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Cellular senescence is associated with tumorigenesis, and the subtype and prognostic

signatures of senescence-related genes (SRGs) in the tumor microenvironment (TME)

and gut microbiota have not been fully determined. Analysis of 91 SRGs obtained

from the GSEA and MSigDB, and mRNA sequencing of genes in the Gene Expression

Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases enabled the

identification of two distinct molecular types of colorectal cancer (CRC). Patient

samples were clustered into two subtypes, with Kaplan-Meier survival analyses showing

significant differences in patient survival between the two subtypes. Cluster C2 was

associated with patient clinicopathological features, high immune score, high abundance

of immune infiltrating cells and somewhat high abundance of bacteria. A risk model

based on eight SRGs showed that a low risk score was characterized by inhibition

of immune activity and was indicative of better prognosis in patients with CRC. In

combination with clinical characteristics, risk score was found to be an independent

prognostic predictor of survival in patients with CRC. In conclusion, the present study

showed that senescence-related subtypes and a signature consisting of eight SRGs

were associated with CRC patient prognosis, as well as with immune cell infiltration and

gut microbiota. These findings may enable better prediction of CRC patient prognosis

and facilitate individualized treatments.
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INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer and
the second leading cause of cancer-related deaths worldwide
(1). Treatment of early stage CRC patients consists primarily of
surgery and adjuvant chemotherapy, with these patients having
a 5-year overall survival (OS) rate of 90% (2). Combinations of
targeted drugs and chemotherapy, which are currently the first-
line treatment for metastatic CRC (mCRC), can improve the
efficacy of mCRC treatment and prolong patient survival (3).
However, the 5-year OS rate in patients withmCRC, consisting of
metastases to the liver, lungs, brain, and other organs, rate is only
approximately 10% (4). Therefore, the mechanisms underlying
tumor progression in patients with CRC need further study.

Cellular senescence is a type of cellular program responsible
for inducing cell cycle arrest. This program is characterized
by distinct phenotypic alterations, including expression of
anti-proliferative molecules and activation of damage sensing
signaling pathways (5). The growth arrest of proliferating cells
is typically triggered by constant DNA damage response (DDR)
or other types of stress signaling, such as telomere dysfunction
and oncogene activation (6). Cellular senescence prevents
cancer in mammals. Oncogene activation triggers an initial
hyperproliferative response intrinsically related to changed DNA
replication, ultimately engaging DDR pathways and inducing
cellular senescence (7). Several drugs that have been shown to
enhance DNA damage and induce tumor cell senescence have
been utilized in themanagement of human cancers (8). Senescent
tumor cells can alter the tumor microenvironment (TME)
via the senescence-associated secretory phenotype (SASP). The
SASP consists of several chemokines and cytokines that activate
immune surveillance and trigger innate and adaptive immune
responses, which clear senescent and proliferating tumor cells
(9). To date, several risk modes have been developed to evaluate
the prognostic value of genes related to the TME in CRC. Less
is known, however, about the involvement of senescence-related
genes (SRGs).

In the present study, SRGs in CRC were comprehensively
investigated to determine the mechanisms by which senescence
affects immune cell infiltration and gut microbiota in CRC.
Utilizing data from the Gene Expression Omnibus (GEO)
and The Cancer Genome Atlas (TCGA) databases led to the
establishment of a consistent clustering and SRG-based model to
evaluate the prognostic value of SRGs in CRC. The association
of senescence with immune cell infiltration and gut microbiota
was explored in CRC. These findings may contribute to designing
comprehensive methods of treating CRC and enable targeted
treatment to individual patients.

MATERIALS AND METHODS

Data Collection
Data on the clinicopathological characteristics and mRNA
expression of TCGA CRC cohorts were obtained from the
UCSC database (https://xenabrowser.net/datapages/) and used
as a training cohort. In addition, clinical information and
mRNA sequencing results associated with the GSE39582,

GSE17536, GSE17537 and GSE19072 datasets of patients with
CRC were obtained from the GEO database (https://www.
ncbi.nlm.nih.gov/geo/). Four GEO datasets were combined,
and batch effects were eliminated by applying the “Combat”
algorithm. Specimens lacking complete clinical information,
including patient sex, age, survival status, duration of survival
and TNM stage, were excluded. Microbial abundance profiles
at the genus, order, phylum, class, and family levels were
obtained from the TCMA database (https://tcma.pratt.duke.
edu/). Immunohistochemistry (IHC) staining of the SRGs in
CRC and normal tissues was acquired from The Human Protein
Atlas (THPA) database (https://www.proteinatlas.org/).

