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Background: In-hospital mortality, prolonged length of stay (LOS), and 30-day

readmission are common outcomes in the intensive care unit (ICU). Traditional

scoring systems and machine learning models for predicting these outcomes

usually ignore the characteristics of ICU data, which are time-series forms. We

aimed to use time-series deep learning models with the selective combination

of three widely used scoring systems to predict these outcomes.

Materials and methods: A retrospective cohort study was conducted on

40,083 patients in ICU from the Medical Information Mart for Intensive Care-

IV (MIMIC-IV) database. Three deep learning models, namely, recurrent neural

network (RNN), gated recurrent unit (GRU), and long short-term memory

(LSTM) with attention mechanisms, were trained for the prediction of in-

hospital mortality, prolonged LOS, and 30-day readmission with variables

collected during the initial 24 h after ICU admission or the last 24 h before

discharge. The inclusion of variables was based on three widely used scoring

systems, namely, APACHE II, SOFA, and SAPS II, and the predictors consisted

of time-series vital signs, laboratory tests, medication, and procedures. The

patients were randomly divided into a training set (80%) and a test set (20%),

which were used for model development and model evaluation, respectively.

The area under the receiver operating characteristic curve (AUC), sensitivity,

specificity, and Brier scores were used to evaluate model performance.

Variable significance was identified through attention mechanisms.

Results: A total of 33 variables for 40,083 patients were enrolled for mortality

and prolonged LOS prediction and 36,180 for readmission prediction. The

rates of occurrence of the three outcomes were 9.74%, 27.54%, and 11.79%,

respectively. In each of the three outcomes, the performance of RNN, GRU,

and LSTM did not differ greatly. Mortality prediction models, prolonged LOS

prediction models, and readmission prediction models achieved AUCs of

0.870 ± 0.001, 0.765 ± 0.003, and 0.635 ± 0.018, respectively. The top

Frontiers in Medicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2022.933037
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2022.933037&domain=pdf&date_stamp=2022-09-28
https://doi.org/10.3389/fmed.2022.933037
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2022.933037/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-933037 September 22, 2022 Time: 14:42 # 2

Deng et al. 10.3389/fmed.2022.933037

significant variables co-selected by the three deep learning models were

Glasgow Coma Scale (GCS), age, blood urea nitrogen, and norepinephrine

for mortality; GCS, invasive ventilation, and blood urea nitrogen for prolonged

LOS; and blood urea nitrogen, GCS, and ethnicity for readmission.

Conclusion: The prognostic prediction models established in our study

achieved good performance in predicting common outcomes of patients

in ICU, especially in mortality prediction. In addition, GCS and blood urea

nitrogen were identified as the most important factors strongly associated

with adverse ICU events.

KEYWORDS

intensive care unit (ICU), mortality, length of stay, readmission, prognostic prediction,
deep learning

Introduction

Patients in the intensive care unit (ICU) are usually critically
ill, presenting a high mortality risk compared with other
departments in the hospital (1). In addition, readmission and
prolonged length of stay (LOS) are both common clinical
outcomes indicating patients’ health conditions (2, 3), critical
care quality (4, 5), and medical efficiency (6). Thus, early
identification of seriously ill patients and those with prolonged
LOS and readmission risk and subsequent management is
exceedingly important in improving patient outcomes and
providing optimal allocation of medical resources.

However, traditional scoring systems, even some machine
learning methods in predicting these outcomes, especially in
stratifying the risk of readmission, have shown only modest
results (7–10). Although part of the existing work based on
machine learning models seems promising (11–13), few of
them are able to take advantage of the characteristics of
features collected in the ICU, which are time-series forms.
Presently, these time-series problems can be approached with
deep learning-based models, such as recurrent neural network
(RNN) and its derived models, namely, gated recurrent unit
(GRU) (14) and long short-term memory (LSTM) (15), which
can learn valuable information from a large number of rapidly
changing variables, making it possible to make full use of ICU
data collected at a high frequency (16). Based on these advanced
models, several studies have conducted prognostic prediction of
patients in ICU, but most were disease-specific or ICU-specific
(17–20), the clinical use of which was restricted to a specific
group. To the best of our knowledge, no studies have ever
predicted common outcomes while maximizing the value of
these models of patients in general ICU. Furthermore, because
of the complexity of these deep learning models, they are
not easy to interpret, which restricts their practical application
to clinical decisions (21, 22). Therefore, transparency and

