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Radiomics involves high-throughput extraction and analysis of quantitative information

from medical images. Since it was proposed in 2012, there are some publications on

the application of radiomics for (1) predicting recurrent acute pancreatitis (RAP), clinical

severity of acute pancreatitis (AP), and extrapancreatic necrosis in AP; (2) differentiating

mass-forming chronic pancreatitis (MFCP) from pancreatic ductal adenocarcinoma

(PDAC), focal autoimmune pancreatitis (AIP) from PDAC, and functional abdominal pain

(functional gastrointestinal diseases) from RAP and chronic pancreatitis (CP); and (3)

identifying CP and normal pancreas, and CP risk factors and complications. In this

review, we aim to systematically summarize the applications and progress of radiomics in

pancreatitis and it associated situations, so as to provide reference for related research.

Keywords: radiomics, acute pancreatitis, chronic pancreatitis, autoimmune pancreatitis, pancreatic ductal

adenocarcinoma, computed tomography, magnetic resonance imaging, positron emission tomography/computed

tomography

INTRODUCTION

Radiomics and Its Process
Inspired by the knowledge systems and research fields of such as genomics, proteomics,
radiogenomics, etc., Lambin et al. first proposed the concept of radiomics in 2012 (1–
6). Radiomics refers to high-throughput extraction and analysis of a large number of
advanced quantitative imaging features from medical images obtained by computed tomography
(CT), magnetic resonance imaging (MRI) or positron emission tomography (PET) (2). The
workflow of radiomics mainly includes the following steps (1–6). (1) Image acquisition is
the first step of radiomics. The images may come from CT, MRI, PET, as well as X-
ray radiography and ultrasonography (US), etc. (7–10). Because the distribution of images
features may be affected by many factors such as equipment vendors, scanning protocols,
imaging parameters, reconstruction algorithms, etc., it is of great importance to establish
standards and consensus imaging protocols. (2) Image segmentation uses dedicated software
to draw two dimensions (2-D) or three dimensions (3-D) of regions of interest (ROIs)
of lesions or organs by means of manual, semi-automatic, or automatic segmentations.
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(3) Image preprocessing is to homogenize the data before
extracting radiomics features which mainly includes two
methods: image resampling and gray-level discretization
(4). Features extraction uses dedicated software or software
packages to extract morphological features, first-order
statistical features, second-order statistical features, and
high-order statistical features from 2-D or 3-D ROIs after
segmentation. Morphological features (n = 16) are used to
describe the 3-D shape and size of a ROI including asphericity,
compactness, maximum diameter, sphericity, surface area,
surface to volume ratio, volume, etc. The first-order statistical
feature (n = 18) represents the histogram of voxel intensity
values contained within a ROI to include mean, median,
maximum, minimum, standard deviation, percentile, skewness,
kurtosis, uniformity, energy, entropy, etc. Second order
statistical features are used to describe the spatial distribution
of voxel intensities within a ROI to include gray-level co-
occurrence matrix (GLCM), gray-level run-length matrix
(GLRLM), gray-level size-zone matrix (GLSZM), gray-level
distance-zone matrix (GLDZM), neighborhood gray tone
difference matrix (NGTDM), and neighboring gray level
dependence (NGLDM). After applying filters or mathematical
transformations to the images, the higher-order statistics
features can be obtained (5). Feature selection is the process
of removing redundant features and selecting the most
relevant features according to specific research tasks. Common
methods are univariate analysis, logistic regression analysis,
least absolute shrinkage and selection operator (LASSO),
minimum redundancy maximum relevance (MRMR), etc.
(6). Modelization and validation is after a classification or
prediction model is established, it needs to be tested internally
and externally to evaluate the robustness and repeatability of
the model.

In recent years, due to the progress and rapid developments
of various hardware and software technologies, radiomics
has gradually developed into a relatively mature discipline
or medical image analysis method (1). There are more
and more publications on the application of radiomics for
the diagnosis, differential diagnosis, treatment options, and
prognosis evaluation of many human diseases (11–16). Among
them, Hong et al. (13) extracted 10 radiomics features from
the contrast-enhanced CT (CECT) images of 241 patients
with a bone island or osteoblastic metastasis to establish a
random forest (RF) prediction model. The results showed
that the RF model based on CT was helpful to differentiate
bone islands from osteoblastic metastases, and its diagnostic
performance was higher than that of inexperienced radiologists
but equivalent to that of experienced radiologists. In another
study, Tian et al. (16) reported the diagnostic value of
preoperative evaluation of microvascular invasion of solitary
small hepatocellular carcinoma (HCC) based on nomogram of
gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid
(Gd-EOB-DTPA) enhanced MRI. The results indicated that
the clinical-radiological-radiomics model achieved the highest
diagnostic performance with area under the receiver operating
characteristic curves (AUCs) of 0.934, 0.889 and 0.875 for the
training, internal and external validation sets, respectively.

In this review, we aim to systematically summarize the
applications and progress of radiomics in pancreatitis and
associated situations (Table 1) so as to provide reference for
related research.

