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Purpose: Previously, we have shown the capability of a hybrid deep learning (DL)
model that combines a U-Net and a sliding-window (SW) convolutional neural network
(CNN) for automatic segmentation of retinal layers from OCT scan images in retinitis
pigmentosa (RP). We found that one of the shortcomings of the hybrid model is that it
tends to underestimate ellipsoid zone (EZ) width or area, especially when EZ extends
toward or beyond the edge of the macula. In this study, we trained the model with
additional data which included more OCT scans having extended EZ. We evaluated its
performance in automatic measurement of EZ area on SD-OCT volume scans obtained
from the participants of the RUSH2A natural history study by comparing the model’s
performance to the reading center’s manual grading.

Materials and Methods: De-identified Spectralis high-resolution 9-mm 121-line
macular volume scans as well as their EZ area measurements by a reading center were
transferred from the management center of the RUSH2A study under the data transfer
and processing agreement. A total of 86 baseline volume scans from 86 participants
of the RUSH2A study were included to evaluate two hybrid models: the original RP240
model trained on 480 mid-line B-scans from 220 patients with retinitis pigmentosa (RP)
and 20 participants with normal vision from a single site, and the new RP340 model
trained on a revised RP340 dataset which included RP240 dataset plus an additional
200 mid-line B-scans from another 100 patients with RP. There was no overlap of
patients between training and evaluation datasets. EZ and apical RPE in each B-scan
image were automatically segmented by the hybrid model. EZ areas were determined by
interpolating the discrete 2-dimensional B-scan EZ-RPE layer over the scan area. Dice
similarity, correlation, linear regression, and Bland-Altman analyses were conducted to
assess the agreement between the EZ areas measured by the hybrid model and by
the reading center.
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Results: For EZ area > 1 mm2, average dice coefficients ± SD between the EZ
band segmentations determined by the DL model and the manual grading were
0.835 ± 0.132 and 0.867 ± 0.105 for RP240 and RP340 hybrid models, respectively
(p < 0.0005; n = 51). When compared to the manual grading, correlation coefficients
(95% CI) were 0.991 (0.987–0.994) and 0.994 (0.991–0.996) for RP240 and RP340
hybrid models, respectively. Linear regression slopes (95% CI) were 0.918 (0.896–
0.940) and 0.995 (0.975–1.014), respectively. Bland-Altman analysis revealed a mean
difference ± SD of -0.137 ± 1.131 mm2 and 0.082 ± 0.825 mm2, respectively.

Conclusion: Additional training data improved the hybrid model’s performance,
especially reducing the bias and narrowing the range of the 95% limit of agreement
when compared to manual grading. The close agreement of DL models to manual
grading suggests that DL may provide effective tools to significantly reduce the burden of
reading centers to analyze OCT scan images. In addition to EZ area, our DL models can
also provide the measurements of photoreceptor outer segment volume and thickness
to further help assess disease progression and to facilitate the study of structure and
function relationship in RP.

Keywords: deep learning, retinitis pigmentosa, retinal layer segmentation, automatic ellipsoid zone area
measurement, outer retinal layer metrics

INTRODUCTION

Recent advances in deep learning (DL) based neural networks
have provided new techniques for clinical applications in
ophthalmology (2). DL approaches have demonstrated
the potential of automatic retinal disease detection and
classification from fundus photos and optical coherence
tomography (OCT) scan images (3, 4), automatic segmentation
of retinal layers and structural features from OCT scan
images for quantitative measurements (5–8), and visual
function prediction from OCT images (9–12). For instance,
deep neural networks have been developed and trained for
automatic identification of diabetic retinopathy in retinal
fundus photographs (4, 13, 14), for automatic segmentation
of retinal layer boundaries in OCT images of dry age-related
macular degeneration (AMD) (5), for automated detection and
quantification of intraretinal cystoid fluid and subretinal fluid
in OCT images of neo-vascular AMD (8), and for predicting
glaucomatous visual field damage from OCT optic nerve
head en face images and retinal nerve fiber layer thickness
maps (10).

Automatic analysis of OCT scan images is one of the
focus areas of deep learning application in retinal diseases.
Efficient and effective techniques for automatic segmentation
of retinal layers could significantly reduce the burden of
human graders at reading centers to annotate OCT scan
images for evaluating disease progression and treatment
outcomes. Automatic measurements of retinal layer metrics
and structural features can facilitate the study of structure
and function relationship and help predict visual function
and visual performance with deep learning neural networks.
Observation of the structural changes in OCT scan images

of various type of retinal diseases suggests that retinitis
pigmentosa, an inherited retinal disease, may be one of ideal
testing cases for assessing the capability of deep learning
approaches for automatic segmentation of retinal layers from
OCT scan images.

Retinitis pigmentosa (RP) is a group of genetic eye disorders
causing visual impairment. One of the hallmarks of RP is
the progressive constriction of central visual field with the
advance of the disease. A number of studies using OCT
scan images have shown that the structure defects in RP
mainly occur in the outer retina as the disease progresses
(15–17), with the reduction of ellipsoid zone (EZ) width
clearly visible in an OCT B-scan image when EZ transition
zone is within the scan area. It has been shown that the
loss of EZ band is associated with the loss of visual field
sensitivity in RP (18–20). While cystoid macular edema may
occur in patients of RP (21) and outer retinal tubulation may
form near the end of EZ transition zone (22), the reduction
of EZ band width or area remains the primary biomarker
of structural changes with the progression of the disease,
making EZ a potentially clear target for trained DL models
to identify. Previously, image processing–based methods have
been employed for automatic segmentation of outer retinal
layers in RP (23–25). A more recent study by Loo et al. (26)
evaluated a deep learning-based algorithm originally developed
for macular telangiectasia (27) for the segmentation of EZ in
RP. While they showed that the DL algorithm performed well
in segmenting EZ area, it doesn’t provide a measure of other
photoreceptor outer segment metrics, such as volume, from
OCT volume scans.

