DLCO).

Imaging Acquisition and Segmentation
The HRCT scans at site 1 were acquired at the same hospital
using two different vendors (Siemens and GE). The scans
acquired from database A were acquired using four different
CT vendors (Siemens, GE, Philips, and Toshiba). The slice
thickness of the scans varied between 0.5 and 1.5 mm. A further
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FIGURE 1 | The flowchart diagram shows the patient selection process. IPF, idiopathic pulmonary fibrosis, ILDsnon−IPF , non-IPF interstitial lung diseases.

detailed description of the CT acquisition parameters can be
found in Supplementary Table 1. Whole lung segmentation
was performed using an automated workflow created in MIM
software (MIM Software Inc., Cleveland, OH, United States).

Data Split
Five-fold cross-validation was performed on data from Site 1
consisting of 365 HRCT scans containing 279 non-IPF ILDs, and
86 IPF patients. External data from database A, comprising 53 IPF
patients and 56 non-IPF ILDs patients was used to benchmark the
performance of the proposed AI tools along with the in-silico trial.

Handcrafted Radiomics
Handcrafted Radiomics Feature Extraction
To minimize the effect of the variations in image voxel size,
all CT images were resampled to a 1 mm × 1 mm × 1 mm.
Radiomics features were extracted from the HRCT images
using the RadiomiX Discovery Toolbox1 which calculates
handcrafted radiomics (HCR) features compliant with the
Imaging Biomarkers Standardization Initiative (IBSI) (22). Voxel
intensities were aggregated into 25 bins of Hounsfield Units
to reduce noise and inter-scanner variability. The extracted
features describe fractal dimension, intensity histogram, first-
order statistics, texture, and shape. A workflow for handcrafted
radiomics from segmentation to data analysis is illustrated in
Figure 2.

1https://www.radiomics.bio

Features Selection and Modeling
Features with near-zero variance (i.e., features that have the
same value in ≥95% of the data points) were excluded. Then,
a correlation matrix was created between all HCR features and
populated using Spearman’s correlation coefficient (r). Feature
pairs with |r| ≥ 0.90 were considered to be highly correlated,
and the feature with the highest average correlation with all
other features was removed. Furthermore, a Recursive feature
elimination (RFE) using a random forest classifier was performed
on the subset of features that were selected after applying
Spearman’s correlation coefficient. RFE was applied with cross-
validation in order to determine the accuracy of the classification
and the top 12 features with the highest accuracy were selected
for the final model. The same 12 features were extracted for each
lung and concatenated to give a final feature vector consisting
of 24 HCR features. A list of the names of the features along
with their abbreviations that were used in the model can be
found in Supplementary Table 2. A random forest classifier
was used to construct the HCR model to predict the probability
of IPF in patients using HRCTs. Random forest classifier has
proven to be effective for lungs CT-based radiomics problems
in recent research findings (23–25). The random forest classifier
was trained with class weights of 1 for non-IPF ILDs and 3 for
IPF patients to compensate for the class imbalance. Five-fold
cross-validation was used for hyper-parameter tuning.

Post-hoc Interpretability
SHapley Additive exPlanations (SHAP) analysis is based on
co-operative game theory (20). SHAP analysis is a post-hoc
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FIGURE 2 | Radiomics Pipeline for Lung disease classification from CT images. The same 12 radiomics features from both lungs after feature selection are
concatenated and fed to the Random Forest classifier. Post-hoc SHAP analysis is performed for interpretability.

interpretability method that quantifies the impact of each feature
on the model prediction in terms of SHAP value. SHAP summary
plots provide global explanations by highlighting the effect of
features on the prediction in terms of SHAP value and help
in recognizing the trends. These plots show whether a high
or low feature value affects the model output positively or
negatively. SHAP dependence plots highlight the relationship
between the model output in terms of SHAP values and the
corresponding feature values. These dependence plots can be
useful for quantifying the trend of model output with respect to
the feature values as well as understanding the interaction effects
between a pair of features.