Consensus Clustering Analysis of SRGs
Ninety-one SRGs identified in the GSEA and MSigDB
databases (GOBP_CELLULAR_SENESCENCE) (https://
www.gsea-msigdb.org/gsea/index.jsp) were surveyed
(Supplementary Table 1) and subjected to cluster analyses
using ConsensusClusterPlus. Agglomerative pam clustering
featuring a Pearson correlation distances of 1 was performed
and 80% of the specimens were resampled for ten repetitions.
The best quantity of clusters was measured using the empirical
cumulative dispersion function (CDF) diagram.

Evaluation of Immune Infiltration
The immune infiltrating score of all samples was calculated using
R package programs CIBERSORT, ESTIMATE, and TIMER.

Identification and Functional Analysis of
Differentially Expressed Genes (DEGs)
DEGs in two clusters, defined as those with a≥1.5-fold difference
in expression and an adjusted p-value of< 0.05, were determined
utilizing the R package “limma” (version 3.40.6). For gene
set functional enrichment analyses, the Gene Ontology (GO)
subset from the MSigDB (http://www.gsea-msigdb.org/gsea/
downloads.jsp) and KEGG pathways from the KEGG rest API
(https://www.kegg.jp/kegg/rest/keggapi.html) were mapped to
the TCGA database using the R software package clusterProfiler
(version 3.14.3). GSEA software (version 3.0) was obtained from
the GSEA website (http://software.broadinstitute.org/gsea/index.
jsp), and c2.cp.kegg.v7.4.symbols.gmt was downloaded from the
MSigDBWebsite (http://www.gsea-msigdb.org/gsea/downloads.
jsp). Associated paths and molecular mechanisms were evaluated
based on phenotypes and gene expression profiles. Gene sets
were defined as ranging from 5 to 5,000 genes with 1,000
replicates. An FDR < 0.25 and a P-value < 0.05 were regarded
as statistically significant.

Identification and Verification of Risk
Modes
Using the “glmnet” package in R, least absolute shrinkage
and selection operator (LASSO) Cox regression analyses were
performed to minimize over-fitting risks. An optimal risk model
was determined by 10-fold cross-verification using the equation,

Risk score=
∑

(gene Expression∗ gene coefficient).
Patients were classified into low-risk and high-risk groups

based their median risk score. Principal component analyses
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(PCA) were performed using the “stats (version 3.6.0)” package
in R. The z-scores of the expression profiles were determined,
and a reduced dimensionality matrix was obtained using the
prcomp function.

Establishment and Assessment of a
Predictive Nomogram
Using the “rms” package in R and the factors survival time,
survival status, and four clinical characteristics, Cox proportional
analyses were performed to develop a nomogram predictive
of OS. Nomograms were assessed by time-dependent receiver
operator characteristic (ROC) curves for one, three, and five-year
survival. Accuracy was verified by calibration plots.

Statistical Analyses
All statistical analyses were performed using R version 4.1.0
software. Continuous variables were reported as mean ± SD
as appropriate and compared by Student’s t-tests. Survival was
analyzed using the Kaplan-Meier method and compared by
log-rank tests. Time-dependent ROC analyses were performed
using the “survivalROC” package in R software to evaluate
factors associated with OS. A p-value < 0.05 was defined as
statistically significant.

RESULTS

Identification of Senescence Subtypes in
CRC
Figure 1 shows a map of the process of the present work. Using
the consensus clustering method, patients with CRC patients in
the training cohorts were divided into subgroups based on 17
genes prognostic of senescence identified on univariable Cox
analyses (Supplementary Table 1). Optimal cluster stability was
defined as K = 2 (Figures 2A–C and Supplementary Figure 1).
Of the 367 patients evaluated, 173 were assigned to cluster C1 and
194 to cluster C2. A heatmap comparing the expression of SRGs
in these two clusters showed significant differences in expression
in clusters C1 and C2 (Figure 2D). Furthermore, comparisons

