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The epidemiology of malaria changes as prevalence falls in low-transmission

settings, with remaining infections becoming more di�cult to detect and

diagnose. At this stage active surveillance is critical to detect residual hotspots

of transmission. However, diagnostic tools used in active surveillance generally

only detect concurrent infections, and surveys may benefit from sensitive

tools such as serological assays. Serology can be used to interrogate and

characterize individuals’ previous exposure to malaria over longer durations,

providing information essential to the detection of remaining foci of infection.

We ran blood samples collected from a 2016 population-based survey

in the low-transmission setting of northern Lao PDR on a multiplexed

bead assay to characterize historic and recent exposures to Plasmodium

falciparum and vivax. Using geostatistical methods and remote-sensing data

we assessed the environmental and spatial associations with exposure, and

created predictive maps of exposure within the study sites. We additionally

linked the active surveillance PCR and serology data with passively collected

surveillance data from health facility records. We aimed to highlight the added

information which can be gained from serology as a tool in active surveillance

surveys in low-transmission settings, and to identify priority areas for national

surveillance programmes where malaria risk is higher. We also discuss
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the issues facedwhen linkingmalaria data frommultiple sources usingmultiple

diagnostic endpoints.
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Introduction

Through an intensification of their programmatic activities

and an increased coverage of interventions (1), the Lao People’s

Democratic Republic (PDR) has seen substantial declines in

malaria cases, with a fall in case incidence by 80% from

2016 to 2020, and no reported malaria deaths since 2018

(2). Transmission is very low in northern Lao PDR, with

P. vivax cases making up the majority of malaria burden

(1, 3). The nation aims to eliminate Plasmodium vivax and

Plasmodium falciparum from northern areas by 2025, and all

species nationwide by 2030 (2, 4).

As countries near elimination and transmission declines,

they experience characteristic shifts in malaria epidemiology.

Substantial areas become malaria-free, and malaria risk

becomes increasingly heterogenous and geographically or

demographically clustered (5, 6), with cases becoming more

difficult to detect and diagnose. Here, passive surveillance

systems become inadequate as the sole method of data

collection to inform population-level burden estimates (5–

7). Estimates may be biased by different treatment-seeking

behavior in high-risk populations, and the quality of record

keeping may vary between health facilities or administrative

regions (8). Passive surveillance also fails to detect asymptomatic

individuals, which act as parasite reservoirs and contribute

to continued transmission, even in low-transmission settings

(9–11). At this stage it is important to find remaining

clusters of transmission where infection remains high in

order to target resources effectively (6, 7). Finding these

residual foci of transmission involves actively seeking out

infections, often through screening or surveying populations

irrespective of malaria symptoms. This active surveillance

can complement passive surveillance, and can play a role

in interrupting transmission as countries near elimination

(11). Active surveillance surveys for malaria are typically

cross-sectional and involve sampling communities using RDT

diagnostics, often collecting valuable added information on

cases and specific populations who are at higher risk of

infection (1, 5). As prevalence drops in elimination settings,

passive and active surveillance surveys face the challenge

of detecting sufficient concurrent infections to obtain a

full picture of the epidemiology within a population, even

when robust sampling-strategies are applied (1). In these

situations, more sensitive diagnostic tools are needed to improve

burden estimates and understand whether transmission is

ongoing (12).

Serological assays are useful in such low-transmission

settings. Rather than solely capturing concurrent infections,

serology measures specific antibody responses which reflect

previous exposure to pathogens. Different malaria antigens

elicit different antibody responses, each of which last for

different durations in the immune system (13, 14). Longitudinal

research into antibody kinetics has resulted in a highly

informative and diverse set of biomarkers being identified for

P. vivax and P. falciparum infections. These characterize an

individual’s exposure history, and when sampled en masse, can

provide information on the short-, medium- and long-term

trends in malaria transmission in a population, highlighting

changes in transmission over longer durations than PCR-

based surveys (13, 15–18). Serological methods have been

shown to be a useful complementary tool where traditional

parasitological tools are not sensitive enough to estimate

recent and active exposure and transmission intensity in low-

transmission settings (11, 19). Serological multiplex bead assays

(MBA) make serological surveys operationally feasible and can

be added as a supplemental aspect of population surveys,

as they can measure a broad range of immune responses

from a single blood spot (14, 20). Measuring population-level

serological responses usingMBA can be useful in showing spatial

heterogeneity of malaria exposure, finding clustering or hotspots

of transmission and to predict receptive areas at risk of outbreaks

(12, 21, 22).

