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Objective: To assess the accuracy of probabilistic deep learning models to

discriminate normal eyes and eyes with glaucoma from fundus photographs

and visual fields.

Design: Algorithm development for discriminating normal and glaucoma eyes

using data from multicenter, cross-sectional, case-control study.

Subjects and participants: Fundus photograph and visual field data from 1,655

eyes of 929 normal and glaucoma subjects to develop and test deep learning

models and an independent group of 196 eyes of 98 normal and glaucoma

patients to validate deep learning models.

Main outcome measures: Accuracy and area under the receiver-operating

characteristic curve (AUC).

Methods: Fundus photographs and OCT images were carefully examined

by clinicians to identify glaucomatous optic neuropathy (GON). When GON

was detected by the reader, the finding was further evaluated by another

clinician. Three probabilistic deep convolutional neural network (CNN) models

were developed using 1,655 fundus photographs, 1,655 visual fields, and

1,655 pairs of fundus photographs and visual fields collected from Compass

instruments. Deep learning models were trained and tested using 80% of

fundus photographs and visual fields for training set and 20% of the data for

testing set. Models were further validated using an independent validation
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dataset. The performance of the probabilistic deep learning model was

compared with that of the corresponding deterministic CNN model.

Results: The AUC of the deep learning model in detecting glaucoma

from fundus photographs, visual fields, and combined modalities using

development dataset were 0.90 (95% confidence interval: 0.89–0.92), 0.89

(0.88–0.91), and 0.94 (0.92–0.96), respectively. The AUC of the deep learning

model in detecting glaucoma from fundus photographs, visual fields, and both

modalities using the independent validation dataset were 0.94 (0.92–0.95),

0.98 (0.98–0.99), and 0.98 (0.98–0.99), respectively. The AUC of the deep

learning model in detecting glaucoma from fundus photographs, visual fields,

and both modalities using an early glaucoma subset were 0.90 (0.88,0.91),

0.74 (0.73,0.75), 0.91 (0.89,0.93), respectively. Eyes that were misclassified had

significantly higher uncertainty in likelihood of diagnosis compared to eyes

that were classified correctly. The uncertainty level of the correctly classified

eyes is much lower in the combined model compared to the model based

on visual fields only. The AUCs of the deterministic CNN model using fundus

images, visual field, and combined modalities based on the development

dataset were 0.87 (0.85,0.90), 0.88 (0.84,0.91), and 0.91 (0.89,0.94), and the

AUCs based on the independent validation dataset were 0.91 (0.89,0.93),

0.97 (0.95,0.99), and 0.97 (0.96,0.99), respectively, while the AUCs based on

an early glaucoma subset were 0.88 (0.86,0.91), 0.75 (0.73,0.77), and 0.92

(0.89,0.95), respectively.

Conclusion and relevance: Probabilistic deep learning models can detect

glaucoma from multi-modal data with high accuracy. Our findings suggest

that models based on combined visual field and fundus photograph modalities

detects glaucoma with higher accuracy. While probabilistic and deterministic

CNN models provided similar performance, probabilistic models generate

certainty level of the outcome thus providing another level of confidence in

decision making.

KEYWORDS

deep learning, artificial intelligence, glaucoma, fundus photograph, visual field,
automated diagnosis

Introduction

Glaucoma is a heterogeneous group of disorders that
represents the second leading cause of blindness overall,
affecting up to 91 million individuals worldwide (1, 2). Since
glaucoma can be asymptomatic in early and even intermediate
stages, its diagnosis is often made only after irreversible damage
of the optic nerve and loss of vision have already occurred
(3). Hence, methods for predicting glaucoma could have a
significant impact on public health.

Dilated fundus photography provides convenient and
inexpensive means for recording optic nerve head (ONH)
structure and glaucomatous optic neuropathy (GON)

assessment remains a gold standard for indicating the presence
of glaucoma (4, 5). However, manual assessment of the optic
disc through fundus photographs for glaucoma screening
requires significant clinical training, is highly subjective with
currently limited agreement regarding results even among
glaucoma specialists, and is labor intensive for application to the
general population (6, 7). Moreover, there is a large variation in
disk size among different populations and even within normal
population making clinical diagnosis challenging (8, 9).

Standard automated perimetry (SAP) is a psychophysical
test in which localized light stimuli are presented at pre-
determined locations from fixation in random order to
produce a map of local retinal sensitivity (10, 11). Currently,
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glaucoma is most often diagnosed by a combination of clinical
examinations including evaluation of optic disc and visual
field (12, 13). However, detecting glaucoma using visual fields
remains challenging because visual field testing is subject-
dependent, time-consuming, and visual fields are highly variable
particularly in more deteriorated test points (14, 15).