explainability must be considered when constructing prediction
models. Recently, several methods have been introduced
to improve model interpretability; among them, attention
mechanisms seem to be one of the most prospective approaches
(23), which have been proven to provide the foundation for
clinical interpretation (24). Through explainable prediction
models, significant factors can be identified at an early stage to
help clinicians offer better medical interventions.

In this study, we aimed to apply three time-series deep
learning models for predicting three common ICU outcomes,
namely, mortality, prolonged LOS, and readmission, of patients
in ICU from the Medical Information Mart for Intensive Care-
IV (MIMIC-IV) database and identified predictors of high
importance based on attention mechanisms to facilitate model
interpretability.

Materials and methods

Data source and study participants

Patient information was extracted from the MIMIC-
IV database (25) to conduct a retrospective cohort study.
The MIMIC-IV database contains real medical records with
comprehensive information for each patient, ranging from
demographic information, vital signs, and laboratory tests
to medication administration. All patient information was
collected from those who were admitted to the emergency
departments and ICU of a tertiary academic medical center in
Boston, MA, United States, from 2008 to 2019. The database
involves a total of 53,150 patients admitted to the ICU, and all
patients’ information was de-identified.

A total of 40,083 patients were included in our study.
Patients were excluded for the following reasons: (1)
age ≤ 18 years or ≥ 90 years and (2) stay in the ICU for
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less than 24 h. In addition, we only included the first admission
record if a patient was admitted to the ICU more than once, so
the admission records and subject IDs corresponded.

Predictors and outcomes

We extracted the following data from the MIMIC-IV
database upon the initial 24 h of ICU admission and the
last 24 h before discharge, and all of the variables were
selected according to three conventional scoring systems
[APACHE II (26), SOFA (27) and SAPS II (28)]: (1)
basic information: age, sex, admission type, ethnicity; (2)
diagnosis: AIDS, hematologic malignancy, metastatic cancer;
(3) laboratory measurements: serum sodium, serum potassium,
serum creatinine, hematocrit, white blood cell count, blood
urea nitrogen (BUN), serum bicarbonate, bilirubin, platelets;
(4) vital signs: temperature, mean arterial pressure, systolic
blood pressure, heart rate, respiratory rate, PaO2, Glasgow
coma score (GCS); (5) medication administration: dopamine,
dobutamine, epinephrine, norepinephrine; (6) output: urinary
output; (7) surgical procedures: invasive mechanical ventilation,
non-invasive mechanical ventilation.

Three primary outcomes were needed for prediction in our
study. One is the occurrence of death in the hospital, which was
defined as whether the patient died during hospitalization, and
this information can be extracted from hospital_expire_flag in
the admissions table in the MIMIC-IV database. Another is the
occurrence of prolonged LOS, a binary variable with a cutoff
point of 75th percentile LOS of the study participants, which
was 4 days in our study. Thus, patients with LOS for more than
4 days were labeled as 1, and those with LOS for less than 4 days
were labeled as 0. Prolonged LOS information was calculated
from the icustays table. The other outcome is readmission, which
was defined as whether the patient was recorded as having
full-cause readmission within 30 days after hospital discharge.

Data extracted from the initial 24 h after ICU admission
were used to predict mortality and prolonged LOS, while data
derived from the last 24 h before discharge were used to predict
the risk of 30-day readmission.