CLINICAL APPLICATIONS

Predicting Recurrent Acute Pancreatitis
Acute pancreatitis (AP) is a common disease in clinical practice
and meta-analysis showed that the annual incidence rate of
AP in the world is about 33.74/100 000, along with an annual
mortality rate of about 1.16/100 000 (36). With the increase
in population aging, biliary calculus, hyperlipidemia, obesity,
and many other AP risk factors, the incidence of AP is also
gradually increasing (37–39). Recurrent acute pancreatitis (RAP)
is a special type of pancreatitis, and it is different from AP and
chronic pancreatitis (CP). The definition of RAP is that patients
should experience at least two separate episodes of AP at least
3 months apart, and there are no abnormities in pancreatic
tissue structure or function in remission (40). It is reported that
the recurrence rate of AP is about 10–30% (17). About 10%
of patients with first-episode of AP and 36% of patients with
RAP may progress to CP, and the risk is higher among men,
smokers, and alcoholics (41). Another study also reported that
CP may increase the risk of pancreatic cancer (PC) in patients
(42). After 5 and 9 years of the diagnosis of CP, the risk of
PC in CP patients increased by eight times and three times,
respectively. Therefore, early prediction of RAP and appropriate
management measures can not only decrease the recurrence of
AP, but it also prevents or delays its progression to CP and
even PC.

Chen et al. (17) included 389 first-episode AP patients. On
the CT images of arterial and venous phases, 412 radiomics
features were extracted from the ROIs of the whole pancreatic
parenchyma, and 10 features were finally selected to establish
the prediction model. In the training cohort (n = 271,
including 145 patients with AP and 126 patients with RAP),
the sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), accuracy and AUC of the
radiomics model in predicting patients with RAP were 86.7%,
87.6%, 89.7%, 84.1%, 87.1%, and 0.941%, respectively. In the
validation cohort (n = 118, including 63 patients with AP
and 55 patients with RAP), the same diagnostic indexes of
the radiomics model in predicting patients with RAP were
83.8%, 97.7%, 98.4%, 78.2%, 89.0%, and 0.929%, respectively.
The results in the training and validation cohorts were all
significantly higher than those of the clinical model (all P-
values < 0.05).

Quantitative investigation on predicting RAP is still in a
paucity at present. Previous studies mostly focused on the
risk factors of RAP after the first attack of AP such as
demography (like gender, age, etc.), and clinical characteristics
(like etiology, local complications, etc.) (43–45). Chen et al.
(17) first showed that the radiomics model based on CECT
exhibits promising value in the early prediction of RAP.
In another similar study, Hu et al. (18) constructed a
multivariate logistic regression radiomics model, radiomics,
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TABLE 1 | Characteristics of the included publications on radiomics in pancreatitis.

Study ID Year Country Design Sample

size

Objective (s) Reference standard Imaging modality Imaging phases (slice

thickness)

Segmentation

method

Segmentation

software

Feature

extraction

software

Feature

type

Chen et al.

(17)

2019 China Retrospective 389 Predicting the

recurrence of AP

Follow-up Somatom Definition AS

and Somatom Definition

Flash (Siemens

Healthineers), and

LightSpeed VCT (GE

Healthcare)

Arterial phase and

venous phase images

(5.0mm)

Manual IBEX IBEX S and Q

Hu et al. (18) 2022 China Retrospective 190 Predicting the

recurrence of AP

Follow-up 3.0 T MRI (Discovery

750, GE Healthcare)

T2WI (5.0mm) Manual IBEX IBEX S and Q

Lin et al. (19) 2020 China Retrospective 259 Predicting severity of

AP

2012 revised Atlanta

classification of AP

3.0T MRI (Discovery

750, GE Healthcare)

Portal venous phase

images (5.2mm)

Manual IBEX IBEX S and Q

Zhou et al.

(20)

2021 China Retrospective 135 Predicting EXPN in AP Pathology and

follow-up

3.0 T MRI (Discovery

750, GE Healthcare)

T2WI images of extra

pancreatic collections

and late arterial phase

images of the pancreatic

parenchyma (6.0mm)

Manual IBEX IBEX S and Q

Zhang et al.

(21)

2022 China Retrospective 138 Differentiating MFCP

from PDAC

Pathology and CP

consensus

Brilliance-16P (Philips

Healthcare) and Aquilion

ONE (Canon Medical

Systems)

Portal venous phase

images

Manual 3D Slicer Pyradiomics S and Q

Liu et al. (22) 2022 China Retrospective 102 Distinguishing PC from

MFCP

Pathology and

follow-up

3.0 T MRI (MAGNETOM

Skyra, Siemens

Healthineers)

Axial T1WI, T2WI, DWI

(b=800 s/mm2 ), and

ADC images

Manual ITK-Snap Pyradiomics S and Q

Ma et al. (23) 2022 China Retrospective 175 Differentiating between

PC and CP (AIP and

MFCP)

Including pathology

and follow-up

Discovery CT 750 HD,

Revolution CT, and

Optima CT660 (GE

Healthcare)

Arterial phase and

venous phase images

Manual MITK Pyradiomics S and Q

Deng et al.