Geostatistical methods are increasingly being applied in

disease research to relate infection metrics with environmental,

spatial and temporal covariates (14). In malaria research there

are numerous recent analyses projects involving geostatistical

mapping of malaria incidence, prevalence and other metrics

(23, 24). In low-resource and/or low-transmission settings

where infection data is sparse and transmission becomes more

spatially heterogeneous, geostatistical mapping can identify and

highlight areas where risk is more concentrated and may require

targeted interventions from programme implementers (23, 25).

Alongside the useful predictions of disease burden, geostatistical

analyses can also identify areas of uncertainty in predictions,

which can be used to prioritize future data collection (23).

Integrating geostatistical methods with serology data

collected during active surveillance surveys provides an

opportunity to characterize the spatial distribution of recent
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and historic exposure to different malaria antigens in a low-

transmission setting. We ran blood samples from a 2016 active

surveillance population survey (1) in northern Lao PDR using a

serology MBA to gain an understanding of current and historic

exposures to P. vivax and P. falciparum. We additionally used

passive surveillance (case incidence) data collected from health

facilities in the same districts (3) to compare serology and

PCR-derived prevalences with burden estimates from active

surveillance at the health facility catchment- level. We fit

geostatistical models to predict historic and recent exposures

to P. vivax and P. falciparum. We aimed to highlight the

additional information which can be leveraged from serology as

a complementary tool to passive and active surveillance in low-

transmission settings, and to identify areas with elevated risks

of malaria transmission requiring prioritization for national

surveillance programmes.

Methods

Study site

The active surveillance survey was conducted in four

districts (Et, Paktha, Nambak and Koua) of northern Lao PDR

(Figure 1), which are situated in four northern provinces (Bokeo,

Huaphanh, Phongsaly and Luang-Prabang). The survey was

conducted following the rainy season, between September and

October 2016. The districts were chosen to focus on areas of

malaria hotspots, and to ensure representation by surveying

from diverse epidemiological settings (1). At the time of the

study P. vivax was endemic and P. falciparum had reached

historical lows in these provinces (3). It is a mountainous region

characterized by a diverse climate, with low population density

and limited access to roads (1, 3). The region shares borders with

China, Myanmar, Thailand and Vietnam.

Study design

The passive surveillance data were gathered according to

Rerolle et al. (3). Briefly, a retrospective review of malaria

registries between 2013 and 2016 was performed at health-

facilities in the active survey districts. The data gathered

from the registries included testing for malaria by RDT or

microscopy, date, species-specific test results, village location

and demographic variables including age and gender of those

tested. For the present study, the dataset was sub-set to include

records from 2016.

The survey data were collected according to Lover et al. (1).

Briefly, a stratified two-stage cluster-sampling design was used.

In each district catchment 25 survey clusters of 50 individuals

were chosen for sampling, providing 1,250 participants per

district and 5,000 overall. The district malaria office catchments

were determined from local-level health office lists and did

not always conform to official administrative boundaries. As a

result, in the eastern district of Et a portion of the households

fall outside of the official administrative boundaries (Figure 1).

All residents and visitors who were over 18 months old

and had spent the previous night in the household were

invited to participate. Written or thumbprint consent was

obtained from all participants. Upon informed consent, eligible

individuals were tested with CareStart Ag Pf/Pv (SD Bioline,

Cat #05FK80) rapid diagnostic tests and treated according to

national guidelines if found positive. Four blood spots were

collected on Whatman 903 “Protein Saver” sample cards (GE

Healthcare; Cardiff UK). These were dried and cooled in

refrigerators until subsequent analysis. Geographic coordinates

were collected for all participating households.