Data preprocessing and statistical
analysis

Continuous variables are presented as the means ± SDs
or medians and interquartile ranges and are compared using
Student’s t-test or Wilcoxon rank-sum test according to their
normality test results. Categorical variables are presented as
counts and percentages and compared through the Chi-square
test or Fisher’s exact test with significant p-values < 0.05.

According to recording frequencies, predictors can be
classified into dynamic predictors and static predictors.

Dynamic variables were those recorded more than once during
ICU hospitalization, mostly consisting of vital signs and
laboratory tests. Static variables, which included demographic
information such as age, sex, and admission type, were all
constant and did not change over time. The initial 24 h of
ICU admission and the last 24 h before discharge were divided
into a time-series of 24 steps, and all variables were obtained
for each 1 h window to generate a complete dataset. For
static variables, the same value of each patient was recorded
24 times. For dynamic variables, if a variable was recorded
more than once in an hour, its mean value was used for
aggregation, and then the last observation carried forward
(LOCF) was conducted to impute missing values of time-
series data. After the first missingness imputation, variables
with missing rates of more than 30% were excluded. All
categorical variables were one-hot encoded, so the final number
of predictors was 33.

All participants were randomly split into a training set (80%)
and a test set (20%). The mean value of each continuous variable
in the training set was used to impute the remaining missing
values in both the training set and the test set. Three deep
learning models, RNN, GRU, and LSTM, were used for model
development in the training set, and model performance was
evaluated in terms of AUC, sensitivity, specificity, and Brier
score in the test set. Variable importance according to the
attention mechanism was also produced from the test set.

All data analysis procedures were conducted with SAS
9.4 and Python 3.7.

Recurrent neural network

The mechanism of RNN to tackle time-series problems is
that it includes a hidden layer, which incorporates information
from all former steps, and with the extension of each time step,
the hidden layer iteratively updates, and stores new memory.
As shown in Figure 1A, Xt represents input variables of the
present time step, while Ht−1 is the hidden layer of the previous
time step, two of which co-determine the hidden layer Ht of the
present time step, so Ht contains all information of both the
previous time steps and the present time step.

Gated recurrent unit

Gated recurrent unit enriches the structure of RNN with
gating systems (an update gate and a reset gate) to solve the
problem of too much information kept in the hidden layer
when time sequences are too long, in which the update gate
(Zt) decides how much information to forget and how much
information to keep and the reset gate (Rt) determines how
much information on former steps to forget, as shown in
Figure 1B.
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FIGURE 1

Model diagram of a single cell. (A) RNN; (B) GRU; (C) LSTM.

Long short-term memory

Long short-term memory is more complicated than GRU.
It has three gates, an input gate (It), a forget gate (Ft), and
an output gate (Ot) addition with a memory cell Ct . The three
gates are all generated by Xt and Xt−1, and they separately
decide how much present input information to keep, how much
previous information to forget, and how much total information
to output. The schematic diagram of an LSTM cell is shown in
Figure 1C.

Attention mechanism

Considering the complexity of the three deep learning
models, especially LSTM, which has relatively more parameters,
it would be very difficult to explain the contribution of each
variable from these prediction models. Hence, an additional
layer was added to each of the three models at the level of
input variables; specifically, each variable of each time step
(33 × 24 time-specific variables in all) was given an attention
weight, which can be represented as at = softmax(xtWt),
and the sum of the weight of each time step was equal
to 1 (|at| = 1), so the new input variable was represented
as Xnew = A� X. As a result, we ignored the possibly
different contributions of each time step but focused on
the contribution of each variable. Through the aggregation

of all time steps, the global contribution of each variable
can be generated.