(24)

2021 China Retrospective 119 Distinguishing PDAC

from MFCP

Pathology 3.0 T MRI (Discovery

750, GE Healthcare)

Axial T1WI, T2WI, and

the arterial phase and

portal venous phase

images

Manual IBEX IBEX S and Q

Ren et al. (25) 2020 China Retrospective 109 Differentiating MFCP

from PDAC

Pathology Brilliance 64 (Philips

Healthcare) and Optima

670 (GE Healthcare)

Unenhanced CT images

(3.0mm)

Manual ITK-SNAP Analysis Kit Q only

Ren et al. (26) 2019 China Retrospective 109 Differentiating MFCP

from PDAC

Pathology Brilliance 64 (Philips

Healthcare) and Optima

670 (GE Healthcare)

Arterial and portal phase

CT images (3.0mm)

Manual ITK-SNAP Analysis Kit S and Q

Zhang et al.

(27)

2019 China Retrospective 109 Differentiating MFCP

from PDAC

Pathology Brilliance 64 (Philips

Healthcare), Light speed

VCT and Discovery

HD750 (GE Healthcare)

Parenchymal phase

images (5.0mm)

Manual ITK-SNAP Analysis Kit S and Q

Li et al. (28) 2022 China Retrospective 97 Differentiating AIP from

PDAC

Pathology and

follow-up

Brilliance-16P (Philips

Healthcare); Aquilion

ONE (Canon Medical

Systems)

Portal venous phase

images (0.8/1.0mm)

Manual 3D Slicer Pyradiomics S and Q

(Continued)
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TABLE 1 | Continued

Study ID Year Country Design Sample

size

Objective (s) Reference standard Imaging modality Imaging phases (slice

thickness)

Segmentation

method

Segmentation

software

Feature

extraction

software

Feature

type

Liu et al. (29) 2021 China Retrospective 112 Differentiating AIP and

PDAC

Pathology and

follow-up

PET/CT (Biograph64,

Siemens Healthineers)

early and delayed

imaging (3.0mm)

Manual 3D Slicer MATLAB

R2018a

S and Q

Linning et al.

(30)

2020 China Retrospective 96 Differentiating AIP and

PDAC

Pathology and

follow-up

A range of helical

multidetector (16, 64,

128, and 256 slices)

Non-contrast, arterial,

and venous phases

(1.0-5.0mm)

Manual In-house

imaging

platform

In-house

MATLAB 2016b

program

S and Q

Park et al. (31) 2020 USA Retrospective 182 Differentiating AIP from

PDAC

Pathology and

follow-up

Somatom Definition,

Definition Flash, or

Force, and Somatom

Sensation (Siemens

Healthineers)

Arterial phase and

venous phase images

(0.75/3.0mm)

Manual Velocity AI Velocity AI S and Q

Zhang et al.

(32)

2019 China Retrospective 111 Differentiating AIP and

PDAC

Pathology and

follow-up

PET/CT (Biograph64,

Siemens Healthineers)

- (0.98mm) Manual 3D Slicer MATLAB

R2017a

Q only

Zhang et al.

(33)

2019 China Retrospective 111 Differentiating AIP and

PDAC

Pathology and

follow-up

PET/CT (Biograph64,

Siemens Healthineers)

- (0.6mm) Manual 3D Slicer MATLAB

R2017a

S and Q

Mashayekhi

et al. (34)

2020 USA Retrospective 56 Differentiating FAP,

RAP, and CP

Clinical criteria Including Sensation 64

(Siemens Healthineers)

Portal venous phase

images (3mm)

Manual In-house

MATLAB

program

In-house

MATLAB

program

Q only

Frøkjær et al.

(35)

2020 Denmark Retrospective 99 Differentiating CP from

healthy pancreas;

classification of CP

based on two risk

factors and two

complications

Lüneburg criteria 1.5T MRI (Signa HDxt,

GE Healthcare)

DWI (b = 0 s/mm2)

(2.6mm)

Manual 3D Slicer Pyradiomics Q only

Study ID Type of extracted

features

Number of

extracted

features

Number of

statistically

significant features

Feature reduction and

classification method

Modeling method Evaluation index Main conclusions %RQS

(points)

Chen et al. (17) Shape features;

First-order texture

features; Second-order

texture features

412 10 (five from arterial

phase and five from

portal phase)

Independent samples t-test,

Mann-Whitney U test,

LASSO regression, and

Spearman correlation

Multivariable logistic

regression analysis and

SVM

ROC curve analysis for

radiomics and clinical

models

The radiomics model based

on CECT performed well in

predicting AP recurrence

16 (44%)

Hu et al. (18) Shape features;

First-order texture

features; Second-order

texture features

513 4 LASSO Multivariable logistic

regression analysis

ROC curve analysis for

radiomics, clinical, and

combined models

Radiomics features based on

MRI-T2WI could be used as

biomarkers to predict the

recurrence of AP

12 (33%)

Lin et al. (19) Shape features;

First-order texture

features; Second-order

texture features

353 11 Independent sample t-test,

Mann–Whitney U test, and

Boruta algorithm

SVM ROC curve analysis for

radiomics model, and

scoring systems of APACHE

II, BISAP and MRSI

CEMRI based radiomics

model had good performance

in the early prediction of AP

severity

15 (42%)

(Continued)
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TABLE 1 | Continued

Study ID Type of extracted

features

Number of

extracted

features

Number of

statistically

significant features

Feature reduction and

classification method

Modeling method Evaluation index Main conclusions %RQS

(points)

