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High-flow nasal cannula (HFNC) oxygen therapy has rapidly become a popular modality

of respiratory support in pediatric care. This is undoubtedly due to its ease of use and

safety, which allows it to be used in a wide variety of settings, ranging from pediatric

intensive care to patients’ homes. HFNC devices make it possible to regulate gas flow

and temperature, as well as allowing some nebulized drugs to be administered, features

very useful in children, in which the balance between therapeutic effectiveness and

adherence to treatment is pivotal. Although the physiological effects of HFNC are still

under investigation, their mechanisms of action include delivery of fixed concentration

of oxygen, generation of positive end-expiratory pressure, reduction of the work of

breathing and clearance of the nasopharyngeal dead space, while providing optimal

gas conditioning. Nevertheless, current evidence supports the use of HFNC mainly in

moderate-to-severe bronchiolitis, whereas for asthma exacerbations and breath sleeping

disorders there is a lack of randomized controlled trials comparing HFNC to continuous

positive airway pressure (CPAP) and non-invasive ventilation (NIV), which are essentials

for the identification of response and non-response predictors. In this regard, the

development of clinical guidelines for HFNC, including flow settings, indications, and

contraindications is urgently needed.

Keywords: high-flow nasal cannula (HFNC), oxygen therapy, children, pediatric, respiratory failure, bronchiolitis,

respiratory distress

INTRODUCTION

High-flow nasal cannula (HFNC) oxygen therapy was first introduced into clinical practice in the
early 2000s as an alternative to continuous positive airway pressure (CPAP) to manage apnea in
premature neonates (1). Since then, its use in infants and children with respiratory failure has
steadily grown. Indeed, nowadays HFNC is an extremely popular mode of respiratory support in
pediatric care, due to a number of factors including the availability of easy-to-use devices that are
exceptionally well tolerated by most of the patients, as compared to CPAP or other modes of non-
invasive ventilation (NIV) (2). The HFNC apparatus is designed to provide heated and humidified
gasses, usually air mixed with oxygen, at different flow rates and adjustable concentrations. The gas
is inhaled via a soft and comfortable silicone nasal cannula that fits without occluding the nose.
Although the term “high flow” is generally opposed to “low flow” used for conventional oxygen
therapy (COT), there is no precise definition of what constitutes a high flow, as rates vary according
to the age and weight of the patient, ranging from 2 to 60 L/min (3, 4).
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While originally limited to pediatric intensive care units
(PICU), because of its ease of use, HFNC has now expanded
to a variety of settings, including emergency departments,
inpatient pediatric wards and even patients’ homes (4, 5). As
a result, the body of literature on pediatric HFNC, despite
still being scant compared to the broader range of adults,
has steadily grown. Due to the proven safety and beneficial
effects of heated humidified high flows, the future applications
of HFNC in the pediatric setting will likely increase in the
coming years. Therefore, the aim of this review is to report
information about the most updated understanding on the action
mechanism in children, addressing relevance and limitations of
the current research, in order to provide an outlook on potential
future perspectives.

DEVICES AND SETTINGS

Three types of HFNC devices are currently available for pediatric
patients. The first type, utilized by Optiflow System R© (Fisher
and Paykel, Auckland, New Zealand) (Figure 1A), Precision
Flow R© (Vapotherm, Exeter, UK), and Comfort-Flo R© (Teleflex
Medical, Durham, NC, USA) consists of an air/oxygen blender
that is connected to a system to humidify and heat the gas.
The device can be equipped with a pressure relief valve that
cuts off the flow when a predetermined pressure in the circuit
is reached. The second type, employed by Airvo2 R© (Fisher and
Paykel, Auckland, New Zealand) (Figure 1B), works through an
integrated turbine generating the flow plus a heated humidifier
with the advantage of not requiring an external source of gas,
except from oxygen and nitric oxide. The third type is based on a
CPAP or conventional ventilator with an HFNC breathing circuit
connected to the humidifier.

There is no universal consensus among pediatricians about
the optimal flow. As such, information about appropriate settings
has been retrieved from the most relevant clinical studies in
acute bronchiolitis (6–8). Patients younger than 24 months could
tolerate a flow of 1–2 L/kg/min (up to 20 L/min). Superior flows
had the same reported efficacy but resulted uncomfortable (8).
Considering the child weight:

• 1–2 L/kg/min are recommended up to 10 kg;
• 1 L/kg/min from 10 up to 20 kg;
• 0.8–1 L/kg/min from 20 up to 40Kg;
• 0.5–1.1 L/kg/min for >40Kg.