In the past 2 years, we have been evolving several deep learning
models for automatic retinal layer segmentation in RP and have
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demonstrated their capability to obtain automatic measurements
of outer retinal layer metrics, including EZ width and area,
photoreceptor outer segment (OS) length or thickness, area, and
volume from SD-OCT images in RP (1, 28, 29). Particularly, we
have developed a hybrid model composed of two convolutional
neural networks (CNNs) with different architectures, a U-Net
(30) for fast semantic segmentation and a sliding-window (SW)
CNN model (31, 32) for correcting potential segmentation errors
made by the U-Net. With internal testing datasets (i.e., the dataset
for model testing was obtained at the same site as that for
model training but no overlapping between training and testing
datasets), we have shown that the hybrid model consisted of
a U-Net and a SW model can be more effective than either
model separately for automatic analysis of SD-OCT scan images
in RP (1).

However, in previous studies our DL models were mainly
evaluated with SD-OCT line B-scan images and have not
been tested on real-world external datasets. In addition, one
of the shortcomings of the hybrid model is that it tends to
underestimate ellipsoid zone (EZ) width and area, especially
when EZ transition zone extends to or beyond the edge of the
macula (1, 28). We hypothesized that one of the causes for such
underestimation may be due to the imbalance in the training data
set for the class associated with EZ, either OS area for U-Net or
the EZ line for the SW model, since the training dataset naturally
included B-scan images with varied EZ width for RP, resulting in
decreased (or under) representation of EZ transition zone with
the increase of EZ size in the training dataset. In this study, we
increased in the training dataset the number of cases of OCT
B-scan images having EZ extended to or beyond the macula.
U-Net and the SW model were retrained on the new dataset. The
performance of the original and new U-Net and hybrid models
for automatic measurement of EZ area was then evaluated on
an external testing dataset of SD-OCT volume scans obtained
from the participants of the Rate of Progression of USH2A-
Related Retinal Degeneration (RUSH2A) natural history study by
comparing the model’s estimates to that of the reading center’s
manual grading. The outcomes of this study would provide
us with an insight into the usability and limitations of deep
learning approaches in real-world applications of retinal layer
segmentation from SD-OCT images in retinitis pigmentosa.

MATERIALS AND METHODS

Deep Learning Models
The deep learning models employed in this study included a
U-Net CNN model and a hybrid model that combines U-Net for
initial, fast semantic segmentation and a sliding-window (SW)
CNN model for refinement. The details of these models have
been reported previously (1, 29). All models were implemented
in MATLAB (MathWorks, Natick, MA, United States). These
models were described briefly as follows.

The U-Net construction followed Ronneberger et al. (30).
Specifically, the U-Net consists of a 4-stage encoding (down-
sampling) subnetwork to extract features and a 4-stage decoding
(up-sampling) subnetwork to achieve semantic segmentation

with a bridge component to connect the encoding and decoding
stages. The size of input image processed by the U-Net model
was 256 × 32 (height × width) pixels. The convolution filter
(kernel) size was 5 × 5, and the initial number of feature channels
was eight. The “same” padding method (add edges with zeros)
is used in convolutional layers so that output image has the
same size as the input, which enables the use of a wide range of
image sizes. A tile-based approach is employed to segment large
images, that is, the U-Net was trained using smaller image patches
extracted from larger images. When performing segmentation,
a large image is divided into smaller patches for classification,
then the classified patches were stitched together to obtain the
segmentation of the larger image. In this study, U-Net was trained
to classify all pixels in an input image into the following five
areas: background, between inner limiting membrane (ILM) and
distal (basal) inner nuclear layer (dINL), between dINL and EZ,
between EZ and proximal (apical) retinal pigment epithelium
(pRPE), and between pRPE and Bruch’s membrane (BM).

The SW model, the second component of the hybrid model,
was the same as previously reported (29). This model was based
on the framework developed for classifying tiny images (33),
and has shown promising results for automatic segmentation of
retinal layer boundaries in OCT images of patients with dry AMD
(5) as well as patients with RP (29). The SW model included
three convolutional layers, three max pooling layers, four rectified
linear unit (ReLU) layers, two fully connected layers and a final
softmax classification layer. The size of input image handled by
the SW model was 33 × 33 pixels. The kernel size was 5 × 5, and
the number of initial feature channels was 32. In this study, the
SW model was trained to determine if the center pixel of an input
image patch was on one of the following retinal layer boundary
classes: ILM, dINL, EZ, pRPE, and BM, or was in the background.