Deep Learning
All the scans were resampled to an isotropic resolution of
1 mm × 1 mm × 1 mm. Min-max normalization was applied
to the area within the lung mask. Two patches containing one
lung each of size 240 × 240 × 240 voxels were extracted
using the lungs masks. Both lungs were randomly flipped for
augmentation and concatenated along the z-axis. The image
was then downsampled by taking every sixth slice along the
z-axis. The start index was randomly chosen in the range of
1–6. This resulted in additional augmentation and reduction
of the input image size. A Densenet-121 (26, 27) classifier
with 3D convolutional layers was used with weighted binary
cross-entropy loss (non-IPF ILDs: 1, IPF: 3) in order to
minimize the effects of data imbalance. Adam optimizer with
a learning rate of 1 e−5 and ReduceLROnPlateau scheduler
was employed. The batch size was set at 16 and the network
was trained for 50 epochs. Figure 3 shows the different
steps involved in training the DL model for lung disease
classification in CT images.

During prediction, six input images from the test image were
extracted by setting the start slice index in the range from 1
to 6 and taking every sixth consecutive slice. These six test
samples are fed to the trained 3D Densenet-121 model. The
final prediction is the average of the prediction of these six test

samples. Heatmaps highlight the regions of the input image
that the model considers important for prediction. We utilized
Grad-CAM (21) heatmaps for the post-hoc interpretability of the
Densenet-121 model.

Ensemble Model
The ensemble methods utilize multiple machine learning
methods in an effort to achieve better predictive performance
as compared to the performance obtained by the constituent
machine learning methods alone. We constructed an ensemble
model from HCR and DL models by taking an average of the
probabilities predicted by the two models.

In-silico Clinical Trial
An application that allows the construction of a reference
performance point by gathering medical imaging expert
comments based on the visual assessment of HRCT images
was created. The application allows displaying the CT
images one at a time with the option of different planes
(Axial, Coronal, or Sagittal), and the application also
allows scrolling through the CT scan slices. The graphical
user interface (GUI) of the application can be found in
Supplementary Figure 1. The radiologist can select one
of the two classes (IPF or ILDs other than IPF). The
diagnostic performance of two radiologists (6 and 23 years
of experience) and one pulmonologist (12 years of experience)
was recorded for the same test dataset (n = 109) to perform a
comparison with the machine learning-based HCR, DL, and
ensemble models.

Statistical Analysis
Statistical analysis was performed in Python (version: 3.6).
Wilcoxon rank-sum test was used for the continuous
variables to test the group differences and Fisher exact test
for categorical variables. To assess the model’s performance,
the areas under the curves (AUCs) for receiver operating
characteristic (ROC) curves were compared using the DeLong
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FIGURE 3 | Figure shows different steps in the deep learning pipeline for the prediction of lung diseases in CT scans.

test. The thresholds for each model were set at the highest
Youden’s index in the training set. The performance was
evaluated using accuracy, sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV).
For five-fold cross-validation, we also report the standard
deviation (SD). The performance of the models on the
test set was compared with the performance of clinicians
using McNemar test. This study followed the Standard for
Reporting Diagnostic accuracy studies (STRAD) (28) and
was assessed using the Radiomics Quality Score (RQS)
(29). The detailed description about RQS can be found in
Supplementary Table 3.

RESULTS

Patients Characteristics
A total of 474 patients, 335 of whom were diagnosed with non-
IPF ILDs, and 139 with IPF, were included after the application of
exclusion criteria (Figure 1). The demographic characteristics of
the included patients can be found in Table 1.

Handcrafted Radiomics
The HCR model achieved an AUC of 0.85 (95% CI: 0.771 – 0.924)
in the validation set in five-fold cross-validation (Figure 4A).
The threshold of 0.51 was fixed based on Youden’s index
in the training set. An accuracy, sensitivity, and specificity
of 0.762 ± 0.068, 0.816 ± 0.094, and 0.745 ± 0.065
were obtained in five-fold cross-validation, respectively. In
the external test set, the HCR model achieved an AUC,
accuracy, sensitivity, and specificity of 0.817, 0.761, 0.698,
and 0.821, respectively. Tables 2, 3 show the performance
metrics for the HCR model during five-fold cross-validation
and external validation, respectively. Figure 4B shows the test
performance for the HCR model on the external dataset. The

Radiomics Quality Score (RQS) achieved for this study is
52.78% (19 of 36).