Cannula size should also be chosen according to age and body
weight. The cross-sectional area of the cannula should not exceed
50% of the nostrils because of the risk of unexpected increases in
airway pressure and subsequent risk of air leakage.

Abbreviations: CO2, carbon dioxide; COT, conventional oxygen therapy; CPAP,

continuous positive airway pressure; FiO2, fraction of inhaled oxygen; HFNC,

high-flow nasal cannula; iNO, inhaled nitric oxide; NIV, non-invasive ventilation;

OSA, obstructive sleep apnea; PEEP, positive end-expiratory pressure; PICU,

pediatric intensive care unit; RCT, randomized control trial; WOB, work of

breathing.

DRUGS NEBULIZATION

Aerosolized drug delivery using HFNC is an attractive modality
of administration since traditional nebulizer masks are often
poorly tolerated by children (9). However, controversies emerged
after some in vitro feasibility evaluation.

The HFNC presents two main limitations: (1) The aerosol
administration via nasal cannulas increases the upper airways
deposition in comparison to oral inhalation (10, 11); (2) High
gas flow rate increases particle deposition by impaction (12–
14). These researches suggest that aerosol particle distribution
is only feasible at flows <6 L/min (9). Using vibrating mesh
nebulizers placed immediately upstream or downstream of
the humidification chamber, about 1–10% of the drug may
be delivered to the lungs, a quantity significantly lower than
amounts delivered with conventional interfaces (up to 25%) (15–
17), but still sufficient to exert clinical effects in pediatric patients.
To date, researches performed in vivo about drug nebulization
using HFNC system are still few. In these studies, performed
in children with respiratory distress due to asthma exacerbation
or bronchiolitis, the inhalation of a bronchodilator through a
nebulizer placed within the HFNC circuit was as effective as
the inhalation through conventional devices, but the level of
comfort was greater (18–20). The positive results observed with
bronchodilators may not be generalized to other drugs (21). For
example, the current HFNC devices are likely to be inefficient for
antibiotics, wherein the drug volume deposited into the lung is
an important factor of efficacy.

PHYSIOLOGICAL EFFECTS OF HFNC

Studies are still ongoing to unravel the full spectrum of HFNC’s
mechanisms of action. It should be noted that HFNC has been
rapidly introduced by clinicians into their daily practice, although
some physiological aspects still remain to be clarified. A list of
these effects in children is provided in Table 1.

Delivery of Fixed Oxygen Concentrations
and Other Gasses
Physiologically, inspiratory flow varies with each breath and so
does the fraction of inhaled oxygen (FiO2) administered via
COT at low flows (22). In patients with respiratory distress, the
inspiratory flow often exceeds the oxygen flow delivered by COT,
resulting in oxygen concentration dilution (23, 24). The delivery
of high flows allowsmatching patients’ inspiratory peak flow (25).
As a result, the FiO2 reaching the lower airways is closer to the
FiO2 delivered by the HFNC device, enabling the possibility of a
fine titration of oxygen administration (26).

This feature has also been exploited to deliver nitric
oxide directly to the lungs. Inhaled nitric oxide (iNO) is
a selective pulmonary vasodilator that decreases pulmonary
arterial pressure and pulmonary vascular resistance without
inducing systemic hemodynamic effects. The iNO therapy using
HFNC has been reported successfully in infants with respiratory
distress and post-extubation after the Fontan procedure (27, 28).
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FIGURE 1 | Fisher and Paykel Optiflow system ® (A) and Fisher and Paykel Airvo 2 ® system (B). Both allow an inhaled oxygen fraction of up to 100% and generate

a flow of up to 60 L/min. The Fisher and Paykel Airvo 2 ® system combines a gas mixer and heater in one device.

TABLE 1 | Physiological effects of COT, HFNC and CPAP/NIV.

Conventional

oxygen therapy

(COT)

High-flow nasal

cannula

(HFNC)

Continuous

positive airway

pressure

(CPAP) /

Non-invasive

ventilation (NIV)

Deliver fixed

concentrations of oxygen

and other gasses

+ +++ ++

Generate positive

end-expiratory pressure

= + +++

Reduce work of breathing = ++ +++

Anatomic dead space

washout

= +++ +

Reduce inspiratory

resistance

= + +++

Gas conditioning = +++ +

Improve mucociliary

clearance

= +++ =

=, no effect; +, low effect; ++, medium effect; +++, high effect.