Nevertheless, fundus photographs and visual fields have
their limitations and benefits in glaucoma assessment and
each testing modality may partially capture an aspect of this
complex condition and be one piece of the glaucoma puzzle.
We hypothesize that multiple modalities together may provide a
better overall portrait of glaucoma and enhance its prediction.
Models based on artificial intelligence (AI) may better suit
multi-modal data analysis compared to conventional statistical
models. Learning from data has advantages over predefined
assumptions and rules to build the knowledge in machine
learning classifiers. Recent advances in AI and deep learning
models, along with significant growth in the amount of available
data, have shown promise and allowed the development of
objective systems for glaucoma diagnosis (16–21).

Deep learning models, however, require large clinically
annotated training datasets to learn promising features from
the images (22). Several studies have shown that deep learning
models can identify disease-induced signs to diagnose disease
or identify the severity of disease from ophthalmic images
with high accuracy in ocular conditions such as diabetic
retinopathy, age-related macular degeneration, and glaucoma
(16–21, 23–27). If successful, deep learning models based on
fundus photographs may provide automated assessment of
glaucoma and impact population-based screening. Successful
deep learning models based on visual fields, however, may
improve glaucoma diagnosis and impact clinical practice.

Most of the applications of deep learning models, however,
have been focused on using fundus photographs or other
modalities in isolation to detect glaucoma, which may prove
useful in screening applications. The aim of the current study
is instead to assess the utility of a combination of fundus
photographs and visual fields and comparing it to models that
use either modality in isolation. Such models may be useful
in clinical practice to identify glaucoma more accurately based
on multiple data modalities. We hypothesize that combining
structural and functional tests can improve detection rate
compared to using a single modality.

Moreover, we partially address the black-box limitation
of deep learning models by providing certainty level of the
model on the generated outcome (how the model is confident
in the likelihood of classification). Standard deep learning
models are deterministic and do not account for the level of
certainty (confidence) of the outcome (28). However, Bayesian
neural network models could provide uncertainty by assigning
prior distributions over network parameters (28). We thus
propose a novel application of probabilistic Bayesian deep

learning model that provide both likelihood and certainty of the
outcome.

Materials and methods

Subjects

Subjects were recruited at eight study sites in Italy,
United Kingdom, and US in 2017. Subjects were recruited
in two separate studies in which the first study included 943
patients (dataset was used to develop and test the models)
and the second study included 98 patients (dataset was used
to independently validate models). Both eyes (one eye in the
second study) of recruited subjects were tested. The fundus
photographs and visual fields of this study were obtained
from the Compass study coordinator. All patients had given
their written informed consent to participate in the study in
2017. Ethics Committee and institutional review board (IRB)
approvals were obtained (International Ethics Committee of
Milan, Prot. N 0019459; clinical trial ISRCTN13800424). This
study adhered to the tenets of the Declaration of Helsinki. The
demographic information of the participants is provided in
Table 1.

Details of inclusion and exclusion criteria can be found
elsewhere (29). Briefly, the inclusion criterion for normal
subjects was having a normal ONH in both eyes with no
evidence of excavation, rim narrowing or notching, disc
hemorrhages, or RNFL thinning and intraocular pressure
(IOP) less than 21 mmHg in both eyes with no ocular
pathologies, trauma, surgeries (apart from uncomplicated
cataract surgery) in both eyes. Glaucoma eyes had GON
defined as glaucomatous changes to the ONH or RNFL as
determined by a specialist from fundus photograph or spectral-
domain OCT, independently of the visual field, and an expert
clinician confirmed the diagnosis of GON. Patients had to be
receiving antiglaucoma therapy. Only patients with no ocular
pathologies, trauma, surgeries (apart from uncomplicated
cataract surgery) other than glaucoma in both eyes were
included.

Standard assessment including axial length measurement
with biometer, spectral-domain OCT of the ONH and RNFL,
visual field examinations with HFA (Swedish interactive
thresholding algorithm; SITA) and CMP (Zippy Estimation
by Sequential Testing; ZEST), and fundus photo with
CMP were performed.

The gold standard for annotating images was based on
clinical diagnosis of GON from the clinical registry of the
glaucoma clinics in the recruiting centers. An expert clinician
confirmed the diagnosis of GON independently using the RNFL
spectral-domain OCT or optic nerve photographs, independent
of the visual field tests.
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TABLE 1 Demographic characteristics of the study.

Characteristic Development
dataset

Independent
dataset

Early glaucoma
subset

Number of subjects 929 98 50

Number of eyes 1,655 196 86

Average age (years) 57.1 52.9 47.7

Average MD (dB) –4.03 –4.06 –2.30

Average PSD (dB) 4.7 4.41 2.47

Race

White 1,429 (86.3%) 144 (73.4%) 64 (74.4%)

Asian 51 (3.1%) 8 (4.1%) 5 (5.8%)

Black 24 (1.5%) 0 0

Unknown 116 (7.0%) 38 (19.4%) 11 (12.8%)

Other 35 (2.1%) 6 (3.1%) 6 (7.0%)

In an independent follow-up study and using a similar
inclusion and exclusion criteria, 98 subjects were recruited for
the purpose of validating the developed models.