Zhou et al. (20) Shape features;

First-order texture

features; Second-order

texture features

350 22 (12 from the

extrapancreatic

collection images and

10 from the pancreatic

parenchyma images)

Independent sample t-test,

Mann–Whitney U test, and

LASSO

SVM ROC curve analysis for

radiomics models, clinical

model, and scoring systems

of EPIM and MRSI

The MRI-based radiomics

models of both the

extrapancreatic collections

and the pancreatic

parenchyma had excellent

predictive performance for

early EXPN

16 (44%)

Zhang et al. (21) Shape features;

First-order texture

features; Second-order

texture features

1,409 8 Variance analysis,

Spearman’s correlation

analysis, and LASSO

Multivariable logistic

regression analysis

ROC curve analysis for the

CT model and radiomics

models

The CT and radiomics models

both were shown to be

reasonably accurate in their

differentiation of MFCP from

PDAC in patients with CP

15 (42%)

Liu et al. (22) Shape features;

First-order texture

features; Second-order

texture features

960 6 (1 from T1WI, 2 from

T2WI, 1 from DWI, and

2 from ADC maps)

MRMR and LASSO

algorithms

Nomogram of the mixed

model incorporating the

radiomic signature, the

CA19–9 level, and the

CEA level

Individual T1WI, T2WI, DWI,

and ADC models; clinical

model; multiparametric MRI

model; mixed-prediction

model

A comprehensive model

based on multiparametric MRI

and clinically independent risk

factors displayed the best

evaluation performance

16 (44%)

Ma et al. (23) Shape features;

First-order texture

features; Second-order

texture features

1,037 2 (both from venous

phase CT images)

Preserve features with good

consistence, univariate

Wilcoxon rank–sum test,

correlation analysis, LASSO

Multivariable logistic

regression analysis

ROC curve analysis for the

arterial phase, venous

phase, and arterial phase

combined with venous

phase radiomics model;

clinical feature model;

radiomics combined with

clinical feature

comprehensive model

The radiomics combined with

clinical feature model could be

a potential tool to distinguish

PC from CP

16 (44%)

Deng et al. (24) First-order texture

features; Second-order

texture features

410 28 (the number of

included features in the

T1WI, T2WI, arterial

phase and portal

venous phase feature

subsets were 5, 7, 7,

and 9, respectively)

Independent sample t-test,

Mann–Whitney U test,

LASSO

SVM ROC curve analysis for

T1WI, T2WI, and the arterial

phase and portal venous

phase radiomics models,

and a clinical model

Radiomic models based on

multiparametric MRI have the

potential to distinguish PDAC

from MFCP

17 (47%)

Ren et al. (25) Shape features;

First-order texture

features; Second-order

texture features

396 10 Mann–Whitney U test and

MRMR

RF ROC curve analysis for

radiomics model

Unenhanced CT texture

analysis can be a promising

non-invasive method in

discriminating MFCP from

PDAC

10 (28%)

Ren et al. (26) Shape features;

First-order texture

features; Second-order

texture features

396 9 (five were arterial

phase texture

parameters and four

portal phase texture

parameters)

Mann–Whitney U test and

MRMR

Multivariate logistic

regression analysis

ROC curve analysis for

imaging feature-based,

texture feature-based

models in arterial phase,

and portal phase, and the

combined model

CT texture analysis

demonstrates great potential

to differentiate MFCP from

PDAC

10 (28%)

(Continued)
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TABLE 1 | Continued

Study ID Type of extracted

features

Number of

extracted

features

Number of

statistically

significant features

Feature reduction and

classification method

Modeling method Evaluation index Main conclusions %RQS

(points)

Zhang et al. (27) First-order texture

features; Second-order

texture features

160 4 LASSO Multivariate logistic

regression analysis

ROC curve analysis for

imaging feature-based,

texture feature-based

models in parenchymal

phase, and the combined

model

The CECT combined with

texture analysis model has the

best diagnostic efficiency for

differentiating MFCP from

PDAC

10 (28%)

Li et al. (28) Shape features;

First-order texture

features; Second-order

texture features

1,409 4 (from portal venous

phase CT images

Variance analysis,

Spearman’s correlation

analysis, and LASSO

Radiomics score ROC curve analysis for

radiomics score

The portal rad-score can

accurately and non-invasively

differentiate fAIP from PDAC

10 (28%)

Liu et al. (29) Shape features;

First-order texture

features; Second-order

texture features; MIP

features

514 10 (three from CT, four

from PET-early, and

three from PET-delay)

SVM-RFE SVM-LKF ROC curve analysis for

fusion feature based model,

dual-time PET/CT images

radiomics model and clinical

diagnostic indicators based

model

The radiomics model based

on 18F-FDG PET/CT dual-time

images provided promising

performance for

discriminating AIP from PDAC

15 (42%)

Linning et al. (30) Shape features;

First-order texture

features; Second-order

texture features

1,160 18 (six from

non-contrast, arterial,

and venous phases,

respectively)

Unsupervised hierarchical

clustering, MRMR, and IFS

RF ROC curve analysis for the

non-contrast, arterial phase,

venous phase, and hybrid of

three phases radiomics

models

Radiomics is helpful for a

differential diagnosis of AIP in

clinical practice as a

non-invasive and quantitative

method

9 (25%)