Generation of Positive End-Expiratory
Pressure, Work of Breathing Reduction
and Washout of Anatomical Dead Space
The high flows produced by HFNC devices are often sufficient
to prevail against children’s expiratory flow and to generate a
small positive end-expiratory pressure (PEEP) in the airways
(29), albeit the pressure delivered by HFNC devices to the
distal airways is difficult to measure. Esophageal manometry
is considered the standard for detecting pleural pressure in

spontaneously breathing patients (30). This technique may be
feasible in adults, but difficult to adopt in children (31). As such,
measurements are often obtained in the experimental settings
(29) by various indirect methods including electrical impedance
tomography on the surface of the chest (32) or electrical activity
of the diaphragm (33). In addition, the generation of PEEP is
linearly dependent on the amount of flow and is influenced by
the weight of the patient, the size of the cannula and nostrils and
the degree of mouth opening (34). Therefore, all these factors
combined could influence results consistency. The few studies
performed measuring pressure in the pharynx and esophagus
reported that a limited PEEP of 2–4 cm H2O was generated by
HFNC in children (35, 36).

The work of breathing (WOB) is the energy expended by

the respiratory muscles to perform their activity. Theoretically,
lowering the respiratory rate and improving thoraco-abdominal

coordination should reduce WOB. The PEEP generated by high

flows has been considered one of the factors contributing to

reducing WOB, via matching intrinsic PEEP and increasing

alveolar recruitment (33, 37). This concept has been challenged
by a recent study from Guglielmo and co-workers. In their
trial, HFNC applied to 22 children with bronchiolitis reduced
breathing effort, without a consistent increase in end-expiratory
lung volume and no significant change in tidal volume or
transpulmonary pressure, raising the hypothesis that PEEP
application is not the primary HFNC mechanism for reducing
WOB in bronchiolitis (38).

HFNC also provides a washout of the “anatomical dead
space,” namely the volume of air located in the first third of the
respiratory tract which does not take part in the gas exchange
process. Clearance of carbon dioxide (CO2) from nasopharyngeal
dead space can also affect theWOB, by producing amore efficient
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ventilation (39–41). The only in vivo study designed specifically
to provide insight into the mechanism of dead space washout
was performed on adult volunteers using tracer gas. It showed
effective clearance in the upper airways directly related to the
HFNC flow rate and time, with subsequently a reduction in
rebreathing of expired air, which could result in improvement
of alveolar ventilation and gas exchange (40). To some extent,
this mechanism might contribute to the HFNC effectiveness in
treating sleep breathing disorders in children. Indeed, reducing
CO2 levels has the potential to improve breathing patterns and
correct apnea and hypopnea (42). Duong et al. showed that
flows delivered at 20 L/min to 4–8-year-old child airway replicas
reduced end-tidal carbon dioxide from baseline values, whereas
delivery of CPAP through a sealed nasal mask increased end-
tidal carbon dioxide from baseline values (43). Thus, further
in vivo studies investigating HFNC therapy as an alternative
to CPAP therapy for treating OSA, should consider potential
beneficial effects of improved gas washout when administering
HFNC distinctly from its use to produce PEEP.

Reduction of Inspiratory Resistance and
Gas Conditioning
The nasopharynx facilitates humidification and warming of the
inhaled gas by contact with its large mucosal surface area, but at
the same time the passage of air through this anatomical region
causes an increase in inspiratory resistance. HFNC minimizes
this resistance by providing nasopharyngeal gas flows via nasal
prongs that match or exceed a patient’s peak inspiratory flow,
with a positive effect on WOB (42).

Non-warmed, non-humidified air can have a detrimental
impact on child upper and lower airways. First, Greenspan et
al. demonstrated that respiration, even for a short time, of not
warmed or humidified air resulted in a significant decrease
in both pulmonary compliance and conductance in ventilated
infants (44). Fontanari et al. provided a physiological explanation
of this phenomenon in their study. They showed that receptors
in the nasal mucosa respond to cold and dry gas to elicit a
protective bronchoconstrictor response in both normal subjects
(45) and asthmatics (46) mediated by the cholinergic system
(47). The beneficial effects of warm, humidified air have been
demonstrated in vivo in infants (48). In fact, although HFNC
provided lower PEEP than CPAP, the pulmonary compliance
was higher, corroborating the hypothesis that conditioning of
respiratory gas could have an impact on the lung, particularly
useful in case of asthma attack, wherein the inhalation of warm
air could reduce bronchoconstriction.