Fundus photographs

True color fundus photographs were collected using
Compass (CMP, CenterVue, Padua, Italy) instruments. Compass
is a fundus automated perimeter (FAP) and has been used
in clinical practice recently (30). The structural dataset
included 1,851 fundus photographs from normal subjects and
patients with glaucoma in which 1,655 fundus photographs
corresponded to the first study (development dataset) and were
used to develop and test the models and 196 fundus photographs
corresponded to the second study (validation dataset) and were
used to independently validate the model.

Visual fields

The functional dataset included 1,851 visual fields from
normal subjects and patients with glaucoma in which 1,655
visual fields corresponded to development dataset and 196
visual fields corresponded to the validation dataset. Visual
field examination was performed by CMP using a grid that
contained all the 52 locations tested with HFA 24–2 but with
only 1 blind spot location (instead of 2 as in the 24–2) and
12 additional points in the macular region of the VF using
Zippy Estimation by Sequential Testing (ZEST) strategy. We
excluded all 12 additional macular test points and used a
grid which corresponded to HFA 24–2. As CMP is equipped
with autofocusing, no near correction was needed. Visual
field examinations were considered reliable if the false-positive
frequency and the blind spot response frequency were less than
18 and 25%, respectively (29). If CMP visual field was deemed
unreliable, the test was excluded from the analysis.

Multi-modal dataset of paired fundus
photographs and visual fields

As the fundus camera and VF testing systems are integrated
in one Compass system, fundus photographs and VFs were
collected at the same time. Eyes that both tests were reliable were
included for the multi-modal analysis. The multi-modal dataset
included 1,851 pairs of reliable fundus photographs and visual
fields in which 1,655 corresponded to the first dataset and 196
corresponded to the second dataset.

Image and visual field preprocessing

As Compass instrument retakes fundus images if the quality
is low, the amount of imaging artifacts was minimal. We
performed Gaussian filtering to all fundus photographs to
mitigate the discrepancy among images. The images were
then cropped and resized to 380 × 380 × 3 for the
downstream analysis.

Deep learning models

We developed three different variational Bayesian deep
learning models based on fundus photographs, visual fields,
and combined fundus photographs and visual fields and
assessed the accuracy of the models in detecting glaucoma from
structural, functional, and combined structure-functional data.
To compare models with conventional CNN models, we also
developed three deterministic CNN models based on three types
of the input data modality.

Deep learning model for detecting
glaucoma from fundus photographs

The first deep learning model was developed using a
probabilistic Bayesian convolutional neural network (CNN)
based on fundus photographs (Figure 1). We employed the
EfficientNetB4 (31) architecture and replaced the last fully
connected layer of the CNN model with a global average pooling
(GAP) layer followed by a probabilistic dense layer with two
nodes representing two classes (glaucoma and normal).

To train the deep learning model, we used transfer learning.
Transfer learning essentially transfers a common representation
to the model and makes the convergence faster while providing
more effective framework particularly when dealing with
training datasets with small number of samples. A Gaussian
distribution with standard deviation of 100 was applied on
the parameters of the last dense layer as the priors, so the
model training will be constrained by the Gaussian priors.
The posterior distribution was approximated by a variational
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FIGURE 1

Diagram of the deep learning models. Upper: Deep learning model based on fundus photograph. Middle: Hybrid model based on combined
visual fields and fundus photographs. Lower: 1-D CNN model based on visual fields.

distribution and was estimated by minimizing the Kullback-
Leibler (KL) divergence, or maximizing the evidence lower
bound (ELBO) as Blundell et al. (28) and Loquercio et al.
(32):

F(D, θ) = KL[q(W|θ)||P(w)] − Eq(w|θ)[logP(D|w)]

where D is data, w is network weights, and θ represent
parameters. The cost function embodies a trade-off between
satisfying the complexity of the data D and satisfying the
simplicity prior P(w). Variational learning could identify
parameters θ of the distribution on the weights q(w| θ) such that
the KL is minimized (32). The model was forward propagated
T times, and each time with a different parameter sampled
from the posterior distribution. The output of the model is the
mean and variance derived from T time predictions. Negative
loglikelihood was used as a loss function with NAdam optimizer
and initial learning rate of 0.0001. As we had a relatively large
datasets, parameters of different layers, optimizers, and learning
rates were very well fine-tuned during training.

The number of fundus photographs from normal subjects
and patients with glaucoma were about similar thus provided
a balanced dataset. We performed data augmentation on
fundus photographs make the models independent of spatial
transformations. We therefore applied random horizontal and
vertical flips, rotations (0–45 degrees) and randomly changing
the hue, saturation, and contrast. Batch sizes of 32 images were
generated and NAdam optimizer were used for training.