Results

Patient characteristics

A total of 40,083 patients were included in our study for
the prediction of mortality and prolonged LOS after excluding
those who did not meet the selection criteria, and 36,180 of them
were included to predict readmission, as shown in Figure 2.
Among these patients, 3,903 (9.74%) deaths occurred during
hospitalization, and 11,038 (27.54%) underwent prolonged LOS.
After excluding 3,903 patients who died in the hospital, 4,268
(11.79%) were readmitted to the hospital within 30 days after
discharge. The comparison of basic information of these patients
stratified by outcomes is shown in Table 1. Patients with
in-hospital death, compared with those without, were older
(P < 0.001), comprised more women (P < 0.001) and more
other or unknown ethnicity (P < 0.001), and were more likely
to be admitted to the emergency room and transferred from the
hospital (P < 0.001), had a longer LOS in the ICU (P < 0.001),
and were more likely to be diagnosed with metastatic cancer
(P < 0.001) and hematologic malignancy (P < 0.001). Patients
with prolonged LOS were also comprised of more women
(P < 0.015) and other or unknown ethnicity (P < 0.001),
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FIGURE 2

Flow chart depicting the inclusion of study participants.

more transferred from the hospital (P < 0.001), and more
were diagnosed with hematologic malignancy (P < 0.048),
while fewer were diagnosed with metastatic cancer (P = 0.025).
Patients who were readmitted were also older (P < 0.001),
comprised of more white people and fewer other or unknown
ethnicity (P < 0.001), more were transferred from the hospital
(P < 0.001) and diagnosed with metastatic cancer (P < 0.001)
and hematologic malignancy (P < 0.001). The diagnosis of AIDS
showed similar results between both patients with and without
in-hospital death (P = 0.777), prolonged LOS (P = 0.985), and
readmission (P = 0.146).

Model performance

The receiver operating characteristic (ROC) curves of the
three prediction models in predicting in-hospital mortality,
prolonged LOS, and 30-day readmission are shown in
Figures 3A–C. The AUCs of RNN, GRU, and LSTM in
predicting mortality were 0.862 ± 0.001, 0.870 ± 0.001, and
0.869 ± 0.002, respectively, and those in prolonged LOS
prediction were 0.761± 0.002, 0.757± 0.011, and 0.765± 0.003,
respectively. The AUCs of readmission prediction reached only
0.625 ± 0.008, 0.631 ± 0.011, and 0.635 ± 0.018 for the three
deep learning models. Other performance metrics, namely,
sensitivity, specificity, and Brier score, are shown in Table 2.

Variable significance

The significance of the variables is shown in Figures 4–6.
All three prediction models (RNN, GRU, and LSTM) indicated
the important roles of GCS, age, blood urea nitrogen, and
administration of norepinephrine in predicting mortality. GCS,
invasive ventilation, and blood urea nitrogen were all among
the top five significant predictors for prolonged LOS prediction.
Blood urea nitrogen, GCS score, and ethnicity were strong
predictors for 30-day readmission prediction.

Discussion

In this study, three time-series deep learning models were
applied to predict in-hospital mortality, prolonged LOS, and 30-
day readmission with conventional and easily available variables
in ICU settings, and influential factors associated with the
three outcomes were identified through attention mechanisms
to enhance model interpretability.

Our study focused on the outcome prediction of general
patients without distinguishing their diseases, and the results
showed in-hospital mortality of 9.74%, a prolonged LOS
of 27.54%, and 30-day readmission of 11.79%, which were
roughly consistent with previous studies (29, 30). For better
practical use in clinical settings, we only included variables
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TABLE 1 Characteristics of study participants grouped by outcomes.

Characteristic Total
(N = 40,083)

Outcome 1 Outcome 2 Total
(N = 36,180)

Outcome 3

Death
(N = 3,903)

Survival
(N = 36,180)

P-value PLOS
(N = 11,038)

Non-PLOS
(N = 29,045)

P-value Readmission
(N = 4,268)

Non-
readmission
(N = 31,912)

P-value

Age/year,
Mean± SD

63.6± 16.1 68.5± 14.7 63.1± 16.2 < 0.001 63.7± 16.0 63.6± 16.2 0.444 63.1± 16.2 64.7± 15.4 62.9± 16.3 < 0.001