Optimization of Mucociliary Clearance
In muco-obstructive lung diseases, delivery of heated flows
at core temperature and water vapor saturation may improve
airway clearance. An in vitro study has shown that inspired
gas with low humidity even for short periods could impair the
function of human airway epithelial cells (49). Furthermore, air
temperature is also crucial for optimal cilia movement, which
occurs at 37◦C (50). HFNC devices can deliver flow gasses
at 100% humidity and core temperature, features particularly
advantageous in hypersecretory states requiring an optimization

of airway clearance, such as bronchiolitis, cystic fibrosis and
bronchiectasis. At the moment, data on the effect of HFNC
on such conditions are lacking. Only 2 case reports have been
published so far, both showing that long-term home HFNC
reduced atelectasis, hospitalization frequency and improved
mucus drainage in post-acute bronchiolitis and CHARGE
syndrome (51, 52).

CLINICAL APPLICATIONS

Bronchiolitis
Acute bronchiolitis is one of the most frequent diseases
in children under 2 years (53). Multiple microorganisms
are responsible for its clinical manifestations, but respiratory
syncytial virus is by far the most common (53). In recent
years, the use of HFNC has progressively gained popularity over
the current standard of care with COT, especially in case of
moderate-to-severe acute bronchiolitis. Indeed, this nosological
entity represents the main indication for HFNC in patients older
than neonates.

Two large clinical trials benchmarked the HFNC vs. COT
(6, 7). Both reported a lower treatment failure rate, defined as
escalation of care during that hospital admission, in the HFNC
group. However, they showed no differences in duration of
hospital stay, duration of oxygen therapy, or PICU admission
in comparison with COT. A recent systematic review by Lin et
al. likened the effectiveness of HFNC, CPAP and COT in acute
bronchiolitis (54). They found that HFNC and CPAP were both
superior to COT, but treatment failure events were significantly
more frequent in the HFNC group when compared to the CPAP
group. However, the authors included patients with any degree of
bronchiolitis severity, without performing a subgroup analysis in
children with moderate-to-severe bronchiolitis. This limitation
was addressed by Catano-Jaramillo and colleagues in their meta-
analysis (55). They showed that both CPAP and HFNC reduced
the risk for intubation, but a lower rate of therapeutic failures
was found with CPAP, confirming the previous results also
in this cluster of patients. Noteworthy, despite being superior
to HFNC, CPAP produced more adverse events, such as skin
lesions, and was less tolerated. Data available indicate that HFNC
being superior to COT, despite inferior to CPAP, could play a
role in the rescue therapy for children with moderate-to-severe
bronchiolitis because of its ease of use and safety.

Asthma
Due to its beneficial effects on the respiratory system, HFNC
treatment may reduce the WOB during asthma exacerbations.
Furthermore, the use of heated and humidified gas limits the
bronchoconstriction induced by cold dry gas and improves
airways cilia movement, contributing to mobilization of mucus
plugs, hallmark of acute asthma attacks (56). To date, few reports
explored the use of HFNC during asthma exacerbation. Two
retrospective studies (57, 58) showed that treatment with HFNC
improved heart rate, respiratory rate, SpO2/FiO2 ratio, pH level,
and CO2 tension after 3–24 h compared to COT. These findings
were confirmed by a prospective pilot trial by Ballestero et
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al. (59), in which 62 children (1–14 years) with moderate-to-
severe asthma exacerbations were randomly assigned to HFNC
or COT. Two hours after treatment, 53% of the children in
the HFNC group demonstrated a decreased pulmonary score
by at least 2 points vs. 28% in the COT group (p = 0.01).
However, no between-group differences were observed in terms
of PICUs admission and hospital length of stay. Pilar et al.
(60) compared the efficacy of HFNC vs. NIV in a retrospective
analysis. Twenty children received HFNC and eight of them
escalated to NIV whilst 22 received NIV without treatment
failure (p < 0.001). These authors suggested cautions when using
HFNC over NIV, since it could potentially delay the initiation
of NIV, resulting in longer periods of respiratory support and
hospital stay.