The hybrid model was constructed by combining U-Net and
the SW model. U-Net was first employed for fast semantic
segmentation of OCT B-scan images. Then single-pixel boundary
lines were obtained from the semantic segmentation. Specifically,
ILM boundary line was defined as the top pixel of the area of ILM-
INL; dINL boundary line was defined as the top pixel of dINL-EZ
or dINL-pRPE for the parts where EZ was missing; EZ was
defined as the top pixel of EZ-RPE; pRPE and BM were defined
as the top and bottom pixels of pRPE-BM, respectively. Once
five boundary lines were obtained, they were then checked for
any line discontinuation or breaks, assuming the actual boundary
lines were continuous. The SW model was then employed to re-
classify the pixels in the regions surrounding the breaks or gaps
to repair any discontinuation along a boundary line. The details
of how the hybrid model handles the boundary line breaks and
gaps were described in our previous work (1).

Datasets for the Deep Learning Model
Training and Validation
In our previous studies (1, 29), the dataset for training and
validation of the DL models was generated from 480 horizontal,
9 mm (30-degree) mid-line B-scan images obtained using
a Heidelberg Spectralis (HRA-OCT, Heidelberg Engineering,
Heidelberg, Germany) from 20 normal subjects and 220 patients
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(one scan per eye) with various types of RP who had EZ transition
zones visible in the macula. All OCT scans were obtained from
a single site. Line B-scans were a mix of SD-OCT high-speed
(768 A-scans) or high-resolution (1536 A-scans) B-scans with an
automatic real-time tracking (ART) setting of 100. This dataset is
now referred as RP240. The Spectralis automatic segmentation of
480 B-scan images in this dataset were manually corrected by one
grader using Spectralis software (ver. 1.9.10) for the following five
boundary lines: ILM, dINL, EZ, pRPE, and BM.

We have previously shown the capability of the DL models
trained with RP240 dataset for automatic segmentation of retinal
layers from OCT B-scans (1). However, we found that these
models tended to underestimate EZ width or area when EZ
extended toward or beyond the edge of the macula (1, 28).
We hypothesized that one of possible explanations for this
shortcoming was the imbalance of the training dataset because
the original RP240 dataset did not include enough cases of EZ
transition zone around the edge of the macula and beyond. In
this study, we created a revised training dataset which included
the original RP240 dataset with an additional 200 B-scans from
another 100 patients with RP who had extended EZ area near or
beyond the macula. The revised dataset is referred as RP340.

Among the 440 B-scans obtained from 220 participants with
RP in the original RP240 training dataset, 31 B-scans had EZ
width ≤ 1.0 mm (mean ± SD = 0.79 ± 0.20 mm); 193 had
EZ width > 1 mm and ≤ 3.0 mm (1.86 ± 0.56 mm); 145
had EZ width > 3 mm and ≤ 6 mm (4.23 ± 0.79 mm);
and 71 had EZ width > 6 mm (7.22 ± 0.69 mm). For the
200 B-scans obtained from 100 participants with RP added
to create the new RP340 training dataset, 2 B-scans had EZ
width ≤ 1.0 mm (0.78 ± 0.28 mm); 81 had EZ width > 1 mm
and ≤ 3.0 mm (2.01 ± 0.55 mm); 70 had EZ width > 3 mm
and ≤ 6 mm (4.20 ± 0.80 mm); and 71 had EZ width > 6 mm
(7.38 ± 0.78 mm).

For U-Net, the training dataset were image patches of 256 × 32
pixels extracted from B-scan images. The labeling of pixels was
based on by their locations. A B-scan image was divided into five
areas according to five boundary lines: ILM, dINL, EZ, pRPE, and
BM. These areas were labeled as 0, 1, 2, 3, and 4 for background,
ILM-dINL, dINL-EZ, EZ-pRPE, and pRPE-BM, respectively. To
increase the number of training patches, data augmentation was
applied, which included overlapping image patches by 28 pixels
horizontally and centering the patches at each boundary line
(vertical shift) (1, 28). In this way, a total of 527,488 and 737,024
labeled patches were extracted from RP240 and RP340 for U-Net
training and validation, respectively.

For the SW model, the training data were tiny image patches
of 33 × 33 pixels extracted from B-scan images. These patches
were centered at the pixels on five boundary lines. The labeling
of each patch was defined by the class of its center pixel. The
pixels on ILM, dINL, EZ, pRPE, or BM boundary lines in a B-scan
image were labeled as 1, 2, 3, 4, or 5, respectively. Any pixels in a
B-scan image not on these five lines was labeled as 0. The method
to generate training dataset for the SW model was described in
detail previously (29). A total of 2.88 and 3.98 million classified
patches were extracted from RP240 and RP340 datasets for the
SW model training and validation, respectively.

All labeled image patches were randomly divided into training
set (80%) and validation set (20%). Since the models were trained
with small image patches extracted from B-scans, both training
and validation datasets contained patches from all participants
after patch randomization. The training batch size was 128
patches. Before the training started, all filter weights were set
to random numbers. The training stopped after the model was
trained for 45 epochs. The initial learning rate was 0.01 for U-Net
and 0.05 for the SW model. Learning rate reduced by 10 times
every 10 epochs. To accelerate convolutional neural network
training and reduce the sensitivity to network initialization (34),
a batch normalization layer was inserted between convolutional
layers and ReLU layers for the SW model training and between
convolutional layers and ReLU layers in the encoding subnetwork
for U-Net training. U-Net and the SW model were trained on
both RP240 and RP340. The trained models were named as
RP240 U-Net, RP240 SW, RP340 U-Net, and RP340 SW. RP240
Hybrid and RP340 Hybrid were the combination of RP240 U-Net
and RP240 SW, and RP340 U-Net and RP340 SW, respectively.