The global SHAP summary plots in Figure 5A demonstrate
that the same features extracted from each lung separately
affect the model’s prediction for IPF diagnosis in a similar
way. A high feature value with a positive SHAP value forces
the model’s probability to be higher. The IH_qcod feature
values extracted from lung1 and lung2 demonstrate a similar
trend that a high feature value results in a positive SHAP
value. However, there are some outliers in the trend that
can seen be in features such as GLCM_correl1_lung and
GLDZM_INN_lung. Similarly, the GLDZM_INN feature values
extracted from lung1 and lung2 show a negative trend that a
high feature value results in a negative SHAP value. Figures 5B–E
show the dependence plots of GLCM_clusTend, GLCM_correl1,
GLDZM_HISDE, and GLDZM_DZN features, respectively. In
Figure 5C, when the feature value of GLDZM_HISDE is low,
high feature values of GLCM_clusTend result in a lower SHAP
value. A similar effect can be seen in Figure 5D between features
GLDZM_DZN and NGLDM_DE.

TABLE 1 | Demographic and clinical information of the study participants.

Variables Site 1 Database A P-value (p)

n 365 109 − −

Age [mean(SD)] 64.10 (9.57) 63.61 (14.17) 0.8

Sex = M (%) 213 (87) 74 (67.9) 0.09

FEV1 [mean (SD)] 80.42 (21.47) 69.60 (20.67) < 0.001

FVC [mean(SD)] 80.52 (21.25) 67.35 (21.37) < 0.001

DLCO [mean(SD)] 51.32 (24.99) 29.84 (5.36) < 0.001

BMI [mean(SD)] 25.48 (6.45) 29.55 (5.21) < 0.001

BMI, body mass index, FEV, forced expiratory volume, FVC, forced vital capacity,
and diffusion capacity of the lungs for carbon monoxide (DLCO) are shown in the
table for different patients along with their mean and standard deviation (SD).
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FIGURE 4 | Receiver operating characteristics (ROC) curves for five-fold cross-validation (A) and external test dataset (B) for the classification of IPF and non-IPF
ILDs using handcrafted radiomics (HCR), deep learning (DL), and ensemble (HCR + DL) models.

TABLE 2 | Precision and recall metrics for five-fold cross-validation using handcrafted radiomics (HCR), deep learning (DL), and an ensemble of HCR and DL models.

Model Accuracy Sensitivity Specificity Positive
predictive
value (PPV)

Negative
predictive
value (NPV)

Handcrafted radiomics (HCR) 0.762 ± 0.068 0.816 ± 0.094 0.745 ± 0.065 0.506 ± 0.084 0.923 ± 0.040

Deep learning (DL) 0.779 ± 0.046 0.711 ± 0.10 0.800 ± 0.075 0.541 ± 0.074 0.901 ± 0.025

Ensemble (HCR + DL) 0.852 ± 0.027 0.827 ± 0.005 0.860 ± 0.035 0.65 ± 0.063 0.94 ± 0.003

TABLE 3 | Comparison of diagnostic performance on the external test dataset for HCR, DL, an ensemble of HCR and DL, and in-silico trial with clinicians.

Model Accuracy Sensitivity Specificity Positive
predictive
value (PPV)

Negative
predictive
value (NPV)

Handcrafted radiomics (HCR) 0.761 0.698 0.821 0.787 0.741

Deep learning (DL) 0.779 0.792 0.768 0.763 0.796

Ensemble (HCR + DL) 0.853 0.886 0.821 0.825 0.885

In-silico trial with clinicians 0.66 ± 0.067 0.572 ± 0.186 0.750 ± 0.0525 0.680 ± 0.042 0.669 ± 0.100

Deep Learning
The DL model achieved an AUC of 0.85 (95% CI: 0.806 – 0.904)
in the validation set in five-fold cross-validation (Figure 4A).
The threshold of 0.45 was fixed based on Youden’s index in
the training set. An accuracy, sensitivity, and specificity of
0.779 ± 0.046, 0.711 ± 0.10, and 0.800 ± 0.075 was achieved
during five-fold cross-validation, respectively. In the external
test set, the DL model achieved an AUC, accuracy, sensitivity,
and specificity of 0.823, 0.853, 0.886, and 0.821, respectively.
Tables 2, 3 show the performance metrics for the HCR
model during five-fold cross-validation and external validation,
respectively. Figure 4B shows the test performance for the DL
model on the external dataset.

Figure 6 shows Grad-CAM overlayed on CT image slices
obtained from HRCT scans from IPF and non-IPF ILDs patients.