Deep learning model for detecting
glaucoma from visual fields

The second deep learning model was developed using a
probabilistic Bayesian 1-D CNN model based on visual fields
(Figure 1). As there are only 52 visual field test locations present,
we used a variational Bayesian 1-D CNN strategy to account
for low-resolution aspect of visual field data and avoiding
overfitting. Deep learning models have been previously used
to analyze VF data as well (33). The input to the model were
total deviation values at 52 visual field test locations. To train
the 1-D CNN model for detecting glaucoma from visual fields,
we used 512 filters with 5 kernels for the first layer, 512 filters
and 3 kernels for the second layer, followed by a dense layer
of 1,024 neurons with dropout of 0.25 and a final probabilistic
dense layer. We used SGD optimizer at a learning rate of
0.0001 with momentum of 0.9 and decay of 0.0001 to train the
visual field model.

Deep learning model for detecting
glaucoma from both fundus
photographs and visual fields

The third AI model was a hybrid deep learning construct.
More specifically, we first extracted the fundus features from
the efficientnetB4 base model and GAP layers. We then
concatenated deep fundus features with visual fields total
deviation values followed by a dense layer composed of 512
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neurons. We then added a probabilistic dense layer and used
NAdam optimizer with initial learning rate of 0.0001 to train the
hybrid model. All programs were implemented in Python with
a backend of TensorFlow.

Train, test, and validation

We had access to two independent datasets in the Compass
study that had been collected separately. As such, we used the
first dataset for development including training and testing
(80/20 split) and used the second independent dataset to further
re-test and independently validate the models. We therefore
created three different datasets to develop and evaluate models:
A full development dataset, a full independent validation
dataset, and an early glaucoma subset (–4 dB < MD < –1
dB). The last subset provides a challenging scenario for the
deep learning model as normal eyes and eyes with glaucoma
were required to have MDs between –4 and –1 dB, thus harder
to distinguish compared to full discovery and independent
validation datasets.

We used fivefold cross-validation for training the models,
hyperparameter selection, and testing. In each fold of the cross
validation, the 80% of examples from each class were used for
training while the remaining examples are used for testing. To
avoid bias due to samples from both eyes of one subject in
both training and testing subsets, we split the dataset based
on subjects. We also repeated the development process five
times each time selecting the training and testing (80/20 split)
randomly to assure the model is not biased to sample selection.

Visualization to partially illuminate
deep learning black box

To identify the imaging markers for glaucoma diagnosis,
we developed gradient-weighted class activation maps
(GradCAMs) (34). We used two of the last convolutional
layers of the CNN to produce a coarse localization map (34) of
the regions of fundus photographs that were more important
for the deep learning model to make diagnosis. Activation maps
can validate the clinical relevance of the regions that derived the
model and may also serve as imaging biomarkers for glaucoma.

Statistical analyses and evaluations

We used fivefold cross-validation and computed the mean
accuracy across all fivefold to mitigate data selection bias in
training and testing. As we split dataset by subject ID, we
compared the age and mean deviation (MD) of the datasets
using t-test. We evaluated the accuracy of each model using
area under the receiver operating characteristic curve (AUC)

and compared the AUC of different models based on the
DeLong et al. (35) approach. The standard deviation of the
probability distribution from the probabilistic model was used
as the metric for evaluating the certainty (confidence) of the
model in prediction. All statistical analyses were performed in
Python.

Results

About 1% of the fundus photographs in the Compass
dataset had major artifacts (ONH or macula missing, significant
light reflectance, or large regions being black/white) and were
excluded from the study. The average age of the participants
was 56.4 ± 17.7 (mean ± Standard Deviation) years. Mean
deviation (MD) and age were significantly different between
normal eyes and eyes with glaucoma (p < 0.05). Table 1 shows
the demographic characteristics of the study.

The development dataset included 840 fundus photographs,
840 visual fields, and 840 pairs of fundus photographs and visual
fields from normal eyes and 815 fundus photographs, 815 visual
fields, and 815 pairs of fundus photographs and visual fields
from eyes with glaucoma.

The validation dataset included 108 fundus photographs,
108 visual fields, and 108 pairs of fundus photographs and visual
fields from normal eyes and 88 fundus photographs, 88 visual
fields, and 88 pairs of fundus photographs and visual fields from
eyes with glaucoma.

Figure 2 illustrates the MD distribution of eyes in training
and testing subsets of the development dataset, independent
validation dataset, and an early glaucoma subset composed of
eyes with –4 dB < MD < –1 dB. The eyes with glaucoma in
the independent validation datasets had a worse MD compared
to eyes with glaucoma in the development dataset. However, the
MD of normal eyes and eyes with glaucoma in an early glaucoma
subset were substantially closer compared to the distribution of
MD of normal eyes and eyes with glaucoma in the full discovery
or full independent validation datasets.