Due to the randomization of initial filter weights and
stochastic learning algorithms, the models trained on the same
dataset may be different each time they are trained, and
their performance may have some difference. To evaluation
the potential impact of such performance variability on EZ
area measurement, all models were trained three times on
the same datasets.

Ellipsoid Zone Area Measurements by
the Deep Learning Models
While our deep learning models were trained with mid-line
B-scan images, we hypothesized that the models would apply well
to most, if not all, of B-scans in a volume scan, given that the
models were trained to process small/narrow patches extracted
from B-scans. The assumption here is that the image patches
used for training the deep learning models would be “building
blocks” for all B-scans. The results from our preliminary study
provided the evidence to support this hypothesis and showed that
the deep learning models trained with mid-line B-scan images
can be applied to OCT volume scans for successful segmentation
of retinal layers (28).

For each B-scan image in a volume scan, ILM, dINL, EZ,
pRPE, and BM boundary lines were automatically segmented
by the trained DL models. To obtain EZ area measurement,
EZ and pRPE in each B-scan image of a volume scan were
extracted to obtain photoreceptor outer segment (OS) layer. The
EZ band in each line B-scan was marked from the OS layer
segmentation to obtain EZ band annotation map of 121 × 1,536
pixels for the pixel-wise comparison with the manual grading
(see Figure 1 inset images for examples). The 3-dimensional
OS map was reconstructed by interpolating the discrete 2-
dimensional OS layers from individual B-scans over the grid of
scan area. Figure 2 showed an example of 3-dimensional plot
of OS layer from a 9-mm 121-line SD-OCT volume scan of a
patient with retinitis pigmentosa. Figure 2A illustrated OS layer
determined by a hybrid deep learning model described in the
method above, and Figure 2B showed OS layer after off-center
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FIGURE 1 | Dice similarity coefficient was plotted as a function of ellipsoid
zone (EZ) area determined by the manual grading of the reading center. Close
red circles were the dice coefficients between the EZ band area determined
by the RP240 hybrid model and that by the manual grading. Closed blue
squares were the dice coefficients between the EZ band areas determined by
the RP340 hybrid model and the manual grading. The inset images
(121 × 1,536 pixels) showed two examples of EZ band segmentations of 121
B-scan lines used for pixel-wise comparison to obtain the dice coefficient (top:
by RP340 hybrid model; bottom: by manual grading of the reading center).
The dashed line is the output of a simple fixed shift model for dice coefficient
between two same size circles. In this example, the constant lateral shift
between two circles was 55 pixels (0.315 mm).

isolated small local EZ/OS areas presented in Figure 2A were
removed. These isolated off-center local EZ/OS areas were most
likely segmentation errors by the DL models. From OS layers
such as the one in Figure 2B, EZ area was measured by
multiplying the area of a single grid pixel by the number of
pixels having measurable OS. Specifically, EZ area was measured
by first counting the total number of pixels of measurable
OS, then EZ area in mm2 was obtained by multiplying total
number of pixels by the single pixel area defined as the product
of B-scan x-axis resolution and infrared fundus image y-axis
resolution in mm/pixel.

Since each model was trained three times separately on the
same datasets, three measurements of EZ area were obtained
by U-Net and the hybrid model for each OCT volume scan.
The mean EZ area measurement was used to compare with that
of the reading center. The SW model was not evaluated alone
in this study due to the time needed to segment high-density,
high-resolution volume scans (1).

Datasets for the Evaluation of the Deep
Learning Models
In this study, we evaluated the performance of the trained U-Net
and hybrid models for automatic measurement of EZ area on
SD-OCT volume scans of an external dataset obtained from the

participants of the Rate of Progression of USH2A-Related Retinal
Degeneration (RUSH2A) study (NCT03146078).

RUSH2A is a 4-year natural history study for patients with
USH2A mutations, which causes combined vision loss from
RP and hearing loss from inner ear dysfunction (35, 36). We
have made an agreement with and requested the data from
the ongoing Foundation Fighting Blindness (FFB) Consortium
RUSH2A study for the evaluation of the DL models trained on
the original RP240 dataset as well as on the revised RP340 dataset.
Under the data transfer and processing agreement, we received
de-identified baseline Spectralis high-resolution 9-mm 121-line
macular volume scans as well as their EZ area measurements
by a reading center. In this study, a total of 86 baseline volume
scans from 86 non-European participants1 of the RUSH2A study
were included to evaluate the performance of the trained DL
models. There was no overlap of patients between the training
and the evaluation datasets. No pre-processing was conducted on
the received OCT images of RUSH2A data before applying RP240
and RP340 models.

Data Analysis
The performance of U-Net and the hybrid model to measure the
EZ area from the volume scans of the RUSH2A baseline data was
evaluated by comparing the model’s results to that of the reading
center. Sørensen–Dice similarity, Pearson correlation, linear
regression, and Bland-Altman analyses were conducted to assess
the agreement and difference between automatic measurements
of EZ area by the DL models and the manual grading by
the reading center.

RESULTS

Dice Similarity Coefficient Between
Ellipsoid Zone Band Segmentations by
the Deep Learning Models and the
Reading Center
The similarity between the DL models and the manual grading
of the reading center to determine EZ areas was first evaluated
with Sørensen–Dice similarity analysis. Dice similarity coefficient
(DSC) was computed between the EZ band segmentation
determined by the models and the EZ band annotation by the
manual grading of the reading center for the 121 B-scan lines in
each volume scan. Figure 1 plots DSC as a function of EZ area
of the manual grading. Closed red circles were the DSC between
the EZ band segmentations by the RP240 hybrid model and the
manual grading. Closed blue squares were the DSC between the
EZ band segmentations by the RP340 hybrid model and the
manual grading. The inset images (121 × 1536 pixels) in Figure 1
showed two examples of EZ band annotation of 121 B-scan lines
used for pixel-wise comparison to obtain the dice coefficient.