Sex, n (%) < 0.001 0.015 0.412

Male 23,096 (57.6) 2,131 (54.6) 20,965 (57.9) . 6,253 (56.6) 16,843 (58.0) 20,965 (57.9) 2,498 (58.5) 18,467 (57.9)

Female 16,987 (42.4) 1,772 (45.4) 15,215 (42.1) . 4,785 (43.4) 12,202 (42.0) 15,215 (42.1) 1,770 (41.5) 13,445 (42.1)

Ethnicity, n (%) < 0.001 < 0.001 < 0.001

White 26,768 (66.8) 2,307 (59.1) 24,461 (67.6) . 7,044 (63.8) 19,724 (67.9) 24,461 (67.6) 2,998 (70.2) 21,463 (67.3)

Black American 3,540 (8.8) 289 (7.4) 3,251 (9.0) . 934 (8.5) 2,606 (9.0) 3,251 (9.0) 394 (9.2) 2,857 (9.0)

Asian 1,178 (2.9) 116 (3.0) 1,062 (2.9) 291 (2.6) 887 (3.1) 1,062 (2.9) 125 (2.9) 937 (2.9)

Hispanic 1,423 (3.6) 103 (2.6) 1,320 (3.6) 373 (3.4) 1,050 (3.6) 1,320 (3.6) 138 (3.2) 1,182 (3.7)

Others/Unknown 7,174 (17.9) 1,088 (27.9) 6,086 (16.8) 2,396 (21.7) 4,778 (16.5) 6,086 (16.8) 613 (14.4) 5,473 (17.2)

Admission location,
n (%)

< 0.001 < 0.001 < 0.001

Emergency room 17,587 (43.9) 2,024 (51.9) 15,563 (43.0) . 4,862 (44.0) 12,725 (43.8) 15,563 (43.0) 1,915 (44.9) 13,648 (42.8)

Physician referral 10,154 (25.3) 412 (10.6) 9,742 (26.9) 2,073 (18.8) 8,081 (27.8) 9,742 (26.9) 870 (20.4) 8,872 (27.8)

Transfer from hospital 9,946 (24.8) 1,236 (31.7) 8,710 (24.1) . 3,511 (31.8) 6,435 (22.2) 8,710 (24.1) 1,213 (28.4) 7,497 (23.5)

Others 2,396 (6.0) 231 (5.9) 2,165 (6.0) 592 (5.4) 1,804 (6.2) 2,165 (6.0) 270 (6.3) 1,895 (5.9)

LOS/day,
Mean± SD

4.1± 5.3 6.2± 6.8 3.9± 5.0 < 0.001 9.6± 7.6 2.0± 0.8 < 0.001 3.9± 5.0 5.3± 6.9 3.7± 4.7 < 0.001

Metastatic cancer, n
(%)

< 0.001 0.025 < 0.001

Yes 4,715 (11.8) 776 (19.9) 3,939 (10.9) 1,234 (11.2) 3,481 (12.0) 3,939 (10.9) 552 (12.9) 3,387 (10.6)

No 35,368 (88.2) 3,127 (80.1) 32,241 (89.1) . 9,804 (88.8) 25,564 (88.0) 32,241 (89.1) 3,716 (87.1) 28,525 (89.4)

Hematologic
malignancy,
n (%)

< 0.001 0.048 < 0.001

Yes 1,278 (3.2) 257 (6.6) 1,021 (2.8) 383 (3.5) 895 (3.1) 1,021 (2.8) 165 (3.9) 856 (2.7)

No 38,805 (96.8) 3,646 (93.4) 35,159 (97.2) . 10,655 (96.5) 28,150 (96.9) 35,159 (97.2) 4,103 (96.1) 31,056 (97.3)

AIDS, n (%) 0.777 0.985 0.146

Yes 47 (0.1) 4 (0.1) 43 (0.1) 13 (0.1) 34 (0.1) 43 (0.1) 2 (0.0) 41 (0.1)

No 40,036 (99.9) 3,899 (99.9) 36,137 (99.9) . 11,025 (99.9) 29,011 (99.9) 36,137 (99.9) 4,266 (100) 31,871 (99.9)

PLOS, prolonged length of stay; non-PLOS, non-prolonged length of stay; AIDS, acquired immune deficiency syndrome. The bold font designates the statistically significant variables with p value less than 0.05.
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FIGURE 3

ROC curves of RNN, GRU, and LSTM. (A) Mortality prediction; (B) prolonged LOS prediction; (C) 30-day readmission prediction.