Table 2 presents numerous evaluation metrics (average
values) of different probabilistic deep learning models in
discriminating normal eyes from eyes with glaucoma. The AUC
of the combined model based on full discovery, full independent
validation, and early glaucoma subset were 0.94, 0.98, and 0.91,
respectively, which was higher than the AUC of the single
models. The accuracy of the combined model based on full
discovery, full independent validation, and an early glaucoma
subset were 0.85, 0.93, and 0.84, respectively, which was higher
than the accuracy of the single models. Table 3 shows the details
of the statistical difference between pairwise AUCs.

Figure 3 (left panel) shows the ROC curves of the
AI models applied on fundus photographs, visual fields,
and combined modalities based on the discovery dataset.
The AUC of the AI model for glaucoma diagnosis using
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FIGURE 2

Mean deviation (MD) of eyes in the training subset of the discovery dataset, testing subset of the discovery dataset, independent validation
dataset, and the early glaucoma subset.

TABLE 2 Average value of evaluation metrics of different probabilistic deep learning models in discriminating normal eyes from eyes with
glaucoma.

Dataset Full discovery dataset Full independent validation dataset Early glaucoma subset

Model Fundus Visual field Combined Fundus Visual field Combined Fundus Visual field Combined

AUC 0.90 (0.89, 0.92) 0.89 (0.86, 0.91) 0.94 (0.91, 0.96) 0.94 (0.92, 0.95) 0.98 (0.98, 0.99) 0.98 (0.98, 0.99) 0.90 (0.88, 0.91) 0.74 (0.73, 0.75) 0.91 (0.89, 0.93)

Accuracy (%) 82 (79, 84) 81 (80, 82) 85 (82, 88) 88 (86, 89) 92 (91, 93) 93 (92, 95) 83 (80, 85) 68 (67, 69) 84 (82.86)

Sensitivity (%) 71 (67, 76) 0.73 (71, 76) 79 (72, 85) 77 (72, 82) 91 (89, 92) 91 (87, 95) 59 (48, 70) 100 (100, 100) 100 (100, 100)

Specificity (%) 94 (92, 96) 90 (88, 91) 92 (91, 93) 96 (95, 98) 94 (93, 95) 95 (94, 97) 95 (94, 96) 51 (50, 52) 75 (72, 78)

Numbers in parentheses reflect the 95% confidence intervals. AUC, Area under the receiver operating characteristic curve.

combined modalities was 0.92 (0.91–0.96) which was
higher than AUCs of 0.90 (0.89–0.92), 0.87 (0.86–0.91)
for models based on fundus photographs and visual
fields, respectively.

Figure 3 (middle panel) shows the ROC curves of the
AI models applied on fundus photographs, visual fields, and
combined modalities based on the independent validation
dataset. The AUC of the AI model for glaucoma diagnosis
using combined modalities was 0.99 (0.98–0.99) which
was higher than AUCs of 0.94 (0.92–0.95), 0.98 (0.97–
0.99) for models based on fundus photographs and visual
fields, respectively.

Figure 3 (right panel) shows the ROC curves of the
AI models applied on fundus photographs, visual fields, and
combined modalities based on the early glaucoma subset (4
dB < MD < –1 dB). The AUC of the AI model for glaucoma
diagnosis using combined modalities was 0.92 (0.89–0.93)

which was higher than AUCs of 0.89 (0.88–0.91), 0.74 (0.73–
0.75) for models based on fundus photographs and visual
fields, respectively.

The specificity/sensitivity under the optimal threshold of
the AI models based on fundus photographs, visual fields, and
combined fundus/visual fields in the independent validation
dataset were 90%/88%, 94%/89%, and 94%/100%, respectively.
The sensitivity of the models based on fundus photographs,
visual fields, and combined modalities at fixed 95% specificity
were 71, 88, and 91%, respectively.

The AUC of the AI models for glaucoma diagnosis using
combined fundus/visual fields data for detecting eyes at the early
stages of glaucoma (MD ≥ –6 dB) was 0.98 (0.95–1.0) while
the AUC of the model for detecting eyes at the later stages of
glaucoma (MD < –6 dB) was 1.0 (0.99–1.0).

Figure 4 shows the activation maps of the deep learning
model trained on fundus photographs. Two activation maps
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were derived from two different convolutional layers. Activation
maps confirm that optic cup and rim areas were important
regions for the deep learning model based on fundus
photographs to make a diagnosis. Top row shows the fundus
photograph and corresponding CAMs of an eye with glaucoma
that was correctly classified as glaucoma. Bottom row shows the
fundus photograph and corresponding CAMs of an eye with
glaucoma that was incorrectly classified as normal. The model
had focused on the optic disc region when the prediction was
correct, while the focus was on the surrounding area of the optic
disc when the prediction was incorrect.