It is evident from Figure 1 that when EZ area was very small
(<1 mm2), dice coefficient varied significantly, ranged from 0.013

1Patients from the European sites of the RUSH2A study are not permitted to share
data for secondary research purposes since GDPR consents were not signed.
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to 0.895. The smaller the EZ, the smaller the dice coefficient.
When EZ ≥ 1 mm2, dice coefficient appeared to be much less
varied and tended to reach a plateau. This pattern of DSC changes
with the increase of EZ area resembles the behavior predicted by a
simple fixed shift model for DSC between two same-size circles, as
illustrated by the dashed line in Figure 1. Here the dashed line is
the output of the fixed shift model of DSC with a constant lateral
shift of 55 pixels (0.315 mm) between two circles.

For easy description, we defined EZ areas into four sub-groups
based on the scales of ETDRS macular grid: (1) very small size
EZ with the area less than 1 mm2 (roughly corresponding to the
central subfield of the ETDRS grid); (2) small-size EZ as ≥ 1 mm2

and < 7 mm2 (inner ring of the ETDRS grid); (3) medium-
size EZ as ≥ 7 mm2 and < 30 mm2 (outer ring of the ETDRS
grid) and large-size EZ as ≥ 30 mm2 (beyond the ETDRS grid).
For EZ area ≥ 1 mm2, the mean DSC ± SD between the EZ
band segmentations determined by the DL model and the manual
grading were 0.835 ± 0.132 and 0.867 ± 0.105 for RP240 and RP
340 hybrid models, respectively. Paired t-test revealed that the
0.032 DSC improvement of RP340 over RP240 was significant
(p< 0.0005; n = 51). For small size EZ (≥ 1 mm2 to < 7 mm2), the
mean DSC ± SD were 0.814 ± 0.145 and 0.851 ± 0.101 for RP240
and RP 340 hybrid models, respectively (p = 0.0016; n = 38). For
medium-size EZ (≥7 mm2 to <30 mm2), the mean DSC ± SD
were 0.895 ± 0.047 and 0.913 ± 0.045 for RP240 and RP 340
hybrid models, respectively (p = 0.0072; n = 11). For large size
EZ (n = 2), the sample size was too small to compare RP340 and
RP240 models to determine the impact of the re-trained model on
the area estimation of large-size EZ. For very small size EZ, there
was no significant difference of DSC between RP340 and RP240
models. There was also no difference of DSC between U-Net and
the hybrid model.

Correlation and Linear Regression
Between Ellipsoid Zone Areas Measured
by the Deep Learning Models and by the
Reading Center
Dice coefficient assessed the pixel-wise similarity of EZ band
annotation of 121 B-scan lines. The similarity between the DL
models and the reading center to determine the size of EZ areas
in mm2 was also evaluated with Pearson correlation analysis and
linear regression. Figure 3 plots EZ areas measured automatically
by the DL models trained on RP240 dataset (Figure 3A) and on
RP340 dataset (Figure 3B) vs. that determined by the manual
grading of the reading center. Red circles and dashed lines are
the measurements of the U-Net model. Blue squares and solid
lines are the measurements of the hybrid model. Dotted lines have
a slope of one, indicating perfect agreement for the data points
falling on them. The larger arrows mark the central retinal area
with a radius of 3 mm from the fovea (28.3 mm2). The smaller
arrows mark the central retinal area with a radius of 1.5 mm
from the fovea (7.0 mm2). Error bars indicate ±1 standard
deviation of three measurements by the same type of model
but trained three times separately on the same datasets. The
equations in the plots were the linear regression fitting result and

the correlation coefficients (R) of the data (red for U-Net and blue
for the hybrid model).

Table 1 summaries the results of correlation coefficients and
linear regression slopes as well as their 95% confidence intervals
(95% CI) for all DL models evaluated in this study. In general,
the results showed that EZ area determined by the DL models
was highly correlated with that by the reading center (r > 0.99
for both U-Net and the hybrid model). The linear regression
analysis showed that automatic measurements of EZ area by the
DL models were in close agreement with the manual grading
of the reading center. The slope of linear fitting for U-Net
and the hybrid model was 0.9 or higher, approaching to one
(perfect agreement) for RP340 models. Also listed in Table 1 were
coefficients of determination R2, which were larger than 0.98,
suggesting that the agreement between the DL models and the
manual grading was 98% or higher.

When comparing U-Net and the hybrid model, examination
of the individual correlation coefficients in Table 1 reveled that
U-Net and the hybrid model trained on the same dataset had
the same coefficient. While there might be a small difference in
coefficients for RP340 and RP240 models, such small difference
was not significant since there was an overlap of 95% CI
for correlation coefficient between RP340 and RP240 models
vs. manual grading.

On the other hand, while the linear regression slope was
almost identical for U-Net and the hybrid models trained on
the same dataset as shown in Table 1, the 95% CI of the
slopes of RP340 models included one (i.e., not significantly
different from a perfect agreement) while that of RP240 models
didn’t. Furthermore, there was no overlap of 95% CI for
the slope between RP340 and RP240 models, suggesting that
additional training data added in RP340 significantly improved
the agreement between the DL models and the manual grading
for the measurement of EZ areas.