Laboratory procedures

The chemical coupling of 17 P.falciparum and P.vivax

antigens (Supplementary Table 1) to MagPlex© beads (Luminex

Corporation, TX, USA) were previously optimized via titration

as described by Wu et al. (26). 3mm punches of one blood

spot from each Whatman 903 Protein Saver card were eluted

1:100 in buffer B [1xPBS, 0.05%Tween, 0.5% BSA, 0.02% sodium

azide, 0.1% casein, 0.5% polyvinyl alcohol (PVA), 0.5% polyvinyl

pyrrolidone (PVP)] containing 15.25 ug/mL E.coli lysate to

prevent non-specific binding to antigens expressed in E.coli. 50

uL of each 1:100 blood spot elution was co-incubated with 1,000

coupled beads per antigen and specific IgG antibody binding was

detected using 50 uL of R-PE conjugated secondary antibody

[Jackson Immunoresearch 109-116-098: Goat anti-human Fcy-

fragment specific IgG conjugated to R-Phycoerythrin (R-PE)]

diluted 1:200 as described previously (26). Background-adjusted

median fluorescent intensity (MFI) of wells achieving at least

a 35-bead count per antigen were measured using a Luminex

MAGPIX© bioanalyzer and xPONENT software (version 4.2).

P. falciparum positive control (NIBSC, 10/198), P. vivax positive

control (72/96, NIBSC) and a curve of pooled hyperimmune

P.falciparum sera (CP3, LSHTM) were included in singlicate on

each test plate to assess interplate variability. 96 malaria-naïve

sera from the UK (Public Health England 2016) were assayed at

1:100 using the same method.

PCR testing was performed on dried blood spots as

described by Lover et al. (1), using previously describedmethods

(27). Four blood spots were lysed on 96-well plates overnight

at 4◦C with 150 µl per well of HBS 1X/Saponin 0.5%. Samples

were washed twice with HBS 1X and Instagene R© Matric resin

(Bio-Rad, Singapore) was used according to manufacturer’s

instructions to extract DNA. In order to limit the presence of

inhibitors an additional centrifugation step (4,000 rpm, 20min)

was added, and a final volume of 50 µl of the supernatant was

transferred into a new 96-well plate. Extracted DNA samples
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FIGURE 1

Map of Northern Lao PDR with active surveillance study households and districts of the study.

were screened for the presence of Plasmodium DNA using

a qualitative real-time PCR assay which targeted Plasmodium

cytochrome b gene (27). Positive samples were analyzed for

Plasmodium species P. falciparum, P. vivax, P. ovale and P.

malariae, using four real-time PCR assays (27).

Statistical analysis

Individuals were classified as seropositive or seronegative for

historical and recent exposures to P. vivax and P. falciparum

based on their responses to the antigens in Table 1. The antigens

in Table 1 were chosen based on their known longevity in the

immune system. Pf/PvMSP119 and Pf/PvAMA1 are known to

persist in the blood for many years and can be used as a

proxy for any previous exposure in an individual’s lifetime (14).

Etramp5.Ag1 and PvEBPII are known to be shorter-lived and are

used here to represent exposure within 6–9 months (17, 27).

We used unsupervisedmachine learning K-means clustering

algorithms on each antigen separately to group samples into

positives or negatives based on their MFI values. The optimal

numbers of clusters for each antigen was determined using

within-cluster sum of squares and average silhouette testing (28).

Historic exposure to P. vivax was calculated as a combined

exposure to PvMSP119 and PvAMA1. If an individual was

classified as seropositive to one or both of these antigens,

they were classified as being seropositive to historical exposure

to P. vivax. Recent exposure to P. vivax was determined

by seropositivity to PvEBPII. If an individual was positive

for PvEBPII, they were classified as recently exposed to P.

vivax. Historic exposures to P. falciparum were calculated as a

combined exposure to PfMSP119 and PfAMA1. If an individual

was classified as seropositive to one or both of these antigens,

they were classified as being seropositive to historical exposure

to P. falciparum. Recent exposure to P. falciparum was defined

by seropositivity to Etramp5Ag1 antigens. If an individual

was positive for Etramp5Ag1, they were classified as recently

exposed to P. falciparum. Age-stratified seroprevalence was

estimated for proportional age groups for each species and

each exposure.

Spatial analysis

The spatial distribution of exposure risks were assessed using

geostatistical methods. Satellite-derived potential spatial and

environmental covariates were assembled to assess associations

with exposure risk. Covariates included topographic measures,

distance to land cover types, forest cover and forest loss,

population density, accessibility, and climactic variables

(Supplementary Table 1). Pearson correlation coefficients

were calculated, and highly correlated variables (correlation
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TABLE 1 Table of malaria antigens used to define P. falciparum and P. vivax exposures, broken down by Plasmodium species. Including Plasmodb ID

and reference source.