of the clinicopathological features of the two subtypes revealed
that cluster C1 was significantly related to more additional
pharmaceutical therapy (p < 0.01), more additional radiation
therapy (p < 0.05), higher pathologic T (p < 0.01), higher
pathologic N (p < 0.001), higher pathologic stage (p < 0.001)
and more venous invasion (p < 0.001) compared to those
in cluster C2 (Supplementary Table 2). PCA analyses showed
marked differences in the senescence transcription profiles of the
two clusters (Figure 2E), whereas Kaplan-Meier analysis showed
that OS was significantly longer in cluster C1 than in cluster C2
(P = 0.0026; Figure 2F). ROC analysis showed that the 1, 3, and
5-year OS of patients based on SRG scores were yielded AUCs
of 0.61, 0.69, and 0.77, respectively (Figure 2G). These findings
showed that SRGs could divide CRC patients into two molecular
subtypes with significant differences in OS.

Characteristics of the Immune States in
the Two Clusters
The enrichment of 22 human immune cell subsets in each CRC
sample was evaluated using CIBERSORT analysis. Patients in
clusters C1 and C2 showed marked differences in the infiltration
ofmost immune cells (Figure 3A). The populations of infiltrating
monocytes, plasma cells, resting natural killer (NK) cells, resting
CD4 memory T cells, activated dendritic cells (DCs), and
activated mast cells were significantly higher in cluster C1 than
in cluster C2, whereas the populations of infiltrating resting
mast cells, M0 and M2 macrophages, and memory B cells were
significantly lower in C1 than in C2 reduced. TIMER analysis
(Figure 3B) showed that the numbers of DCs (P < 0.001), CD8T
cells (P < 0.001), CD4T cells (P < 0.001), neutrophils (P <

0.001), and macrophages (P < 0.001) were significantly higher
in cluster C2 than in cluster C1, but there were no differences
in B cell population. ESTIMATE score (P<0.001), immune score
(P<0.001) and stromal score (P<0.001) were all significantly
higher in cluster C2 than in cluster C1 (Figure 3C). Similarly,
analyses of two key immune checkpoints showed that the levels
of expression of PD1 and PD-L1 were higher in cluster C2 than
in C1 (Figure 3D).

FIGURE 1 | Workflow of the analytic process.
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FIGURE 2 | Consensus clustering of CRC subtypes based on SRGs. (A) CDF plots of the consensus score (k = 2–10). (B) Relative alterations in the regions under

the CDF plot (k = 2–10). (C) Consensus matrix heatmap identifying two clusters (k = 2) and their related regions. (D) Expression of SRGs in the two distinctive

subtypes. (E) PCA analyses showing marked differences in the transcriptomes of the two subtypes. (F) Kaplan-Meier analyses of OS of patients in the two subtypes.

(G) ROC for predicting the specificity and sensitivity of 1, 3, and 5-year survival of patients in the two subtypes.

Differential Microbiome Profiling of CRC in
the Two Clusters
The TCMA database was searched to identify microbial
samples in all CRC samples. A total of 11 phyla, 22 classes,
38 orders, 76 families, and 221 genera of microbes were
surveyed (Supplementary Table 3). Most CRC samples showed
enrichment of 5 phyla, 9 classes, 12 orders, 15 genera, and
13 families of microbes (Figures 4A–E). At the class level, the
intra-tissuemicrobiota were dominated by the classes Bacteroidia
(present in 55.4 and 67.5% of samples in clusters C1 and C2,
respectively), Clostridia (present in 16.0 and 12.5% of samples
in clusters C1 and C2, respectively), and Gammaproteobacteria
(present in 11.4 and 6.5% of samples in clusters C1 and C2,
respectively) (Figure 4E). Although the relative abundance of
class Bacteroidiawas lower in cluster C1 than in cluster C2 group,
the relative abundance of the order Bacillaleswas higher in cluster
C1 (Figure 4E).

DEGs and Functional Analysis
The DEGs in the two clusters were subjected to functional
analysis to explore potential signaling mechanisms. Cluster
C1 showed upregulation of 37 genes and downregulation of
1,281 genes compared with cluster C2 (Figure 5A), with a
heatmap showing the top 10 differentially expressed genes
in the two clusters (Figure 5B). GO enrichment analyses
showed that senescence was associated with neural signal

transmission and transport, including G protein-coupled
receptor signaling pathways, synapses, and receptor regulatory
activity (Supplementary Figure 2). KEGG enrichment analyses
also identified several signaling pathways associated with neural
signaling, including neuroactive ligand-receptor interaction,
cAMP signaling, calcium signaling, adrenergic signaling in
cardiomyocytes, and glutamatergic synapses (Figure 5C). The
link between enriched pathways and prognosis in patients with
CRC was evaluated by GSEA analysis of differences in expression
of pathways in the two patient clusters. GSEA analyses showed
that mismatch repair, citrate cycle, TCA cycle, DNA replication,
nucleotide excision repairs, base excision repairs and other
signaling pathways related to cell replication were more highly
expressed in cluster C1 than in cluster C2 (Figure 5D). Taken
together, these finding suggest that SRGs are associated with cell
replication and neural signal transmission, which may be related
to better prognosis in patients with CRC.