The overlayed heatmap shows the regions of the input image that
the model considers important for prediction. The Grad-CAM
focuses on the tissue pattern in the patient with IPF. However, no
information is provided on how these areas contribute to the final
model prediction.

Ensemble
The ensemble model achieved an AUC of 0.93 (95% CI: 0.899 –
0.955) in the validation set during five-fold cross-validation
(Figure 4A). The threshold of 0.49 was fixed based on Youden’s
index in the training set. An accuracy, sensitivity, and specificity
of 0.852 ± 0.027, 0.827 ± 0.005, and 0.860 ± 0.035 was
obtained during five-fold cross-validation, respectively. In the
external test set, the DL model achieved an AUC, accuracy,
sensitivity, and specificity of 0.917, 0.853, 0.886, and 0.821,
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FIGURE 5 | Global SHAP summary plots (A) demonstrate the impact of the top 20 features on the model output in terms of SHAP values and the corresponding
feature values. SHAP dependence plots (B–D), and (E) show the effect of a particular feature value on the SHAP value and its interaction with another feature.

respectively. Tables 2, 3 show the performance metrics for
the HCR model during five-fold cross-validation and external
validation, respectively. The agreement between the predictions
of HCR and DL models is 61.4%. The accuracy and specificity
for the predictions when both the models agree were 93 and
97%, respectively. There was a statistically significant difference
between the ROC curves for the ensemble model and HCR model
(p = 0.02), and the ensemble model and the DL model (p = 0.005).

In-silico Clinical Trials
Two radiologists and one pulmonologist achieved accuracies of
58.7, 65.1, and 75.2% with a mean of 66.3 ± 6.7% for the diagnosis
of IPF and non-IPF ILDs on the external test dataset. There
was a statistically significant difference between performance of
the ensemble model, and that of radiologists and pulmonologists
(P < 0.05).

DISCUSSION

In this study, we investigated the potential of HCR and DL
to differentiate between different lung disorders i.e., IPF and
non-IPF ILDs patients on HRCT scans. We also used post-hoc
interpretability methods to explain the predictions of HCR
and DL models. Moreover, we compare the performance
of the proposed models to the diagnostic performance of
radiologists using an in-silico trial on an external test set.
Our results show that HCR and DL have a great potential
to be used as an aid for clinical decision-making, which
could minimize the time needed by radiologists, and
increase diagnostic accuracy. The superior performance of
an ensemble of DL and HCR models also demonstrates
that these approaches can complement each other for lung
disease diagnosis.

HCR and DL models achieved an accuracy of 76.2 ± 6.8%
and 77.9 ± 4.6% during five-fold cross-validation, respectively.
In the external test set, HCR and DL models demonstrated
a similar accuracy of 76.1 and 77.9%, respectively. There
was no statistically significant difference between the ROC
curves for HCR and DL models. The ensemble of HCR and
DL models demonstrated the best accuracy of 85.2 ± 2.7%
and 85.3% for five-fold cross-validation and external test set,
respectively. There was a statistically significant difference
between the ROC curves for the ensemble model and HCR
model (p = 0.023), and the ensemble model and DL model
(p = 0.005). The HCR and DL models show an agreement of
61.4% for the predictions on the external test set. A sensitivity
and specificity of 93 and 97% were obtained when both
the models agreed on the prediction. Hence, HCR and DL
models add complementary value to each other resulting in a
boost in performance.

We compared the performance of the developed models
against the performance of the radiologists using a virtual
clinical trial setting. The performance of HCR (76.1%), DL
(77.9%), and ensemble (85.3 %) models were better than the
performance of two radiologists and one pulmonologist (66.7%)
in discriminating IPF from non-IPF ILDs on the external test
set. There was a statistically significant difference (p < 0.05)
between the predictions of the ensemble model, and the two
radiologists and one pulmonologist. There was a significant
difference (p < 0.001) in the BMI, FEV, FVC, and DLCO
values between site 1 and database A. The models demonstrated
similar performance on the external database A despite the
variability, showing that the trained models are robust and
generalize well.