Species Antigen Description Exposure period Plasmodb ID Reference

P.falciparum PfAMA1 Apical membrane antigen 1 Historic PF3D7_1133400 (44)

P.falciparum PfMSP1_19 Merozoite surface protein 1-19 Historic PF3D7_0930300 (45)

P.falciparum Etramp 5 Ag 1 Early transcribed membrane protein 5 antigen (exon) 1 Recent PF3D7_0532100 (46), Tetteh K unpublished

P.vivax PvMSP119 Merozoite surface protein 1-19 Historic PVX_099980 (47, 48)

P.vivax PvAMA1 Apical membrane antigen 1 Historic PVX_092275 (49)

P.vivax PvEBPII P. vivax erythrocyte binding protein Recent PVX_110810 (50–52)

coefficient > 0.8) were excluded from the final dataset. All

covariates were resampled to 250m for predictions.

Geostatistical models of household seroprevalence for each

species exposure were fit separately for the 1,402 households in

the active surveillance. The models were fit within a Bayesian

framework where p(xi) denotes seroprevalence at locations

xi, i = 1, . . . , n, the number of positive households Yi out of

Ni people sampled follows a binomial distribution:

Yi|P (xi) ∼ Binomial (Ni, P (xi)) ,

logit (P (xi)) = β0 + d (xi)
′
β + wi

Where β0 denotes the intercept, d(xi)
′β denotes a vector of

location specific covariate effects (within active survey district

boundaries) and wi represents the spatial effect. The spatial

effects were modeled as a Matérn covariance function using

the stochastic partial differential equation (SPDE) approach in

Integrated Nested Laplace Approximation (R-INLA) (29). The

intercepts and fixed effect coefficients were fitted with weakly

informative priors of Normal (0,100). Deviance information

criteria (DIC) were used to assess the final models. A continuous

surface of prevalence predictions for the active survey districts

were extracted as the mean of posteriors of the predictions

for each model. For the eastern district of Et, we extended

the predictions to include the neighboring district of Xienghor,

as a portion of the survey households fell close to or over

the official district border. Exceedance probabilities for a 20%

seroprevalence threshold for P. vivax and a 5% seroprevalence

threshold for P. falciparum exposures were also extracted.

These metrics represent the probability of the seroprevalence in

each location exceeding its given threshold, where probabilities

around 0.5 represent high uncertainty around the threshold (30).

The upper and lower limits of the 95% credible intervals were

also extracted to visualize uncertainty. Prevalence predictions,

exceedance probabilities and upper and lower limits of the 95%

credible intervals were converted to raster files and visualized

in QGIS.

To evaluate health facility catchment-level seroprevalences

and PCR prevalences, we estimated catchment areas for all

health facilities from an official Lao PDR Ministry of Health list

(31) of 190 health facilities in the country. A friction surface

map of motorized travel time in Laos (32) was used to create

190 rasters of travel time to each health facility. The travel time

rasters were then combined into a final raster of minimum travel

time to each of the health facilities and converted into a polygon

shapefile of catchment boundaries based on lowest-travel time to

health facility. The catchment areas were estimated using script

adapted fromWeiss et al. (32) in RStudio version 1.4. Household

seroprevalence estimates were linked to catchment boundaries

using QGIS, and catchment-level seroprevalences and PCR

prevalences were calculated for each species exposure. Positive

RDT and microscopy levels per capita for 2016 were calculated

from the estimated population size for each catchment.

Ethics

Approvals for the field surveys (PI: Adam Bennett) were

obtained from UCSF (approval 16-19649; 7-20-2016) and

the Lao National Ethics Committee for Health Research,

Lao Ministry of Health (approval 2016-014; 8-22-2016). Both

approvals included provisions for future analysis of serological

markers of malaria exposures.

Results

The results from the retrospective survey of 2016 passive

surveillance records from the study regions are presented in

Table 2. In total 343 P. vivax cases and 36 P. falciparum cases

were confirmed by RDT. 23 P. vivax cases and 12 P. falciparum

cases were confirmed by microscopy.

Table 3 provides descriptive statistics on the participants

involved in the active survey. 5,084 individuals were samples

from 1,402 households, with an average of 3.6 samples per

household.