Construction of the Prognosis Model
Risk signature models were developed to evaluate the
prognostic predictive ability of SRGs in CRC. Screening
of potential genes by LASSO analysis (Figures 6A,B) to
establish the risk mode identified eight genes with optimal
lambda values (risk score = 0.129607980597333 ∗ BCL6 -
0.119970227463924 ∗ MAPK8 - 0.0962359783869445 ∗ MAPK9
- 0.0911883032223032 ∗ MAPKAPK5 - 0.245073218298237 ∗
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FIGURE 3 | Evaluation of immune infiltration and checkpoints in the two subtypes. (A) CIBERSORT analysis of the abundance of 22 immune cells infiltrating tumors of

the two subtypes. (B) TIMER analysis of the abundance of six immune cells infiltrating tumors of the two subtypes. (C) Stromal, immune and ESTIMATE scores of

patients in the two subtypes. (D) Expression of immune checkpoints by tumors in the two subtypes.

FIGURE 4 | Composition of microbiota in the two subtypes at the phylum (A), class (B), order (C), family (D), and genus (E) levels.
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FIGURE 5 | Analyses of differentially expressed genes (DEGs) and of gene function in the two subtypes. (A) Volcano plot showing DEGs by the two subtypes. (B)

Heatmap of the top 10 DEGs in each of the two subtypes. (C) KEGG enrichment analyses of DEGs in the two subtypes. (D) GSEA analyses of SRGs in the two

subtypes.

NEK4 - 0.166348735320059 ∗ PAWR + 0.0583076641122957
∗ WNT16 + 0.012344436894066 ∗ YPEL3). This risk mode
divided CRC patients into low- and high-risk groups. Patients
were categorized by senescence subtypes, risk groups and clinical
stage (Figure 6C), with Figure 6D showing the expression of
differentially expressed genes in the two risk groups.

Additionally, IHC staining of SRGs in CRC and normal
tissues was acquired from THPA database. BCL6 and YPEL3
were upregulated in CRC, while MAPK8, MAPK9, MAPKAPK5,
NEK4, and PAWR were downregulated in CRC (Figure 7).
However, the IHC images of WNT16 were not found.

The levels of expression of BCL6, WNT16, and YPEL3 were
higher in the high-risk group than in the low-risk group, whereas
the levels of expression ofMAPK8,MAPK9,MAPKAPK5, NEK4,
and PAWR were higher in the low-risk group (Figure 8A). OS
was significantly longer in the low-risk than in the high-risk
group (Figure 8B). Time-dependent ROC analyses showed that
risk mode was accurately predictive of OS over 5 years, with
the AUCs of ROC curves at 1, 3, and 5 years being 0.70,
0.68, and 0.68, respectively (Figure 8C). Use of the ESTIMATE
algorithm in the two groups showed that ESTIMATE score (P
< 0.001), immune score (P < 0.001) and stromal score (P <

0.001) were significantly higher in high-risk than in low-risk
patients (Figure 8D). Similarly, the levels of expression of two key
immune checkpoints, PD-L1 and PD1, were significantly higher
in the high-risk group (Figure 8E).

Microbiome profiling of CRC patients showed that the relative
abundances of the phylum Actinobacteria, the Bacillales and the
class Actinobacteria were lower in high-risk than in low-risk
patients (Figures 9A–E). These outcomes suggest that this risk
model can anticipate the prognosis of CRC patients and is related
to immune status and gut microbiota in patients with CRC.