TABLE 2 Model performance in predicting hospital mortality, PLOS, and 30-day readmission of patients in ICU.

Performance Mortality prediction PLOS prediction 30-day readmission prediction

RNN GRU LSTM RNN GRU LSTM RNN GRU LSTM

AUC 0.862± 0.001 0.870± 0.001 0.869± 0.002 0.761± 0.002 0.757± 0.011 0.765± 0.003 0.625± 0.008 0.631± 0.011 0.635± 0.018

Sensitivity 0.787± 0.012 0.796± 0.015 0.790± 0.020 0.651± 0.009 0.666± 0.018 0.655± 0.027 0.658± 0.036 0.652± 0.083 0.691± 0.064

Specificity 0.786± 0.011 0.782± 0.012 0.783± 0.017 0.771± 0.009 0.741± 0.012 0.760± 0.024 0.567± 0.039 0.541± 0.072 0.524± 0.061

Brier Score 0.073± 0.003 0.087± 0.006 0.082± 0.010 0.169± 0.006 0.204± 0.019 0.185± 0.014 0.105± 0.001 0.105± 0.002 0.104± 0.009

AUC, area under the curve; PLOS, prolonged length of stay; RNN, recurrent neural network; GRU, gated recurrent unit; LSTM, long short-term memory. The bold font represents the
best score of the three models.

FIGURE 4

Variable importance generated by mortality prediction models. (A) RNN; (B) GRU; (C) LSTM.

that are commonly used and easily available according to
three traditional scoring systems [APACHE II (26), SOFA (27),
and SAPS II (28)] and collected within 24 h, so compared
with other similar studies, the number of variables in this
study was relatively small, which partly explained the not

very outstanding performance of our prediction models. For
example, in Golas’s study, 3,512 variables were included (31)
and in Sherman’s study, 165 variables were included (32),
while in our study, only 33 variables were included, which
were all among the common clinical measurement indicators.
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FIGURE 5

Variable importance generated by prolonged LOS prediction models. (A) RNN; (B) GRU; (C) LSTM.

FIGURE 6

Variable importance generated by 30-day readmission prediction models. (A) RNN; (B) GRU; (C) LSTM.

Specifically, the values of AUC indicated good discrimination
capability in mortality prediction, moderate in prolonged LOS,
and not as good in readmission. All prediction models were
trained with a 24-h time window, which was a comprehensive
consideration of various conditions, such as the significance
of each period, the complexity of variable availability, and the
missingness rate. Nevertheless, the length of the time window
can also have a certain impact on model performance. In
Na’s study, the best-performing model (GRU) was trained
with 8/16/24/48-h time windows, and the overall tendency
indicated that the extended time window corresponded to better
predictive performance (33). In addition, the performance of
the readmission prediction model may be strongly affected

by the period of readmission, ranging from 24 h to 30 days
in existing studies (34–36); usually, the shorter the time
interval is the better the prediction capability. Thus, using
a relatively narrow time window, which is 24 h, to predict
long-term outcomes theoretically resulted in a weak predictive
capability. However, the result is still competitive in all three
outcome predictions because of the application of deep learning
models with a small quantity of time-series variables (8, 9,
31, 37).