Park et al. (31) Shape features;

First-order texture

features; Second-order

texture features; Filtered

image features

431 35 MRMR RF ROC curve analysis for the

arterial phase and venous

phase radiomics features

Radiomic features help

differentiate AIP from PDAC

8 (22%)

Zhang et al. (32) First-order texture

features; Second-order

texture features; Filtered

image features

418 8 Fisher’s criterion >0.01 and

SFS

SVM ROC curve analysis for

different feature selection

and classification methods

The results proved that

texture analysis of lesions

helps to achieve accurate

differentiation of AIP and

PDAC

13 (36%)

Zhang et al. (33) Shape features;

First-order texture

features; Second-order

texture features

251 10 Spearman correlation,

MRMR, and SVM

RF, adaptive boosting,

and SVM

ROC curve analysis for

different feature selection

and classification methods

Radiomics could aid the

non-invasive differentiation of

AIP and PDAC in 18F-FDG

PET/CT images and the

integration of multi-domain

features is beneficial for the

differentiation

15 (42%)

Mashayekhi et al.

(34)

Shape features;

First-order texture

features; Second-order

texture features

54 11 Wilcoxon rank-sum test Isomap and SVM ROC curve analysis for

radiomic features

Certain radiomic features on

CT imaging can differentiate

patients with FAP, RAP, and

CP

10 (28%)

(Continued)
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and clinical characteristics combined model based on MRI-
T2WI, and their results were consistent with those of Chen
et al. (17).

Predicting Clinical Severity of AP
Based on the 2012 revised Atlanta classification and definition
(2012-RACD) by international consensus, AP can be divided
into three categories stratified by its clinical severity: mild
acute pancreatitis (MAP), moderately severe acute pancreatitis
(MSAP), and severe acute pancreatitis (SAP) (46). MAP
is characterized by no organ failure and local or systemic
complications. It can return to normal within 1–2 weeks. Usually,
there is no need for an imaging examination of the pancreas,
and the mortality rate is very low. MSAP is characterized by
transient organ failure (<48 h), or accompanied by local or
systemic complications, while no persistent organ failure (more
than 48 h) exists. MSAP can be cured without intervention or
may require long-term specialist care. The mortality rate of
MSAP is much lower than that of SAP. SAP is characterized
by persistent single or multiple organ failure (more than 48 h).
Patients with persistent organ failure usually have one or more
local complications. In the first few days after AP onset, patients
with persistent organ failure have an increased risk of death,
and the mortality reported in the literature is as high as 36–
50% (46), and the mortality rate of patients with persistent
organ failure complicated with infectious necrosis is very high
(46). Therefore, early prediction of the clinical severity of
AP is of utmost importance, which is not only good for the
early diagnosis and treatment of MSAP and SAP patients, and
also in favor of the early diversion or referral of MSAP and
SAP patients.

Currently, methods of early predicting the clinical severity
of AP mainly depend on clinical characteristics [such as
scoring systems of acute physiology and chronic health
evaluation II (APACHE II, ≥eight points), bedside index for
severity in acute pancreatitis (BISAP, ≥three points), Ranson
(≥three points) and modified Marshall score (≥two points)],
laboratory tests [such as C-reactive protein concentration
(≥150 mg/l), serum procalcitonin (>0.5 ng/ml), interleukin-
6 (>50 pg/l) and neutrophil/lymphocyte ratio (>10)] as well
as findings on imaging examinations [such as computed
tomography severity index (CTSI, ≥four points), modified
computed tomography severity index (mCTSI, ≥four points),
and extrapancreatic inflammation on computed tomography
(EPIC, ≥four points)] (47–50).

Lin et al. (19) first reported a contrast-enhanced MRI
(CEMRI) based radiomics model to predict the clinical severity
of AP (MAP vs. MSAP and SAP). In their study, they included
259 AP patients into the training (n = 180, with 99 MAP and 81
MSAP and SAP patients) and validation cohorts (n = 79, with
43 MAP and 36 MSAP and SAP patients). From the portal vein
phase images, Lin et al. (19) extracted 353 radiomics features
from the ROIs that contained the whole pancreatic parenchyma,
and finally they selected 11 features to establish the support vector
machine (SVM) model. In the training cohort, the sensitivity,
specificity, PPV, NPV, accuracy, and AUC of the radiomics model
to distinguish MAP from MSAP or SAP patients were 77.8%,
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91.9%, 88.7%, 83.5%, 85.6%, and 0.917%, respectively. In the
validation cohort, the corresponding diagnostic indexes of the
radiomics model in distinguishing MAP from MSAP or SAP
patients were 75.0%, 86.0%, 81.8%, 80.4%, 81.0%, and 0.848%,
respectively. The both AUCs were significantly higher than that
of APACHE II, BISAP, and MRSI scoring systems (all P-values
were <0.05). This study showed that when compared with some
existing clinical and radiological scoring systems, the portal phase
MRI radiomics model may be more accurate in early predicting
the clinical severity of AP.