Verification of the Prognosis Model in the
GEO Database
The developed prognostic risk score model was further validated
in the validation cohort. CRC patients in the validation cohorts
were stratified as low or high-risk, and their levels of expression
of the eight candidate genes, the risk scores and survival
events were compared (Figure 10A). Survival analyses showed
that patients in the high-risk group had poorer prognoses (P
= 0.01; Figure 10B), whereas ROC analyses found that the
risk model was optimal at determining 1, 3, and 5-year OS
(Figure 10C). The association between risk models and the
immune microenvironment were also determined. Same to
findings in the training cohorts, the levels of PD1 and PD-
L1, as well as ESTIMATE score (P < 0.001), immune score (P
< 0.001), and stromal score (P < 0.001), were higher in the
high risk than in the low-risk group (Figures 10D,E). These
outcomes indicated that the developed risk model was related to
the immune microenvironment and prognosis in CRC patients
in the validation cohort.
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FIGURE 6 | Establishment of a risk model in the TCGA cohort. (A,B) LASSO regression analyses and partial family deviance of the prognostic genes. (C) Alluvial plot

of sub-type dispersion in groups with various SRG risk scores, clusters and CRC stages. (D) Heatmap of the top 50 DEGs in the low and high-risk groups.

FIGURE 7 | Verification of SRG expressions in normal and tumor tissue by immunohistochemistry staining based on The Human Protein Atlas (THPA) database. N

represent normal tissue, A represent CRC tissue.
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FIGURE 8 | Prognoses and immune characteristics of the low and high-risk groups in the TCGA cohorts. (A) Distribution of risk scores and survival status of CRC

patients with SRG expression. (B) Kaplan-Meier analysis of OS in the low and high-risk groups. (C) ROC plots predicting the specificity and sensitivity of 1-, 3-, and

5-year survival in the low and high-risk groups. (D) Comparison of stromal, immune and ESTIMATE scores in the low and high-risk groups. (E) Expression of immune

checkpoints in the low and high-risk groups.

FIGURE 9 | Composition of microbiota in the low and high-risk groups at the phylum (A), class (B), order (C), family (D), and genus (E) levels, separately.
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FIGURE 10 | Verification of the established risk mode in GEO cohorts. (A) Distribution of risk scores and survival status of CRC patients as a function of SRG

expression. (B) Kaplan-Meier analysis of OS in the low and high-risk groups. (C) ROC plots predicting the specificity and sensitivity of 1, 3, and 5-year survival in the

low and high-risk groups. (D) Comparison of stromal, immune and ESTIMATE scores in the low and high-risk groups. (E) Expression of immune checkpoints in the

low and high-risk groups.

Independence of Prognostic Signature and
Development of a Predictive Nomogram
Comparisons of the clinicopathological features of the low and
high-risk groups revealed that high-risk groups was significantly
related to more additional pharmaceutical therapy (p < 0.01),
more additional radiation therapy (p < 0.05), higher recurrence
risk (p< 0.05), more non-nodal tumor deposits (p< 0.01), higher
metastasis risk (p< 0.01), higher pathologic T (p< 0.001), higher
pathologic N (p< 0.001), higher pathologic stage (p< 0.001) and
more venous invasion (p < 0.001) compared to those in low-
risk groups (Supplementary Table 2). Furthermore, univariate
and multivariate Cox regression analyses were performed to
determine whether the predictive value of the prognostic model
was independent of other conventional clinical features. Factors
independently associated with OS in the training cohort included
tumor (P < 0.001, hazard ratio HR = 1.97), node (P < 0.001,
HR=1.15), and metastasis (P < 0.001, HR = 1.76) scores,
stage (P < 0.001, HR = 1.42), patient age (P < 0.001, HR =

1.04) and risk score (P < 0.001, HR=2.96) (Figures 11A,B).
Similarly, univariate and multivariate Cox regression analyses of
the GEO database showed that patient age (P<0.001, HR=1.03),
sex (P < 0.01, HR = 1.39), metastasis (P<0.001, HR=6.51)
and the constructed risk model (P < 0.01, HR = 2.21)
were independently predictive of prognosis in patients with
CRC (Figures 11C,D).

Because of the relatively low clinical utility of SRGs scores in
predicting OS in patients with CRC, a nomogram integrating

SRG scores and clinicopathological parameters was developed
to predict 1, 3, and 5-year OS rates (Figure 12A). Calibration
diagrams indicated that, compared with an ideal model, the
nomogram had similar properties in the training and verification
cohorts (Figures 12B,D). The AUCs on the nomogram model
were highly precise in determining 1, 3, and 5-year OS in
the training and verification cohorts (Figures 12C,E). These
outcomes indicated that the nomogrammay be used to accurately
predict prognosis in patients with CRC.