Bland-Altman Plots—Limit of Agreement
To further evaluate the performance of the trained DL models,
we examined the difference between EZ areas measured by
the models and that by the reading center. Figure 4 shows
Bland-Altman plots comparing the EZ areas determined by the
DL models to that by manual grading of the reading center
(Figure 4A for RP240 U-Net vs. manual grading, Figure 4B for
RP240 Hybrid, Figure 4C for RP340 U-Net, and Figure 4D for
RP340 Hybrid). In each plot, horizontal axis is the mean EZ
areas estimated by the DL model and the manual grading, while
the vertical axis is the difference of EZ areas by the DL model
and the manual grading. The text in each plot lists the values
of mean difference (Mean diff), standard deviation of the mean
difference (SD), standard error of the mean difference (SE), and
coefficient of repeatability (CoR). Dotted horizontal lines indicate
the mean difference, and dashed horizontal lines represent ±95%
limit of agreement (mean ± 1.96 ∗ SD of the difference). For easy
visualization of the data points of smaller EZ areas, the horizontal
axes of the plots in Figure 4 are in log scale.

Figures 4A,B showed that, when compared to the manual
grading, the original RP240 U-Net and the hybrid models tended
to somewhat overestimate small-size EZ area (positive difference)
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A B

FIGURE 2 | Examples of 3-dimensional plot of photoreceptor outer segment (OS) layer from a 9-mm 121-line SD-OCT volume scan of a patient with retinitis
pigmentosa. (A) OS layer determined by a hybrid deep learning model described in the method. (B) OS layer after off-center isolated local ellipsoid zone (EZ)/OS
areas shown in panel (A) were removed.

A B

FIGURE 3 | Ellipsoid zone (EZ) areas determined automatically by RP240 (A) and RP340 (B) deep learning (DL) models as functions of that by the reading center.
Red circles and dashed lines are the measurements of the U-Net model. Blue squares and solid lines are the measurements of the hybrid model. Dotted lines have a
slope of one. The large arrows mark the central retinal area with a radius of 3 mm from the fovea (28.3 mm2). The small arrows mark the central retinal area with a
radius of 1.5 mm from the fovea (7.0 mm2). Error bars indicate ±1 standard deviation of three measurements by the same model type but trained three times
separately on the same datasets. The equations in the plots were the Pearson correlation coefficients (R) and the linear regression fitting result of the data (red for
U-Net and blue for the hybrid model).

but underestimate medium-size EZ (negative difference). The
negative difference of EZ area measurements by the model
appeared to become larger when the EZ transition zone was
approaching to or around the edge of the macula (3 mm radius
from the fovea, corresponding to an EZ area of 28.3 mm2).

For the RP340 models, Figures 4C,D showed some reduction
of positive biases for small-size EZ and the reduction of negative
biases for medium-size EZ when compared to RP240 models
(Figures 4A,B). As anticipated, the combined effect of the
reduction of negative difference for medium-size EZ and the
reduction of positive difference for small-size EZ by the RP340
models when compared to RP240 models improved CoR of the

RP340 models to 1.6 mm2 from 2.2 mm2 of the RP240 models,
resulting in the RP340 models having closer agreement with the
manual grading. The RP340 models still had a slight bias in
EZ area measurement when compared to the manual grading.
However, this bias was trivial since 95% CI of standard error
of the mean difference included zero. As shown in Figure 4,
Bland-Altman analysis revealed a mean difference ± SD of -
0.137 ± 1.131 mm2 and 0.082 ± 0.825 mm2 for RP240 and RP340
hybrid models, respectively. Mean differences ± SD, as well as
mean absolute error ± SD, were also reported in Table 1.

Since there were only two cases of large-size EZ, the
results did not provide sufficient evidence to determine the
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TABLE 1 | Summary of correlation coefficients, coefficients of determination (R2), linear regression slopes, mean differences, as well as mean absolute errors between
ellipsoid zone (EZ) areas determined by the deep learning models and that of the reading center (human grading).

EZ area Correlation coefficient r
(95% CI)

R2 Linear regression
slope (95% CI)

Mean difference ± SD
(mm2)

Absolute error
(mean ± SD, mm2)

RP240 U-Net vs.
Manual Grading

0.991 (0.987–0.994) 0.983 0.919 (0.898–0.941) −0.129 ± 1.124 0.658 ± 0.917

RP240 Hybrid vs.
Manual Grading

0.991 (0.987–0.994) 0.983 0.918 (0.896–0.940) −0.137 ± 1.131 0.663 ± 0.924

RP340 U-Net vs.
Manual Grading

0.994 (0.991–0.996) 0.989 0.995 (0.976–1.014) −0.087 ± 0.824 0.517 ± 0.645

RP340 Hybrid vs.
Manual Grading

0.994 (0.991–0.996) 0.989 0.995 (0.975–1.014) −0.082 ± 0.825 0.517 ± 0.645

CI, confidence interval; SD, standard deviation.

impact of re-trained model on the area estimation of large-
size EZ.