Figure 5 (left panel) shows the box plots of the uncertainty
of the model on making diagnosis based on fundus photographs,
visual fields, and combined modality in the independent
validation dataset. The uncertainty of the model in classifying
eyes at two different VF severity levels is presented in
Figure 5 (right panel). Based on the left panel, the AI
model is more confident in making correct decision based on
the combined modalities compared to AI models based on
single modality. Additionally, AI models based on combined
modalities and visual fields were highly uncertain when the
diagnoses were incorrect.

Supplementary Figure 1 shows the MD distribution of
eyes in the independent validation dataset that were classified
correctly and incorrectly. Supplementary Figure 2 presents
the ROC curves of the AI models for detecting glaucoma
and normal eyes based on the independent validation dataset.
Supplementary Figure 3 demonstrates the ROC curves of the
AI models for detecting based on two severity level ranges of
eyes in the independent validation dataset.

Supplementary Figure 4 shows the performance of the
deterministic CNN models using fundus photographs, visual
field, and combined fundus and visual field modalities based
on the development dataset, independent validation dataset,
and an early glaucoma subset. The AUCs of the CNN models
based on the development dataset were 0.87 (0.85, 0.90),
0.88 (0.84, 0.91), and 0.91 (0.89, 0.94), respectively. Using
the independent validation dataset, the AUCs were 0.91 (0.89,

TABLE 3 Pair-wise comparison of the AUCs based on the method of
Delong et al. (35).

Dataset Model of AUC P-value

Discovery dataset Fundus Visual field 0.081

Fundus Combined 0.063

Visual field Combined 0.000

Independent validation dataset Fundus Visual field 0.006

Fundus Combined 0.001

Visual field Combined 0.560

Early glaucoma subset Fundus Visual field 0.081

Fundus Combined 0.063

Visual field Combined 0.000

0.93), 0.97 (0.95, 0.99), and 0.97 (0.96, 0.99), respectively,
and the AUCs based on an glaucoma subset were 0.88 (0.86,
0.91), 0.75 (0.73, 0.77), and 0.92 (0.89, 0.95), respectively.
Consistently, the model developed with combined modality
provided a better performance compared to the models based
on a single modality.

Discussion

Unlike previous studies with the emphasis on deep learning
models using a single imaging modality, we developed a
hybrid deep learning model for detecting glaucoma from both
structural and functional data. We found that the AUC of
the probabilistic AI models based on combined modalities was
consistently higher than AUC of the AI models based on a single
modality. Additionally, the accuracy (and specificity/sensitivity)
of the probabilistic AI model based on combined modality was
consistently higher than the accuracy (specificity/sensitivity)
of the AI models based on a single modality. This was more
obvious when the eyes in the normal and glaucoma groups were
more similar (analysis based on an early glaucoma subset with
–4 dB < MD < –1 dB).

Fundus photography provides an affordable and portable
means for documenting the status of the optic nerve. Since
the invention of the early fundus cameras in early 1900’s,
large datasets have been accumulated. As such, AI models have
been applied extensively on fundus photographs for detecting
glaucoma. Early AI models were mostly reliant on hand-
engineering features (36, 37), however, with some user input,
recent deep learning models can learn effective features in
an unsupervised manner without requiring hand-engineering
features or adopting ad hoc rules. Emerging deep learning
models have now achieved varying AUCs in the range of
0.83–0.99 and accuracy in the range of 0.83–0.98.for screening
and diagnosing glaucoma from fundus photographs (16–21).
However, some of these studies have used relatively small
datasets of fundus photographs, have not validated models using
independent subsets, or have used fundus photographs mainly
from eyes in the later stages of glaucoma, making generalization
of findings challenging. Additionally, none of these studies have
used multi-modal structural and functional data for glaucoma
diagnosis. We, however, used two independent datasets that
were collected over the course of two separate studies to develop
and to independently validate the AI models. Both datasets
included relatively similar number of fundus photographs
from normal subjects and patients with glaucoma led to a
balanced dataset contrary to most of the deep learning-based
studies in the literature. This is critical as the AI models
could simply become biased toward the class with majority
number of samples.

Many studies have investigated the relationship between
structure and function in glaucoma with the goal of improving
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FIGURE 3

Receiver operating characteristic (ROC) curves of the deep learning model for diagnosing glaucoma. Left: ROC of the model for diagnosing
glaucoma based on the discovery dataset. Middle: ROC of the model for diagnosing glaucoma based on the independent validation dataset.
Right: ROC of the model for diagnosing glaucoma based on an early glaucoma subset.