Predicting Extrapancreatic Necrosis in AP
Based on the 2012-RACD (46), AP can be divided into two
categories according to its morphological manifestations on
imaging examination: (1) interstitial edematous pancreatitis
(IEP; about 85%); and (2) necrotizing pancreatitis (NP; about
15%). Based on the distribution and location of necrosis,
NP can be further subdivided into three subtypes (46):
(1) combined pancreatic and peripancreatic necrosis (about
75.0%); (2) peripancreatic necrosis only (about 20.0%); and (3)
pancreatic necrosis only (about 5.0%). The literature indicates
that compared with NP, the mortality rate of IEP is about 3.0%
while the mortality rate of NP is about 17%; and if combined with
infection, the mortality rate of NP can rise to about 30% (46, 51).
Consequently, it is of great clinical significance to distinguish
IEP from NP for predicting the prognosis of AP patients. In
the international structured reporting template of AP based on
CECT published in 2020, experts also highlighted the importance
of radiologists to clarify the morphologic subtypes of AP, the
degree and anatomic area involvement of NP, the type and
location of peripancreatic collections, and some other key points
in the CT reports (51).

Zhou et al. (20) used an MRI based radiomics model to
predict early extrapancreatic necrosis (EXPN) in patients with
AP. They enrolled 135 AP patients who were divided into
the training (n = 94, with 47 EXPN and 47 APFC patients)
and validation cohorts (n = 41, with 20 EXPN and 21 APFC
patients). On the T2WI and late arterial phase images, Zhou
et al. (20) extracted 350 image radiomics features from ROI
of the peripancreatic collections (T2WI) and entire pancreatic
parenchyma (late arterial phase). After dimension reduction and
feature selection, 22 features (12 from the T2WI and 10 from the
late arterial phase images) were selected for establishing SVM
model. In the training cohort, the sensitivity, specificity, PPV,
NPV, accuracy, and AUC of the T2WI peripancreatic collections
and late arterial phase pancreatic parenchyma radiomics models
for predicting EXPN were 97.9% and 87.2%, 85.1% and 87.2%,
86.8% and 87.2%, 97.6% and 87.2%, 91.5% and 87.2%, 0.969% and
0.931%, respectively. In the validation cohort, the corresponding
diagnostic parameters of the T2WI peripancreatic collections and
late arterial phase pancreatic parenchyma radiomics models for
predicting EXPNwere 95.0% and 75.0%, 90.5% and 90.5%, 90.5%
and 88.2%, 95.0% and 79.2%, 92.7% and 82.9%, 0.976 and 0.921%,
respectively. Both of the AUCs were significantly higher than
those of clinical model, EPIM and MRSI scoring systems (all P-
values < 0.05). This investigation showed that when compared
with some existing clinical model and radiological scoring

systems, theMRI radiomicsmodel based on T2WI peripancreatic
collections and late arterial phase pancreatic parenchyma may be
able to accurately predict EXPN in AP patients at an early stage.

Differentiating Mass-Forming Chronic
Pancreatitis From Pancreatic Ductal
Adenocarcinoma
Pancreatic ductal adenocarcinoma (PDAC) is a malignant
tumor that originating from pancreatic ductal epithelial cells,
accounting for about 80–90% of all the pancreatic cancer (PC)
patients with about 60–70% of the PDACs occur in the pancreatic
heads (52, 53). The prognosis of PDAC is very poor (<10%)
and surgery has always been considered the first choice for
the treatment of PDAC (52, 53). The mass-forming chronic
pancreatitis (MFCP) is a special type of CP. Documents reported
that MFCP accounts for about 27–50% of CP, and the vast
majority of MFCP is located in the pancreatic heads (about
71%) (54–56). MFCP and PDAC share significant overlaps in the
clinical manifestations (such as upper abdominal pain, nausea,
weight loss, jaundice, diabetes, etc.), risk factors (such as alcohol,
smoking, etc.), laboratory tests (such as elevated carbohydrate
antigen 199 (CA199) and carcinoembryonic antigen (CEA)
levels), and imaging findings (such as delayed enhancement)
(57, 58). CT and endoscopic ultrasonography guided fine needle
aspiration biopsy (EUS-FNA) can be used to improve the
differential diagnosis accuracy of MFCP and PDAC, but both
modalities are invasive examinations, which not only have
sampling error, and also carry the risks of needle tract tumor
seeding, bleeding, pancreatic juice leakage, etc. (59, 60). As a
result, it is very difficult to accurately distinguish MFCP from
PDAC prior to operation, yet it has very important clinical
significance. Because accurate preoperative diagnosis of early
PADC can prevent it from being resectable to unresectable, and
accurate diagnosis of MFCP can avoid unnecessary surgery.