Examples of Ellipsoid Zone Areas
Determined by the Deep Learning
Models
Figure 5 illustrates three examples of EZ area presence
determined by the DL models as well as by the reading center.
The top row was a single measurement of EZ area by a RP240
hybrid model; the middle row by a RP340 hybrid model; and the
bottom row by the reading center. The left column showed a case
of small-size EZ; the middle column a case of medium-size EZ;
and the right column a case of large-size EZ.

The first example on the left column in Figure 5 was a case
where the RP240 hybrid model overestimated small-size EZ area
by 14.7% when compared to the reading center, while the EZ area
measured by the RP340 hybrid model was closer to that of the
reading center (4.2% smaller when compared to that of manual
grading), suggesting that after trained on the new RP340 dataset,
the RP340 hybrid model may perform better in segmentation of
small-size EZ when compared to the RP240 hybrid model.

The second example in the middle column of Figure 5 was a
case of medium-size EZ area estimation where both RP240 and
RP340 models underestimated the EZ area when compared to
the manual grading. However, the difference between the RP340
hybrid model and the manual grading was smaller than that
for the RP240 hybrid model (17 vs. 30% smaller, respectively),
demonstrating the impact of the extra B-scan images added to
the training dataset on the model’s performance in medium-size
EZ area measurement.

The third example on the right column in Figure 5 also
showed a case where the large-size EZ area measured by the
RP240 hybrid model was smaller than that by the RP340 model,
with the result of the RP340 model much closer to that of the
reading center. The RP240 hybrid model underestimated the
EZ area by 15% when compared to the manual grading, while
the difference of the estimated EZ areas between the RP340
hybrid model and the reading center was only 1.2%. In addition,
this example illustrated that, while percent difference vs. the
manual grading seems comparable for the measurements of
different size EZ, the absolute difference is larger for large-size

EZ measurements as shown by the error bars in Figure 3. As a
matter of fact, the other two out of three measurements by each
model for this case showed that EZ area was either closer or larger
than that determined by the manual grading.

DISCUSSION

The results of this study demonstrate that automatic EZ area
measurements generated from our DL models were in excellent
agreement with those by the manual grading of the reading
center, with a correlation coefficient >0.99 for both U-Net model
and hybrid models as well as with a mean difference ± SD of
-0.137 ± 1.131 mm2 and -0.082 ± 0.825 mm2 for the original
(RP240) and the improved (RP340) hybrid model, respectively.
Our findings are consistent with a recent study by Loo et al.
(26) showing a close agreement of EZ area estimates between a
deep learning-based algorithm and experienced human graders
(a mean DSC ± SD of 0.79 ± 0.27, a mean absolute different ± SD
of 0.62 ± 1.41 mm2 with a correlation of 0.97). The similarity
between the performances of deep learning models and the
manual grading for EZ area measurements suggests that deep
learning may provide effective tools to significantly reduce the
burden of reading centers to analyze OCT scan images in RP. In
addition to EZ area, our deep learning models can also generate
the measurements of photoreceptor outer segment volume and
thickness to provide additional retinal layer metrics to facilitate
the study of structure and function relationship (37) and to assess
disease progression and future treatment trials in RP.

The pixel-wise comparison of the similarity between the EZ
area segmentation by the DL models and EZ area annotation
by the manual grading of the reading center also showed the
excellent agreement between the DL models and the human
graders for EZ area larger than 1 mm2. For EZ area smaller than
1 mm2, dice coefficient reduced with the decrease of EZ area. On
the other hand, Bland-Altman plots showed that the size of EZ
area measured by the DL models was in close agreement with
that of the manual grading when EZ area was less than 1 mm2,
suggesting that lateral shift of the EZ area determined by the
DL models relative to that by the manual grading was the main
cause of the reduced dice coefficient for very small-size EZ, as
predicted by the fixed shift model shown in Figure 1 where a
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A B

C D

FIGURE 4 | Bland-Altman plots of difference of measurements between deep learning (DL) models and the reading center vs. their mean. (A) RP240 U-Net vs.
manual grading; (B) RP240 hybrid model vs. manual grading; (C) RP340 U-Net vs. manual grading; and (D) RP340 hybrid model vs. manual grading. Coefficient of
repeatability (CoR) is defined as 1.96 times the standard deviation of the difference. Dashed horizontal lines represent ±95% limit of agreement (mean ± CoR).
Dotted horizontal lines represent the mean difference.

fixed shift of 50 pixels (0.315 mm) generated an output closely
fit to the data of the dice coefficients. It is worth to point out that
the mean difference of EZ width measured by the DL model and
by the manual grading was around 0.2 to 0.3 mm as we reported
previously (1, 29).

The results of this study also provide evidence to support our
hypothesis that training data imbalance or under representation
with the increase of EZ areas in our original U-Net and hybrid
models (1) may be one of the reasons for the underestimation of
the width or area for the medium-size EZ where EZ transition
zone is approaching to or beyond the edge of the macula. Same as
what we observed in our previous studies with internal evaluation
datasets (1, 28), the original RP240 models underestimated
the area of medium-size EZ in the external evaluation dataset
employed in this study. By increasing the number of OCT

B-scan images with EZ transition zone extended to and beyond
the macula in the training dataset, we have shown in this
study that the difference of medium-size EZ area measurement
was reduced between the new RP340 U-Net and the manual
grading when compared to the original RP240 U-Net, resulting
in the improvement of linear regression slope as demonstrated
in Figure 3 and Table 1. Although the overall percent cases
of medium- to large-size EZ was increased only by about 7%
from 49% in the original RP240 training dataset to 56% in
the RP340 training dataset, the new cases added may provide
significant amount of information not presented or may enhance
the weak information presented in the original training dataset
for the medium–size EZ. In addition, the increased cases of
small-size EZ in RP340 resulted in the improvement of the
model’s performance as shown in Figure 4. The increased cases
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FIGURE 5 | Examples of ellipsoid zone (EZ) area presence determined by the deep learning models as well as the reading center. Top row: RP240 hybrid model;
middle row: RP340 hybrid model; Bottom row: the reading center. Left column: small-size EZ; middle column: medium-size EZ; right column: large-size EZ.

of small- to medium-size EZ in the training dataset also improved
dice similarity coefficient for EZ area larger than 1 mm2.