Respiratory Support in Case of Congenital
Heart Diseases
It is widely known that high PEEP values impede venous return
and increases central venous pressure (61). In contrast to CPAP,
HFNC supports respiration generating minimal PEEP values
(29), and therefore its effect on central venous pressure is
negligible (42). This mechanism may be of particular interest
for respiratory support in patients with delicate hemodynamic
balance, in whom a high PEEP could exerts deleterious effects.
In a randomized controlled trial (RCT) in pediatric patients
with congenital heart disease undergoing procedural sedation,
the use of HFNC compared with COT, reduced the incidence
of desaturation, the need for NIV and the risk of CO2

retention without causing hemodynamic instability (62). A
case report on a 10-years old patient with Fontan circulation
showed that in comparison to COT, HFNC reduced heart
rate, systemic vascular resistance, pulmonary vascular resistance,
increased cardiac output and improved cerebral circulation,
measured by near-infrared spectroscopy (63). These effects
were likely due to optimal oxygenation achieved without an
increase in central venous pressure which helped to suppress
adrenergic activity. Naohiro et al. conducted a retrospective
study (64) on HFNC versus NIV for acute respiratory failure
after cardiac surgery in children with inborn cardiac defects.
The reintubation rate within 28 days was significantly lower
in the HFNC group (3 vs. 26%, p = 0.04). Furthermore,
the HFNC group’s PICU stays were significantly shorter
than those of the NIV group (10 days vs. 17 days, p
= 0.009).

Obstructive Sleep Apnea
Obstructive sleep apnea (OSA) is the result of upper airway
obstruction during sleep (65, 66). Children with OSA are
at increased risk for neurocognitive and cardiovascular
conditions (67, 68). The current treatment options for OSA
in children include adenotonsillectomy, when applicable,
and CPAP (69) with the latter often impeded by limited
adherence (70, 71). Already in 2009 Brian McGinley and
colleagues delivered high flows (20 L/min) to 12 children
with mild-to-severe OSA, showing that the reduction in
the apnea-hypopnea index on HFNC was comparable to
that on CPAP (72). More recently, in two observational

studies (73, 74) conducted in CPAP-intolerant children
with moderate-to-severe OSA, HFNC reduced nocturnal
respiratory events and improved oxygen saturation. In a
case series (75), long-term home HFNC was successful in
treating five children with severe OSA. Despite this limited
evidence, HFNC might be considered as a rescue option
in children not compliant to CPAP treatment. However,
RCTs comparing CPAP to HFNC are warranted to provide
definitive results.

Pneumonia
The HFNC role in the management of children with acute
respiratory failure due to pneumonia includes two RCTs (76, 77).
In the first one (76), there was no difference in treatment failure
between bubble CPAP and HFNC, but the study was stopped
prematurely because of the high mortality rate in the COT group.
Later, Cong Liu and co-workers (77) evaluated 84 children under
2 years of age in a RCT on HFNC vs. CPAP in the management
of mild-to-moderate respiratory failure due to pneumonia.
No differences were observed in terms of treatment failure
necessitating intubation and transfer to the PICU, duration of
hospital stay, non-invasive respiratory support and mortality. In
addition, the HFNC group had a lower level of nasal injury,
abdominal distension and better tolerance. However, since low
PaO2/FiO2 ratio was associated with HFNC failure, the authors
were cautious suggesting that HFNC should be considered as an
intermediate level of respiratory support between COT and NIV.

Future Potential Use of the HFNC
Bronchiectasis and cystic fibrosis are associated with a chronic
mucus secretion. For these conditions improving the muco-
ciliary clearance is pivotal in order to prevent recurrent infections
and therefore to preserve long-term function. The use of HFNC
is particularly promising in the management of these conditions
(78) for the aforementioned beneficial effects of humidified and
heated gas flows on the airway cilia. To date, no studies have
been published so far on pediatric patients with cystic fibrosis
and only two case reports evaluated the effectiveness of long-term
home HFNC in children with bronchiectasis with reduction in
the frequency of pulmonary infection (51, 52).

Interhospital transport is a delicate moment for an ill

child. Clinical deterioration following interhospital transport

accounts for 30% of entire PICU admission, and is associated
with increased rate of invasive ventilation use and prolonged

PICU stay (79). An Australian study published in 2021 (80)
reported that the implementation of HFNC on interhospital

transport was associated with reduced PICU length of stay
and respiratory support use, thus supporting its employment in
this setting.

Further case reports have also described the effects of HFNC in
children with acute pulmonary edema (81) and a pediatric burn
patient with post extubation stridor (82).

CONCLUSION

The HFNC is a relatively safe and well-tolerated respiratory
support suitable to a broad range of hospital and
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domiciliary settings. Several physiological mechanisms
are responsible for its effectiveness. Studies published so
far support their superiority over COT in almost every
condition, with stronger evidence for rescue therapy for
acute bronchiolitis. Notwithstanding, better designed and
controlled studies are required to define the role of HFNC
vs. CPAP and NIV, in order to better understand the

predictors of non-response and avoid respiratory support
escalation delay.
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