The meanMFI values for the antigens used to define historic

and recent exposure to P. falciparum and P. vivax are as follows:

PfMSP119 541.26 (±1334.88); PfAMA1 723.33 (±1785.43);

Etramp5.Ag1 99.31 (±183.71); PvMSP119 169.272 (±181.789);

PvAMA1 483.1 (±1772.88); PvEBPII 371.64 (±860.05). The

range of individuals’ MFI values by positivity and age are

presented in Supplementary Figures 1A,B.
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TABLE 2 Numbers of positive cases by species confirmed by RDT and microscopy from passive surveillance (health center) 2016 records.

District Health Center RDT Pf +ve RDT Pv +ve Microscopy Pf +ve Microscopy Pv +ve

Khua Buamaphan 5 60 1 2

Khua Lardsang 1 1 0 0

Khua Nayang 3 37 0 2

Khua Vikocmueng 0 0 0 0

Nambak Khunolum 0 0 0 0

Nambak Makpouk 18 100 0 0

Nambak Muengteng 0 0 0 0

Nambak Numnga 1 1 0 0

Nambak Numthuan 0 2 0 0

Et Naphieng 0 118 0 0

Et Xiengkhoun 3 13 11 19

Paktha Hardsa 0 1 0 0

Paktha Houisat 0 0 0 0

Paktha Jiengtong 0 3 0 0

Paktha Kengphak 0 0 0 0

Paktha Kiewlom 0 2 0 0

Paktha Konteum 5 5 0 0

TABLE 3 Age range and gender breakdown of participants in active

survey.

Characteristic n % total (95% CI)

Sex

Male 2,380 46.8 (45.7–48.0%)

Female 2,702 53.2 (52.0–54.3%)

Age Group

<5 273 5.4 (4.6–6.3%)

5–15 1,198 23.6 (21.9–25.3%)

> 15 3,611 71.0 (73.0–76.1%)

Table 4 presents the results of the PCR and serological

exposures from the active survey including the number of

individuals and households sampled per district and the number

positive for PCR and serological exposure to P. vivax and P.

falciparum.

At the survey-level seroprevalences for exposures to P. vivax

were higher (0.22 for historic and 0.07 for recent) than P.

falciparum (0.03 for historic and 0.01 for recent). The age-

stratified seroprevalences for each species exposure are shown

in Figure 2. Exposure was positively associated with increasing

age for historic exposure to P. falciparum and recent exposure

to P. vivax. These increases began at around 25 years of age for

both exposures. Recent exposure to P. falciparum was very low

across all age groups.

The PCR survey also found higher case numbers of P. vivax

(n = 23) than P. falciparum (n = 8). Of the 23 positive P. vivax

PCR cases in the active survey, seven were classified as positive

for recent exposure to P. vivax (30%). Of the eight positive P.

falciparum PCR cases in the active survey, one was classified as

positive for recent exposure to P. falciparum (12.5%). The central

districts of Khua and Nambak recorded the highest number of

positive PCR P. vivax cases. P. falciparum PCR case numbers

were similar across the three study areas.

Figure 3 presents the results of the geostatistical

modeling for household seroprevalences to P. vivax and

P. falciparum exposure. The environmental and spatial

covariates included in the final geostatistical models are listed in

Supplementary Table 3.

The estimation of catchment size resulted in 190 catchments

across Lao PDR (Supplementary Figure 1). Due to the imperfect

alignment of the passive surveillance data (3) and the active

surveillance survey (1), 286 of the cross-sectional survey

households (1,008 samples) did not fall within the catchment

boundaries. This resulted in a significant reduction in the sample

size for estimating PCR and seroprevalences at the catchment-

level. RDT and microscopy cases per capita were calculated

using the estimated population size for each health facility

for 2016 (3). The catchment-level seroprevalences for recent

exposure to P. vivax and P. falciparum and RDT andmicroscopy

cases per capita are presented in Figure 4.

Discussion

This study has demonstrated the use of integrating

serology into active surveillance projects to provide additional
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information on historic and recent exposures to malaria. We

have shown how geostatistical modeling with remote sensing-

derived environmental variables can be used to predict and

characterize the distribution of malaria exposures, and how

these can be used to highlight priority areas for added data

collection or targeted interventions. We found that historical

exposures to P. vivax and P. falciparum were more widespread

in northern Lao PDR, with recent exposures being more

focally distributed, as is expected in an elimination setting.