The clinical translation of HCR and DL is limited due to
the “black-box” nature of the underlying complex classifiers.
It is difficult for clinicians to understand the underlying
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FIGURE 6 | GradCAM heatmaps for post-hoc interpretability of IPF and non-IPF ILDs HRCT scans to understand the predictions made by the Densenet-121.

mechanisms that govern the decision-making process of these
complex classifiers. SHAP post-hoc explanations discover the
patterns of the complex classifiers and increase transparency.
SHAP global summary plots showed that Gray-level Co-
occurrence Matrix Cluster Tendency and Intensity Histogram
quartile coefficient of dispersion are the most important
features for IPF diagnosis. These plots also showed that the
same features extracted from different lungs demonstrate a
similar trend in SHAP impact value. SHAP dependence plots
demonstrated the effect of a single feature value and the
interaction between a pair of features on the model output.
Grad-CAM heatmaps highlight the area that the DL model
considers important for the final prediction. These heatmaps
can reinforce the trust in the model predictions if the
model is focusing on the area relevant to the clinical task.
However, Grad-CAM heatmaps do not offer any explanation
of how the highlighted area contributes to the final prediction.
Although DL demonstrates good performance, it is more
opaque in nature due to its complexity that might hinder its
clinical adoption.

Some studies previously investigated the potential of HCR
and DL algorithms to classify lung disorders. Walsh el
al. (18) employed a DL algorithm on a dataset of 1157
HRCT images for the diagnosis of fibrotic lung disease.
The algorithm performance was compared to that of 91
radiologists and revealed an accuracy of 73.3%, compared to
the radiologist’s median accuracy of 70.7%. When compared
to Walsh et al. (18), our study demonstrated greater accuracy
using HCR (76.1%), DL (77.9%), and an ensemble of HCR
and DL (85.3%). Christe et al. (30) conducted another
study in which they employed a computer-aided diagnostic
(CAD) system (INTACT system) to diagnose IPF cases
based on HRCT images and compared the performance
of the CAD system to the performance of radiologists.
Their findings showed that the two radiologists and the
CAD system obtained an accuracy of 60, 54, and 56%,
respectively. Mean RQS score of 20.4, 26.1, and 27.4% were
obtained after recent analyses of papers reporting radiomics
studies (31–33). This shows that RQS is a stringent and

demanding criterion (34–36) that aims to encourage the
best scientific practice. An RQS of 52.78% shows that this
study tries to adhere to the best scientific practices and
reporting guidelines.

This study has some limitations. The datasets utilized
for this study contain HRCT scans acquired with different
CT acquisition and reconstruction settings that can
influence HCR feature values (37). Hence, phantom studies
to evaluate the reproducibility of the HCR features or
harmonization investigations need to be carried out to
make a more robust HCR pipeline (38). Grad-CAMs only
highlight the region of the input image that the model
considers important for the decision-making process.
There is a need to utilize interpretability methods that
give an insight into how the relevant region contributes to
the decision-making process (19). The high performance
of an ensemble of HCR and DL model shows that these
two approaches add complementary values. It may be
useful to employ an interpretability method such as
concept attribution that will investigate the HCR features
that the DL model considers important for classification
(39). A prospective virtual in-silico trial in a real-world
environment where the predictions of DL/HCR model and
post-hoc interpretability plots are made available to the
doctors during diagnosis should be carried out to confirm
the clinical utility of the proposed methods. The quality
of lung segmentation can affect the performance of the
models. Therefore, it is important to ensure the quality of the
automatic segmentation in the presence of variability such as
noise and artifacts.

At the moment, there is little research on the diagnosis
of ILDs using HCR and DL. The reported results are
encouraging and highlight the significant potential of
HCR and DL methods for the diagnosis of IPF. In
the future, HCR and DL approaches may be expanded
to include treatment decisions. More studies should
be conducted to explore the development of IPF at
baseline and follow-up, as well as to assess the efficacy of
anti-fibrotic treatment.
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CONCLUSION

In this study, we developed handcrafted radiomics and deep
learning models for the classification of IPF and non-IPF
ILDs using HRCTs. In addition, we compared the performance
of both models to radiologists on an external test dataset.
HCR, DL, and ensemble models demonstrated better accuracy
than radiologists in a virtual in-silico clinical trial setting.
An ensemble of HCR and DL models demonstrated the
best performance highlighting the complementary value of
the two quantitative approaches for lung disease diagnosis.
SHAP and GRAD-CAM post-hoc interpretability methods are
useful for explaining the predictions made by radiomics
and DL models, respectively. These automated diagnostic
tools can serve as a useful clinical aid for diagnosing
different lung diseases.
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