With the rapid development of medical imaging technologies,
radiomics has begun to be used in the differential diagnosis
of MFCP and PDAC (21–27). For example, Deng et al. (24)
studied 96 patients with PDAC and 23 patients with MFCP. They
extracted four sets of radiomics features from T1WI, T2WI, as
well as arterial and portal phase images of MRI to establish SVM
models.When compared with the clinical model based on clinical
characteristics and the evaluation results of two radiologists, the
results demonstrated that in the primary cohort (n = 64, with
51 PDAC and 13 MFCP patients), the sensitivity, specificity and
AUC of T1WI, T2WI, arterial phase and portal phase radiomics
models, and the clinical model were 0.961, 0.769, and 0.893;
0.941, 0.769, and 0.911; 0.961, 0.923, and 0.958; 0.980, 1.000,
and 0.997; 0.529, 0.692, and 0.516, respectively. In the testing
cohort (n = 55, with 45 PDAC and 10 MFCP patients), the
corresponding diagnostic data were 1.000, 0.733, and 0.882;
0.844, 0.900, and 0.902; 0.956, 0.900, and 0.920; 0.978, 0.900,
and 0.962; 0.422, 0.900, and 0.649, respectively. There were no
significant differences in the diagnostic performances between
the four radiomics models (all P-values > 0.05), but they were
all better than that of the clinical model and the radiologists’
evaluation (all P-values < 0.05). This study demonstrated that
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radiomics may be used to improve the differential diagnosis
accuracy of MFCP and PDAC.

Differentiating Focal Autoimmune
Pancreatitis From PDAC
Autoimmune pancreatitis (AIP) is a special type of CP. Yoshida
et al. first proposed the concept of AIP in 1995; and the
annual incidence rate of AIP is about 3.1/100 000, accounting
for about 1.9%-6.6% of CP (61, 62). Pathologically, AIP is
classified into two subtypes: (1) Type I, lymphoplasmacytic
sclerosing pancreatitis (LPSP); and (2) Type II, idiopathic duct-
centric chronic pancreatitis (IDCP) (61, 63). At present, Type
I AIP has been considered as the pancreatic manifestation
of a systemic disease named IgG4-related disease (IgG4-
RD) and there are now dedicated criteria for IgG4-RD and
some specific organs (like pancreas, biliary tract, kidney,
ophthalmic tissues, and chest) (64–67). On imaging, AIP can
be manifested as diffuse AIP and focal AIP, and about 40%
of Type I AIP and 85% of Type II AIP are localized (64,
65). Focal AIP overlaps obviously with PDAC in clinical
manifestations (such as obstructive jaundice, epigastric pain
or discomfort, weight loss, etc.) and imaging findings (focal
mass in the pancreas), and an accurate differential diagnosis
is very challenging. However, the treatment methods after
the establishment of diagnosis are very different because
AIP responds well to glucocorticoid drugs while PADC
mainly needs comprehensive treatment methods such as
surgery, chemotherapy and radiotherapy. Therefore, the accurate
differential diagnosis of focal AIP and PDAC before the
treatments has very important clinical value. Once focal AIP
is misdiagnosed as PDAC, it will lead to unnecessary surgery,
and once PDAC is misdiagnosed as focal AIP, it may delay the
effective treatments of PDAC.

Radiomics may play a positive role in the differential diagnosis
of focal AIP and PDAC (28–33). Among the studies, Linning
et al. (30) studied 45 patients with focal AIP and 51 patients
with PDAC to evaluate the value of radiomics model based on
multi-phase CECT for the differential diagnosis of focal AIP from
PDAC. The results showed that the sensitivity, specificity, PPV,
NPV and accuracy of unenhanced, arterial phase, portal phase,
and hybrid radiomics models were 71.11%, 86.27%, 77.19%,
82.05%, and 79.17%; 82.22%, 90.20%, 85.19%, 88.10%, and
86.46%; 93.33%, 96.08%, 92.00%, 89.13%, and 90.63%; 93.33%,
96.08%, 94.23%, 95.45%, and 94.80%, respectively. The AUCs
were 0.827, 0.890, 0.953, and 0.977, respectively. The diagnostic
performances were higher than those of the two radiologists (P
< 0.05). In another study, Li et al. (28) used propensity score
matching (PSM) in 45 patients with focal AIP and 51 patients
with PDAC who were matched in gender, age, body mass index
(BMI), and CT characteristics. They evaluated the diagnostic
performance of radiomics model based on portal phase CECT
images in the differential diagnosis of focal AIP and PDAC.
Their results were consistent with the research of Linning et al.
(30) The above two studies have shown that radiomics may
play a positive role in the differential diagnosis of focal AIP
and PDAC.

Differentiating Functional Abdominal Pain,
RAP, and CP
Abdominal pain is a common clinical symptom and one of the
most important reasons for patients to see a doctor. Its etiologies
may come from abdominal solid organs, gastrointestinal tract,
biliary system, urinary system, reproductive system, chest
diseases, or systemic diseases. Because abdominal pain is a
non-specific clinical symptom, early identifying the causes of
abdominal pain helps the clinicians and patients to choose the
appropriate treatment methods. In a study, Mashayekhi et al. (34)
studied 19 patients with functional abdominal pain (functional
gastrointestinal diseases, FGD), 20 patients with RAP, and 17
patients with CP and explored the value of a SVM classifier based
on venous phase images of CECT in distinguishing FGD, RAP,
and CP. The results showed that the overall predictive accuracy
of the SVM classifier was 82.1%. In the one-to-one comparison
of the three groups, the sensitivity, specificity, and AUC of the
FGD group were 79%, 100%, and 0.91%, respectively; the same
diagnostic parameters of the RAP group were 95%, 78%, and
0.88%, respectively; while the sensitivity, specificity and AUC
of the CP group were 71%, 95%, and 0.90%, respectively. The
results suggested that some radiomics featuresmay be an effective
method for radiologists and gastroenterologists to distinguish
FGD, RAP, and CP.