Additionally, we showed how retrospectively collected passive

surveillance data can be linked to active surveillance data which

were not collected in alignment.

The active surveillance survey involved rigorous population

sampling which was powered to estimate PCR-based prevalences

of malaria in northern Lao PDR as the country prepared for

elimination (1). They found very low numbers of asymptomatic

Plasmodium infections, with higher numbers of P. vivax (28

total, 0.005 prevalence) and lower numbers of P. falciparum

(eight total, <0.000 prevalence). The seroprevalence rates

estimated in this study for recent exposure to P. vivax and

P. falciparum were higher than these PCR rates but followed

similar trends. The higher numbers of P. vivax cases compared

to P. falciparum detected by Lover et al. (1) and recorded by the

health facilities (Figure 4) are consistent with our seroprevalence

estimations. The almost complete absence of P. falciparum PCR-

cases and very low numbers recorded in 2016 by health facilities

are also aligned with our very low estimation of recent exposure

to P. falciparum, suggesting that northern Lao PDR was close to

eliminating this species during the year of study. We classified

recent exposure to P. vivax and P. falciparum in 30 and 12.5%

of PCR-confirmed cases. This shows that our classifications to

recent exposure by serology detect some, but not all concurrent

infections. Additionally, the findings show that antigens used for

these classifications may be useful indicators of current as well

as recent exposure. However, the very low sample size of PCR-

confirmed cases for both species mean these findings cannot be

confirmed in this study. Our findings provide evidence that at a

broad level, our serological estimations reflect what is seen in

both PCR-based and routine clinical case management. They

also highlight the added information which can be extracted

from active surveillance samples with the operationally feasible

addition of MBA technology.

The age-stratified seroprevalence curves of recent exposure

for P. vivax and historic exposure for P. falciparum are

consistent with our expectations for a low-transmission setting

in the Greater Mekong Region (GMR). Here, and in Lao

PDR, malaria transmission is heterogenous, and transmission

is more intense in forested areas (33, 34). Malaria exposure

is largely an occupational hazard for forest workers, with

transmission higher in remote forested areas, logging camps

and plantations where conventional malaria vector control tools

are inefficient (33). In these populations, exposure typically

begins at around 20 years old when forest work begins
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FIGURE 2

Panel of age stratified seroprevalence graphs for (A) historic exposure to P. falciparum, (B) recent exposure to P. falciparum, (C) historic exposure

to P. vivax, and (D) recent exposure to P. vivax. This represents the full active survey population (n = 5,084).

(35–39). Historical exposures for P. falciparum increase with

age, as is expected as transmission was higher during the

lifetimes of older populations. We are therefore confident

in our methodology using k-means algorithms for classifying

seropositive and seronegative individuals, in the absence of

international standards for estimating malaria seropositivity in a

population. This characteristic age-stratified curve was not seen

for historic exposure to P. vivax. One explanation for this is

that it may be artifact of sampling bias, where the true highest-

exposed groups were less likely to be captured at home andmore

likely to be working outside of the home (8, 34, 40).

The geostatistical mapping of serology data in this study

allowed for the characterization of the spatial heterogeneity of

remaining foci of P. vivax and P. falciparum infection. This

mapping enables the estimation of seroprevalence at health-

decision making units (probabilities of being over a given

threshold), alongside measures of uncertainty (23). If taken

up by National Malaria Control Programmes, this could allow

prioritization of elimination efforts to the areas which they

would be most impactful. In this study we arbitrarily chose

thresholds of 20% exposure to P. vivax and 5% exposure

to P. falciparum due to the local epidemiology of these

species at the time of data collection. In future exercises

where geostatistical maps of serology data are used to inform

elimination programmes closer to the time of data collection,

these thresholds could be set by the programmes according to

their own criteria. The prediction maps and maps of exceedance

probabilities follow the trend seen in the population-level

classifications of seropositivity. We predicted higher and more

widespread exposures to historical antigens and lower, more

focalised exposures to recent antigens. In addition, predictions

for recent and historic P. vivax burdens were higher than those

for P. falciparum.

Despite the value of the geostatistical mapping, we faced a

number of limitations. The survey households were clustered

within three distinct areas in northern Lao PDR (Figure 1).