FIGURE 4

Fundus photographs and corresponding CAMs at two different convolutional layers. Top row: Correct prediction. Bottom row: Incorrect
prediction. Highlighted regions were more important for the model to make diagnosis.

glaucoma diagnosis and detection of glaucoma progression
(38). Most of the previous studies made assumptions about
the linearity of the structure-function relationship (39, 40), or
other mathematical structure-function models (41). However,
structural damage frequently correlates poorly with functional
defects (42, 43). Artificial intelligence models, however, make
no such structure-function assumptions and rather learn the
relationships based on input structure and function data
simultaneously. As such, these models may enhance glaucoma
monitoring based on multi-modal data. When we compared
the AUC of the models, the hybrid model (AI model based
on combined modalities), however, performed better than
models based on fundus photographs or visual fields using in

independent validation subsets [p = 0.05; DeLong et al. (35)
method]. The AUC of the hybrid model was also higher than the
AUC of the AI model based on visual fields only. The difference
was statistically significant for two of the datasets (Table 3,
p < 0.01).

The average diagnostic AUC of the hybrid model based on
the development dataset was 0.94 (95% confidence interval; CI:
0.91–0.96). To assure this AUC is not biased toward sample
selection in training phase, we generated five different subsets
by randomly selecting 80, and 20% of the development dataset
for training and testing the hybrid model. We then compared
the AUC of each model with the initial AUC and observed
that the differences were not statistically significant (p > 0.4).
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FIGURE 5

Uncertainty of the model in making diagnosis based on data from the independent validation dataset. Left: Uncertainty level of AI for making
correct and incorrect diagnosis based on fundus photographs, visual fields, and combined modality. Right: Uncertainty level of AI in making
diagnosis on fundus photographs, visual fields, and combined modality based on glaucoma severity levels.

Moreover, the MD distribution of the correctly and incorrectly
classified eyes (Supplementary Figure 1) were similar for all
AI models reflecting there was no bias. The diagnostic AUC of
the hybrid model based on the independent validation dataset
was 0.98 (95% CI: 0.98–0.99). This reflects a great degree of
generalizability of the proposed hybrid model using unseen data
from independent studies. However, the AUC of the hybrid
model was greater (although not statistically different) than the
model on development dataset which is not frequently observed.
To explain this, we evaluated the glaucoma severity of the eyes
in development and validation datasets. We observed that eyes
with glaucoma in the independent validation dataset had a worse
MD compared to glaucoma eyes in the development dataset
(see Figure 2). As such, it was easier for the hybrid model to
identify eyes at later stages of glaucoma compared to eyes in the
development dataset.

The AUC of the hybrid AI models for glaucoma diagnosis
using combined modalities based on the discovery dataset,
independent validation dataset, and an early glaucoma subset
were consistently higher than the AUC of the models based on a
single modality (Figure 3 and Supplementary Figures 2, 3). To
investigate the robustness of the AI model in dealing with more
challenging datasets, we generated a new subset of normal eyes
and eyes with glaucoma in which their MD was between –1 and
–4 dB (considerable overlap between the severity level of normal
eyes and eyes with glaucoma). The AUC of the hybrid AI model
for glaucoma diagnosis was 0.92 while the AUC of the AI models
based on fundus photographs and visual fields were 0.89 and
0.74, respectively. These finding suggests that the hybrid model
utilizes the information from both modalities to make diagnosis
and is robust in dealing with challenging datasets.

To further investigate the impact of glaucoma severity level
on the performance of the three models, we further divided
the eyes in the independent validation datasets to two severity

levels: MD ≥ −6 dB and MD < –6 dB, corresponding to mild-
early and moderate-advanced stages of glaucoma, respectively.
We then computed the AUC of the models based on eyes
in these two groups. While the AUCs of the model based
on fundus images, visual fields, and combined modalities for
detecting eyes at the moderate-advanced stages of glaucoma
were all 0.99 (0.97, 1.0), 1.0 (0.99, 1.0), and 1.0 (0.99, 1.0), the
AUCs of the models based on fundus images, visual fields, and
combined modalities for detecting eyes at the mild-early stages
of glaucoma were 0.92 (0.90–0.94), 0.97 (0.95–0.99), and 0.98
(0.95–1.0), respectively. Higher AUC of the model in detecting
eyes at the later stages of glaucoma compared to eyes at the
earlier stages of glaucoma further validates the robustness and
clinical relevance of the proposed model.

The diagnostic accuracy of the deep learning model based
on fundus photographs proposed by Raghavendra et al. (16) was
0.98 and the diagnostic AUC of the model proposed by Li et al.
(18) was 0.99. The lower AUC of our deep learning model based
on fundus photographs could be due to several reasons. First,
we used a highly balanced dataset with about equal number of
fundus photographs from both groups in both development and
validation datasets. However, the datasets used on those studies
were not balanced where the AUC metric could be misleading.
Moreover, about 50% of the eyes in our datasets were in the
mild-early stages of glaucoma which is more challenging to
detect compared to eyes at the later stages of glaucoma, which
may have not been the case for those studies.