Identifying CP and Normal Pancreas, CP
Risk Factors, and Complications
Frøkjær et al. (35) studied 77 CP patients and 22 healthy controls,
extracted 851 MRI texture features from diffusion-weighted
imaging (DWI) images, and finally constructed five classifier
models to address the potential use of MRI texture analysis
of the pancreas in CP patients. The five radiomics classifiers
were: (1) CP vs. healthy controls (with five selected radiomics
features), (2) alcoholic vs. non-alcoholic etiology of CP (with
nine selected radiomics features), (3) use of tobacco vs. no use
of tobacco (with 10 selected radiomics features), (4) diabetes
vs. no diabetes (with four selected radiomics features), and (5)
pancreatic exocrine insufficiency vs. normal exocrine function
(with three selected radiomics features). The results showed that
the sensitivity, specificity, PPV, and accuracy of the above five
radiomics classifiers were 0.71–0.97, 0.84–1.00, 0.71–1.00, and
0.82–0.98, respectively. These results implied that radiomics may
be a potentially promising tool used to depict early-stage CP and
monitor disease progression.

LIMITATIONS AND SOLUTIONS

Since it was proposed in 2012, due to the progress and rapid
developments of various hardware and software technologies,
radiomics has gradually developed into a relatively mature
research field and knowledge system (1–6, 68). The authors
performed a literature search in the PubMed database with
the strategy of “(Radiomics [Title/Abstract]) OR (Radiomic
[Title/Abstract]).” There were no restrictions on the publication
time, language or research object. As of April 17, 2022,
a total of 5,580 relevant publications were retrieved. This
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search result has proved the degree of attention paid by
researchers and related fields to radiomics in the past 10
years. However, the vast majority of radiomics models reported
in the current literature are still in the stage of developing
research, and their clinical applications have not really been
implemented. The authors believe that this phenomenon is
mainly caused by the limitations of radiomics. The current
radiomics research and clinical applications still have the
following limitations and difficulties (69): (1) the standardization
of medical imaging data is insufficient; (2) the generalization
ability of the models is not good enough; (3) poor biological
interpretability; and (4) the clinical utility of the models needing
to be improved.

Standardization of Medical Image Data
Standardized, homogeneous, and high-quality training data is
an important cornerstone of radiomics research and clinical
applications. Radiomics may refer to the FAIR guiding principles
for scientific data management and stewardship that were
proposed by the international community named Force 11 (The
Future of Research Communications and e-Scholarship 2011)
in 2016 (70). This international community emphasizes that
scientific data management and stewardship should follow the
principles of Findable (F), Accessible (a), Interoperable (I), and
Reusable (R).

Generalization of the Models
The performance of a radiomics model in similar and different
distribution of datasets (such as various times, treatment plans,
geographical locations, etc.) is called the generalization of
a radiomics model. That is to say the reproducibility and
transferability of a radiomics model (71) which is an important
premise for the clinical applications of radiomics. It is also
an important problem that needs to be solved urgently in
radiomics (72, 73). In addition to increasing the data sample
size and data diversity, full-automatic and semi-automatic image
segmentation methods need to be advocated, and reasonable
features selection and dimensionality reduction methods also
need to be adopted (69, 74). Federated machine learning is also
expected to provide effective solutions to the above difficulties
(75, 76).

Biological Interpretability
Radiomics researchers hope to explore the relationships between
certain features and some diseases or clinical endpoints (such
as the diagnosis and differential diagnosis of diseases, options of
treatment schemes, predictions of treatment effects, pathological
classification and grading, gene and protein phenotypes, etc.)
by quantitatively extracting and analyzing image information
(features) that cannot be recognized by human naked eye. This
will provide more help for clinicians and patients for disease
diagnosis and treatments. However, the biological interpretability
of radiomics is still lacking, and the potential biological
significance of each features is still unclear, which seriously

hinders its clinical applications (77–79). Therefore, how can
we improve the biological interpretability of radiomics is an
important problem to be faced in this field.

Clinical Utility
Radiomics models or systems with characteristics of easy to
operate, short learning curve, good user experience, fast running
speed, and broad use scenarios are often more in line with
clinicians’ work habits (80). Applications developed for mobile
phones and internet users may become an effective carrier for the
clinical applications of radiomics models or systems in the future.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Since it was proposed in 2012, radiomics has begun to
demonstrate a promising potential both in scientific research and
in clinical applications, such as predicting RAP, clinical severity
of AP and EXPN of AP, and differentiating MFCP and focal
AIP from PDAC (Table 1). However, most of the published
studies hold the limitations of a single-center, retrospective,
limited sample size, and low radiomics quality score (RQS) (4).
In looking forward to the future, researchers may successively
report some multicenter, prospective, large sample size, and
high RQS studies. In addition to these, predicting AP clinical
outcomes of organ failure, infection, death, hospitalization,
admission to intensive care unit (ICU) and invasive intervention;
quantifying pancreatic exocrine or (and) endocrine insufficiency;
predicting the possibility of AP progress to CP or CP progress
to PC; and effectively combining deep learning or some
other technologies with radiomics may become the potential
directions (81–87).
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