Geostatistical mapping works by exploiting correlation between

nearby data points and utilizing environmental and spatial

covariates to produce estimates on a continuous surface (41,

42). Predicting at too far of a spatial range from sampling

points results in higher uncertainty around predictions, which

is less useful for public health programmes. Therefore, we

limited the geostatistical mapping predictions to the districts

the samples were collected from and did not produce larger

province-level prediction maps. The spatial distribution of

sampling points is an important consideration to take into

account for projects planning to produce geostatistical maps,

where a wider distribution of points can allow for predictions
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FIGURE 3

Panel of geostatistical maps of predicted seroprevalences and exceedance probabilities to historic and recent P. vivax and P. falciparum

exposure for each district. Exceedance probabilities are on the bottom row of each district panel and refer to the probability of a location having

>20% predicted prevalence for P. vivax exposures, and >5% for P. falciparum exposures.
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FIGURE 4

Active and passive survey diagnostic results aggregated to catchment level. Gray background represents full district area used for geostatistical

predictions in Figure 3. Sample numbers for active surveillance are number of samples from active survey. Sample numbers for passive

surveillance are the 2016 population within health facility catchments which was used to calculate cases per capita.
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over larger spatial scales. The potential for relapses of P. vivax

due to the reactivation of hypnozoite stage parasites should

also be considered when interpreting the P. vivax maps and

seroprevalence estimates. While our seroprevalence estimates

and prediction maps followed the expected trend of declining

in size and becoming more focal as exposure transitioned

from historic to recent, the possibility of recurrent infections

inflating exposure estimates and predictions should still be

acknowledged. Differentiating between new and relapse cases

remains challenge in P. vivax research and should be taken into

account in mapping projects especially, as antibody production

may occur in a different location to the original site of

exposure (43).

While we have demonstrated a methodology for linking

passively collected health-facility data to active surveillance data

in the absence of health-facility catchment area boundaries,

this aspect of the study had several important limitations.

Firstly, the summary statistics presented for these areas are

likely subject to modifiable areal unit problems. The list

of health facilities used to create the catchment areas (31)

(Supplementary Figure 1) was more expansive than that used

by the retrospective review of malaria registries (3). This

may be explained by the regular updating of the official

online roster of health facilities, resulting in more locations

listed in 2021 than during the year of the survey. As a

result, some areas within the active surveillance districts were

broken into catchments for health facilities which we did not

have records for. 286 households comprising 1,008 samples

were located in these areas and were thus lost from the

catchment-level estimations of seroprevalences and PCR-based

prevalences. As a result, the sample sizes of survey households

per catchment were highly varied between health facilities,

with one facility’s records being excluded from this study

as zero survey households were located within the estimated

catchment area. Secondly, seroprevalences and PCR-prevalences

were calculated using different denominators to the RDT and

microscopy case metrics, therefore are not directly comparable.

The active surveillance survey metrics were calculated using

samples per area, and the passive surveillance metrics were

calculated per capita from the estimated population size per

catchment (3). Some households may also utilize near-by health

facilities that are not the administratively assigned ones for

their households, resulting in discrepancies in the catchment-

area population estimations. While it is useful to visualize

these various diagnostic endpoints on the same map (Figure 4),

as they can help to pick up broad patterns in recent and

current exposure, these limitations should be considered when

interpreting these results.

Despite these limitations, we have shown that adding

serology into passive surveillance projects can provide

additional information on current and historic trends in

exposure. The higher numbers of P. vivax compared to P.

falciparum cases detected in the passive and active surveillance

were reflected in the seroprevalence estimates for northern

Lao PDR from this study, indicating that at a broad level,

our serological estimations reflect the epidemiology of

malaria in the area. We also demonstrated the use of health

facility data to contextualize findings from serological burden

estimations. The addition of serology in this study allowed for

the characterization of the spatial distributions of exposures to

P. vivax and P. falciparum, demonstrating how these methods

can provide valuable information for control and elimination

programmes which need to identify and target remaining foci

of infection in low transmission settings. Additionally, we

showed how active surveillance data can be linked to passive

surveillance data, and the challenges which come with this.

Future work should prioritize spatial and temporal alignment

of sampling wherever possible, with design and implementation

of user-friendly platforms to move these analyses into more

routine public health use.
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