DISCUSSION

Despite improvements in treat modalities, including surgical
resection, targeted drug treatment and chemotherapy, the
prognosis of patients with CRC is still poor. Efficient risk
stratificationmethods and individualized treatment are necessary
to improve outcomes. The present study showed that CRCs could
be divided into two distinct molecular subtypes based on 17
SRGs. In comparison with patients in cluster C1, patients in
cluster C2 had poorer OS and lower pathologic stage. Clusters
C1 and C2 differed significantly in their infiltration by the
gut flora Bacteroidia and by immune cells, including DCs,
macrophages, memory B cells, resting NK cells, CD8T cells,
and CD4T cells. Cell replication and neural signal transmission
pathways also differed in the two clusters. These findings
enabled the construction of an effective prognostic SRG risk
signature, which was significantly related to senescence clusters,
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FIGURE 11 | Clinical value of risk signature. (A,C) Forest plots of univariate Cox regression analyses for risk scores and clinical characteristics of patients in the TCGA

(A) and GEO (C) cohort. (B,D) Forest plots of multivariate Cox regression analyses for risk scores and clinical characteristics in the TCGA (B) and GEO (D) cohorts.

FIGURE 12 | Development and verification of a nomogram. (A) Nomogram for anticipating the 1, 3, and 5-year OS of CRC patients in TCGA cohorts. (B,D)

Calibration plots of the nomogram to anticipate 1, 3, and 5-year OS in the TCGA (B) and GEO (D) cohorts. (C,E) ROC plots predicting the 1, 3, and 5-year survival in

the TCGA (C) and GEO (E) cohorts.
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and showed ability to predict patient survival. Compared
with patients in the low-risk group, patients in the high-
risk group were characterized by poorer OS, greater tumor
infiltration by immune cells and lower relative abundances of
Bacillales and Actinobacteria. Integration of risk scores and
clinical characteristics led to the development of a quantitative
nomogram, further improving the properties and facilitating the
utilization of SRG risk scores. The risk model can be adopted
to predict the prognoses of patients with CRC, and may help
better understand the molecular mechanisms associated with
this disease.

Cellular senescence has been defined as the irreversible
arrest of cell proliferation in response to oncogenic stress (10).
Senescent cells can secrete many proteases, growth factors,
chemokines, and pro-inflammatory cytokines, termed the SASP
(11). Through the SASP, senescent cells induce paracrine
senescence in neighbor cells, thereby constituting a barrier
against tumor development. Because cells undergoing senescence
are in constant cell cycle arrest, senescence is broadly regarded
to protection against cancer by two major tumor inhibitor
pathways, the ARF/p53 and the INK4a/RB paths (12, 13). The
present study identified a signature involving eight SRGs, BCL6
transcription repressor (BCL6),mitogen-activated protein kinase 8
(MAPK8), mitogen-activated protein kinase 9 (MAPK9), MAPK
activated protein kinase 5 (MAPKAPK5), NIMA related kinase
4 (NEK4), pro-apoptotic WT1 regulator (PAWR), Wnt family
member 16 (WNT16), and yippee like 3 (YPEL3), predictive
of the prognosis of CRC. BCL6 was initially identified as an
oncogene in B-cell lymphomas, with this gene thought to drive
the malignant phenotype by repressing proliferation and DNA
damage checkpoints and blocking B-cell terminal differentiation
(14). In the present study, BCL6 was found to be positively related
to higher risk scores. Similarly, increased expression of BCL6 was
found to be associated with the development of human CRC
(15). BCL6 was shown to participate in the regulation of Treg
cellular immune responses in colorectal tumorigenesis and may
be explored a therapeutic target of anti-tumor immunity (16).
MAPKs have been classified as conventional and atypical MAPKs
and have been shown to include ERK5, c-Jun N-terminal kinases
1-3 (JNK1-3), p38 MAPK, and extracellular signal-regulated
kinases 1 and 2 (ERK1/2).MAPK8 andMAPK9, also called JNK1
and JNK2, respectively, are members of the JNK family, with
JNK1 inducing cell death and JNK2 inducing cell survival (17).
JNK1 inhibition sensitizes CRC cells to oxaliplatin (18), and JNK
was found to induce survival-promoting autophagy, resulting
in resistance to 5-FU in colon cancer cells expressing mutant
p53 (19). MAPKAPK5 can be activated by traditional (p38)
and atypical (ERK3 and ERK4) MAPKs (20) and can prevent
ERK3 from inhibiting cell cycle progression and controlling cell
proliferation by stimulating the transcriptional activity of p53
(21). MAPKAPK5 is therefore a tumor inhibitor that disrupts
the negative feedback loop with myc during CRC tumorigenesis
(22). The present study found that MAPKAPK5 was negatively
related to increased risk score, providing further evidence that
MAPKAPK5 acts as a tumor suppressor.NEK4 is a member of the
NEK family that is overexpressed in CRC (23). NEK4 functions
as a DNA damage response protein and in the stabilization