To handle segmentation errors by U-Net, we have proposed
a hybrid model that combines U-Net for fast semantic
segmentation and a sliding-window (SW) CNN model for
refinement (1). Our previous study demonstrated that, by
correcting misclassification of retinal layers from U-Net, the
hybrid model improves automatic segmentation of retinal layer
boundary lines from OCT scan images in RP, with inner limiting
membrane (ILM) benefited the most (1) and EZ width estimation
not much affected. The results of this study were consistent
with our previous findings that EZ area measurement by the
hybrid model was comparable to that by the U-Net. While the
correction of the segmentation errors of the photoreceptor outer
segment layer for small-size EZ generated from U-Net was one
of the objectives of the hybrid model design, where isolated small
pieces of EZ, including small EZ’s at the center of a scan, were

re-examined using the SW model for confirmation or elimination
(1). The results from this study demonstrated that such strategy
may not work well in the current hybrid model for the estimation
of the area of small-size EZ. For instance, the U-Net segmentation
of medium- to large-size EZ band in a B-scan image was not
re-examined in the hybrid model by the SW model using the
same rules applied to other layer boundary lines (ILM, INL, RPE,
and BM) to check for the breaks or gaps along an EZ band,
considering that more complex rules may be needed to examine
multiple disconnected local EZ bands to determine which is legit
and which is segment error. In addition, we observed that U-Net
tends to make more segmentation error at the ends (or tails) of
an EZ band, and such potential errors were not checked by the
current hybrid model, which may contribute to the burred edges
observed in the examples of Figure 5. Future improvement of
the hybrid model is needed to reduce segmentation noise of EZ
bands, especially around the EZ transition zone, while preserving
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the segmentation of the actual EZ boundary line, so that the
accuracy of the hybrid model for EZ band segmentation can be
improved further.

There were other limitations of the study. While our results
(Figure 4) showed that the models trained on a new dataset
including more B-scan images with extended EZ sizes improved
the agreement with the manual grading for the area estimation of
small- to medium-size EZ, it appears that there was some residual
underestimation for medium-size EZ, which may suggest that
more OCT B-scan images with medium-size EZ could be added
to the training dataset to potentially reduce the underestimation
of medium-size EZ areas further. In addition, only mid-line
B-scan images were used for the model training so far. While
the trained models work well as demonstrated in this study,
including off-center B-scan images from volume scans in training
dataset may further improve the model’s performance. On the
other hand, the external evaluation dataset had a much smaller
number of cases of large-size EZ (≥30 mm2). Thus, the results
of this study did not provide sufficient evidence to determine
the impact (improvement, no change, or deterioration) of the
re-trained model on the area estimation for large size EZ. More
evaluation data are needed to assess the performance of the DL
models for automatic measurement of large EZ areas. As an
additional testing, we applied the re-trained RP340 model to
our internal testing dataset of 160 mid-line B-scans employed in
our previous studies (1, 29). In this internal testing dataset, 17
B-scans had EZ width ≤ 1.0 mm (mean ± SD = 0.78 ± 0.19 mm);
72 had EZ width > 1 mm and ≤ 3.0 mm (1.96 ± 0.60 mm);
48 had EZ width > 3 mm and ≤6 mm (4.12 ± 0.85 mm); and
23 had EZ width > 6 mm (7.27 ± 0.98 mm). The preliminary
analysis confirmed the findings reported in the Results. When
compared to the RP240 model, the RP340 model showed a
trend of improved correlation with the manual grading for the
measurement of EZ width (correlation coefficient changed to
0.988 from 0.981), increased linear regression slope (changed to
0.951 from 0.930), and reduced CoR (changed to 0.582 mm from
0.728 mm). Mean differences of EZ width ± SD between the
models and the manual grading were 0.013 ± 0.297 mm and
-0.055 ± 0.373 mm for RP340 and RP240 models, respectively.

In addition to the small number of cases of medium- to large-
size EZ in the external testing dataset employed in this study, the
residual insufficient number of B-scan images with medium- to
large-size EZ bands in the training dataset may be a contributing
factor to the larger error bars (larger absolution difference) for
the mean EZ area measurements by the same model but trained
at different time on the same training dataset (Figure 3). It needs
to be determined whether the standard deviation of mean area
measurement for large-size EZ can be reduced with more B-scans

having extended EZ added to the training dataset, which could
provide a guideline for how many measurements are needed to
obtain a reliable estimate of an EZ area. Finally, the current study
only included the cross-sectional data of the baseline of RUSH2A
study. Longitudinal studies are needed to evaluate the power
of deep learning models to detect disease condition change in
RP. Once the longitudinal data of RUSH2A study is available,
we will conduct the analysis to assess the performance of deep
learning models comparing to human graders to monitor disease
progression in RP.
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