We also developed deterministic CNN models to
compare with corresponding probabilistic CNN models.
We observed that the performance of the probabilistic and
deterministic models is quite similar (Figure 3, Supplementary
Figure 4, and Supplementary Table 1). However, a major
advantage of probabilistic CNN models compared to
deterministic CNN models is providing both the likelihood and
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uncertainty/confidence level on the outcome. For instance, as
expected, we observed (see Figure 5 right) that the proposed
model is more certain in identifying eyes with glaucoma at the
later stages of glaucoma (MD < –6 dB) compared to eyes at
the earlier stages of glaucoma (MD ≥ –6 dB). Interestingly,
the model was more certain (confident) in classification of
those eyes that were classified correctly compared to eyes that
were classified incorrectly. This is crucial for decision making
systems considering the black-box nature of the CNN models.
As a simple example, the model generates 95% likelihood for
the input to belong to glaucoma and provide a 99% certainty
(confidence in correct assignment) on the outcome which
eventually provides the clinician more confidence level too.

Clinicians typically evaluate both visual field and ONH
to diagnose glaucoma. Consistently, the CNN models based
on combined modalities had higher confidence level in
correct predictions compared to the CNN models that used
a single modality. This corroborates the information theory
concepts that combined modalities (structural and functional
information) may provide complementary information
regarding glaucoma thus improving the diagnosis.

Goldbaum et al. (44) used a mixture of Gaussian model for
diagnosing glaucoma from visual field on a small dataset and
obtained an AUC of 0.922, sensitivity of 0.79 at the specificity
of 0.9. In another study, Bowd et al. (45) compared models
developed based on structural (OCT) measurements, functional
(visual field) measurements, and combined structural and
functional measurements to diagnose glaucoma. They observed
that the model employing combined modalities performed
better compared with models that utilized a single modality,
which is in agreement with our findings.

The Compass dataset that was used in our study had several
strengths; participants were recruited from eight centers across
the US and Europe, thereby reducing the idiosyncrasies of
local datasets (29). Annotation was performed carefully based
on both fundus photographs and OCT images by well-trained
clinicians thus the amount of annotation biased is reduced
compared to situations where only fundus photographs are
used. Additionally, fundus photographs and visual fields were
collected from same patients at the same time led to collecting
structural and functional data under same condition with
minimum time difference. However, it had several limitations
too. One limitation was that the design of the Compass
study only allows for a relative comparison of glaucoma
detection while evaluation of how findings generalize to
general population would require further validation based
on additional independent datasets. Another limitation of
the study is that only fundus photographs and visual fields
were used to detect glaucoma while several other risk factors
may contribute to glaucoma. Other limitation is related
to risk of spectrum bias, particularly in our independent
subset, that may affect the performance. We stratified eyes
to early and moderate/advanced glaucoma severity levels

and repeated the analysis to mitigate this limitation. We,
however, were limited by the rather small validation subset
and unable to stratify eyes to more severity levels to
assess the impact of spectrum bias. Another source of bias
is that glaucoma was defined by optic nerve appearance
which may favor more the AI models based on fundus
photographs. Therefore, future studies with datasets including
other glaucoma risk factors are desirable to further investigate
glaucoma diagnosis. It is worth mentioning that the eyes were
collected from eye clinics and not general population thus the
results may not support findings based on population-based
studies.

Conclusion

In conclusion, the hybrid probabilistic AI model based
on combined modalities consistently provided higher accuracy
compared to probabilistic AI models based on single modalities
based on different datasets and selected challenging subsets.
The proposed hybrid model also provides certainty (confidence)
level on the outcome which adds another layer of confidence in
diagnosis and may augment other routinely obtained medical
examinations for glaucoma diagnosis. These methods may
also identify previously unknown structural and functional
signatures of glaucoma.
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SUPPLEMENTARY FIGURE 1

Mean deviation (MD) the correct and incorrect classifications of the AI
models from the independent validation dataset.

SUPPLEMENTARY FIGURE 2

Receiver operating characteristic (ROC) curves of the AI models for
detecting glaucoma (left) and normal (right) eyes based on the
independent validation dataset.

SUPPLEMENTARY FIGURE 3

Receiver operating characteristic (ROC) curves of the AI models for
detecting glaucoma based on eyes in the independent validation dataset
with mean deviations (MDs) of: left: MD ≥ –6 dB, right: MD < –6 dB.

SUPPLEMENTARY FIGURE 4

Receiver operating characteristic (ROC) curves of the deterministic CNN
model for diagnosing glaucoma. Left: ROC of the model for diagnosing
glaucoma based on the discovery dataset. Middle: ROC of the model
for diagnosing glaucoma based on the independent validation dataset.
Right: ROC of the model for diagnosing glaucoma based on an early
glaucoma subset.
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