of primary cilia and microtubules (24). Suppression of NEK4
could cause defects in DNA repair and sensitize cancer cells to
apoptosis. PAWR was found to be upregulated only in response
to apoptosis but not to other processes such as growth arrest
or necrosis. Because of its association with apoptosis, PAWR is
regarded as a tumor inhibitor (25). In CRC, SRC inhibitor and
5-FU could promote PAWR induced apoptosis and responses to
treatment (26).

Immunotherapy has revolutionized cancer treatment and
reinvigorated the field of tumor immunology. Immune cells,
especially T cells, can be harnessed to eliminate tumor
cells (27). In general, increases in infiltrating CD8T cells
have been associated with longer OS (28). In the present
study, however, enrichment of CD8T cells was greater in
patients in cluster C2, who have a poorer prognosis, than
in cluster C1. Key covariates, like tumor progression, should
also be considered, as higher densities of CD8T cells were
associated with more advanced tumors. Macrophages are tissue-
resident differentiated monocytes, traditionally divided into
M1 and M2 subtypes according to their differentiation status
and function (29). M1 macrophages have pro-inflammatory
activities, enhancing anti-tumor TH1 response, whereas M2
macrophages are anti-inflammatory, favoring the establishment
of a tolerogenic microenvironment (30). Consistent with
previous findings, the present study found that M2 macrophage
densities were higher in cluster C2 than in cluster C1. DCs
are essential professional antigen-presenting cells that direct
T cell activation and differentiation (31). Elevated densities
of CD208+ mature DCs have been associated with poor
prognosis in patients with CRC (32). Similarly, activated DCs
were more enriched in cluster C2. Immune infiltrates in the
TME have been found to contribute to tumor growth and
progression, as well as the prognoses of patients with CRC
(33). In contrast, the present study showed that patients in
the senescence cluster C2, characterized by TME activation,
had higher SRG risk scores than patients in the senescence
cluster C1, characterized by TME inhibition. An increase
in tumor stage has been associated with reductions in
immune cell density and the immune core, suggesting that
immunotherapy might benefit CRC patients with high-risk
SRG scores.

Variations in gut microbiota, including bacteria, viruses, and
fungi, have been associated with many pathologic conditions,
including various cancers, intestinal bowel diseases (IBDs),
hepatic steatosis, type 2 diabetes, and obesity (34). Changes in
the gut microbiome enhance environmental risk, resulting in
the initiation and enhancement of CRC (35). Alterations in
the gut microbiome have been observed during relatively early
phases of colorectal carcinogenesis and have been employed
to identify individuals at risk for colorectal adenoma, the
precursor lesion to CRC (36). In the present study, Bacteroidia
were more enriched in cluster C2 patients, suggesting that
Bacteroidia enrichment was associated with poor prognosis.
Similar, infiltration of the enterotoxigenic Bacteroides fragiles
(ETBF), a member of the class Bacteroidia, was found to be
significantly higher in the tumor than in the adjacent normal
tissues (37). ETBF has been shown to induce tumorigenesis
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in azoxymethane/dextran sodium sulfate (AOM/DSS) induced
colitis-related murine models of CRC (38). ETBF positivity
was found to be more frequent in patients with sporadic
premalignant lesions (39) and familial adenomatous polyposis
(40) than in their respective controls. Metagenomic analysis has
shown that Bacteroides fragilis is the only species consistently
enriched in the gut microbiomes of patients with CRC
worldwide (41).

In conclusion, the present study showed that
senescence-related subtypes and a signature consisting
of eight SRGs were associated with CRC patient
prognosis and clinicopathological features, as
well as with immune cell infiltration and gut
microbiota. These findings may enable better
prediction of CRC patient prognosis and facilitate
individualized treatments.
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