The results of the performances of the three deep learning
modes (RNN, GRU, and LSTM) did not differ greatly in
predicting outcomes, and this was inconsistent with what was
obtained by Na’s study (33). For a similar task (mortality
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prediction using RNN, GRU, and LSTM with variables collected
within a 48-h observation window), GRU and LSTM performed
better than RNN. In their study, the observation window
was double-length, which may be related to the difference in
the results. The superiority of LSTM and GRU is that their
additional gate systems can better select important information
stored in hidden layers on each time step, so when the time
window is too short, the information contained is more likely
to be undiscardable so that the advantages of LSTM and GRU
cannot be reflected (23).

Attention mechanisms allowed us to identify important
features used by three different models in prediction, and
the influential variables of each outcome selected by different
deep learning models also did not differ greatly. The GCS was
identified as the top important factor for mortality, prolonged
LOS, and readmission prediction, and the same results can also
be extracted from other similar studies. For example, some
studies have concluded that GCS is an independent mortality-
related factor and has the most significant feature importance
in some specific diseases (38, 39). This variable was also
demonstrated to be one of the most important determinants
of prolonged LOS in patients with traumatic brain injury (40).
Moreover, in Oh’s study, 2.28-fold higher unplanned 2-day
readmissions were associated with GCS scores less than 13
(41). A lower GCS score indicates more severely impaired
consciousness, which may lead to a poor outcome if timely
medical intervention is not conducted (42). Age was also
demonstrated to have a strong relationship with in-hospital
mortality in the ICU by previous studies (43, 44), with a
higher mortality rate occurring among elderly patients. These
patients generally have reduced immunity, underlying chronic
diseases, and worse recovery ability, which may complicate
their health status and result in adverse outcomes (45, 46).
In Martin’s study, BUN was discovered to have a significant
association with 28-day mortality (47), and Jamshid’s study
identified BUN as one of the factors with the highest predictive
values to predict the risk of mortality from patients with severe
COVID-19 (48), which also provides support for our results.
BUN was also identified as a significant variable for prolonged
LOS and readmission prediction, and the same results can
also be found in homogeneous studies (49, 50). The increased
level of BUN is associated with kidney damage, which is
supported by multiple mechanisms (51). We also included some
medication administration information following SOFA scoring
systems (27), and the results showed that norepinephrine, which
was recommended as first-line therapy for cardiogenic shock
(52), had decisive implications on mortality prediction. This
result was also generated by Lu’s study, which concluded that
patients in cardiogenic shock treated with norepinephrine had
significantly increased short-term mortality rates (53). These
patients, especially those in refractory shock, usually had an
extremely poor prognosis, which lead to higher mortality
(54). We also found that invasive ventilation was a decisive

predictor for prolonged LOS, a risk factor also suggested by
a meta-analysis containing 28 articles (3). In the prediction of
readmission, the results showed that ethnicity was a decisive
predictor, with the white people owning an increased probability
for readmission and other/unknown ethnicity decreasing. In
Mukhopadhyay’s study, the results also showed that ethnicity
was independently associated with hospital readmissions (55).

There are several limitations to our study. First, we excluded
some variables that may have predictive values because of high
missingness rates, such as the mean arterial blood pressure and
bilirubin, and the insurance variable, which may influence LOS,
was also not included considering that more than half of the
insurance type was labeled “Others.” Second, as a single-center
study, the generalizability and representation of our conclusion
still need to be demonstrated by other data sources. Third,
the alternative variables may still be not comprehensive. For
example, the diagnosis at ICU admission was not considered
a predictor in our study, which may affect the application and
generalization of this model in different patient groups. More
variables that are easily available need to be explored to further
improve model performance.

Conclusion

Three time-series deep learning models were applied for the
prediction of three common ICU outcomes, namely, mortality,
prolonged LOS, and readmission. The prediction models
reached good performance, especially in mortality prediction,
which is of great value in clinical settings considering the
conventional and easily available variables incorporated. Our
results also indicate that GCS and blood urea nitrogen were
highly associated with adverse outcomes of patients in ICU, and
focusing on these variables can better assist clinical decisions.
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