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Background: Corneal topography is a clinically validated examination method

for keratoconus. However, there is no clear guideline regarding patient

selection for corneal topography. We developed and validated a novel artificial

intelligence (AI) model to identify patients who would benefit from corneal

topography based on basic ophthalmologic examinations, including a survey

of visual impairment, best-corrected visual acuity (BCVA) measurement,

intraocular pressure (IOP) measurement, and autokeratometry.

Methods: A total of five AI models (three individual models with fully

connected neural network including the XGBoost, and the TabNetmodels, and

two ensemble models with hard and soft voting methods) were trained and

validated. We used three datasets collected from the records of 2,613 patients’

basic ophthalmologic examinations from two institutions to train and validate

the AI models. We trained the AI models using a dataset from a third medical

institution to determine whether corneal topography was needed to detect

keratoconus. Finally, prospective intra-validation dataset (internal test dataset)

and extra-validation dataset from a di�erent medical institution (external test

dataset) were used to assess the performance of the AI models.

Results: The ensemble model with soft voting method outperformed all

other AI models in sensitivity when predicting which patients needed corneal

topography (90.5% in internal test dataset and 96.4% in external test dataset).

In the error analysis, most of the predicting error occurred within the range of

the subclinical keratoconus and the suspicious D-score in the Belin-Ambrósio

enhanced ectasia display. In the feature importance analysis, out of 18 features,

IOP was the highest ranked feature when comparing the average value of the

relative attributions of three individual AI models, followed by the di�erence in

the value of mean corneal power.

Conclusion: An AI model using the results of basic ophthalmologic

examination has the potential to recommend corneal topography for

keratoconus. In this AI algorithm, IOP and the di�erence between the two eyes,

Frontiers inMedicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2022.934865
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2022.934865&domain=pdf&date_stamp=2022-08-04
mailto:seoky@yuhs.ac
https://doi.org/10.3389/fmed.2022.934865
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2022.934865/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ahn et al. 10.3389/fmed.2022.934865

which may be undervalued clinical information, were important factors in the

success of the AI model, and may be worth further reviewing in research and

clinical practice for keratoconus screening.

KEYWORDS

artificial intelligence, corneal topography, keratoconus, machine learning, Pentacam,

screening test

Introduction

Keratoconus is a chronic, progressive, non-inflammatory

corneal disorder where the central or paracentral cornea

undergoes thinning in individuals aged 18–40 years (1).

While the disease course varies depending on its progression,

keratoconus may eventually require a treatment as extensive

as corneal transplantation due to corneal scarring and

perforation. According to a previous meta-analysis, the

prevalence of keratoconus in the study population was 1.38

per 1,000 persons (2). On the other hand, in a previous

nationwide population-based study, the incidence of

keratoconus was 5.56 per 100,000 (3). However, these

hospital-based epidemiological reports should be interpreted

with caution since the true prevalence or incidence

of keratoconus within the general population may be

underestimated (4).

Slit-lamp examination and corneal topography/tomography

are important tests performed to help detect and manage

keratoconus (1). In particular, corneal topography is not only

diagnostic for keratoconus, but also provides information

regarding its severity and progression. To date, most of

the studies investigating keratoconus have been based on

topographic results (5–8). Unfortunately, corneal topography

is not routinely performed for patients visiting the clinic,

including first-time patients, unlike the tests for visual acuity

and intraocular pressure (4, 9). Moreover, the Medicare

Advantage Policy Guidelines outline a list of indications for

corneal topography that limits routine testing (10). For these

reasons, keratoconus is usually detected through other ways.

For example, advanced keratoconus may be detected by an

ophthalmologist after failing for vision correction with glasses

due to severe corneal astigmatism or corneal scar. Alternatively,

detailed preoperative examinations for corneal refractive surgery

or cataract surgery may reveal keratoconus or its latent form,

even in asymptomatic patients. As a result, when keratoconus is

detected, it is often by chance andmay already be at an advanced

stage that ultimately requires a corneal transplantation. If it

is possible to identify patients who need corneal topography

with only ophthalmologic examinations, performed basically for

patients who visit eye clinics, keratoconus may be diagnosed in

a latent or early stage before visual impairment.

Artificial intelligence (AI) is widely studied in the medical

field, and ophthalmology is no exception. For keratoconus,

the ability for AI to detect keratoconus was excellent with

over 90% accuracy (11). Since the invention and development

of corneal topography and its analysis program, keratoconus

has been a disease that can be early diagnosed through

corneal topography. However, there is a lack of research on

how to select patients who would best benefit from corneal

topography for keratoconus screening. Currently, one of the

biggest problems associated with keratoconus detection is that

patients who need corneal topography are not preemptively

identified. To solve this problem, our study aimed to develop

a tool using a novel AI that recommends corneal topography

for keratoconus screening based on the results of basic

ophthalmologic examinations. Furthermore, the clinical factors

that affected the estimation of AI were analyzed by the feature

importance of explainable AI.

Materials and methods

Study design and population

This study was conducted with three datasets from two

medical institutions, including a tertiary medical institution

(Severance Hospital, Yonsei University College of Medicine)

and a primary medical institution (Eyejun Ophthalmic Clinic)

(Figure 1). First, we retrospectively extracted data for AI

model training from the medical records of individuals who

first visited Severance Hospital from July 2015 to August

2021 (training dataset). We then prospectively recruited study

participants who first visited Severance Hospital between

September 2021 and November 2021 (internal test dataset). For

extra-institutional validation, we used the data from individuals

who first visited Eyejun Ophthalmic Clinic between January

2021 and September 2021 (external test dataset). The study was

conducted in accordance with the tenets of the Declaration of

Helsinki, and ethical approval for each follow-up was obtained

from the Institutional Review Board of Yonsei University

College of Medicine. All participants for prospective validation

provided written informed consent before participating. For

retrospective data, the subject consent exemption was granted
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FIGURE 1

Overview of the study.

after IRB approval (Protocol number 1-2021-0054 and 4-2022-

0326).

All study subjects completed a medical interview and

basic ophthalmologic examinations including visual acuity test,

tonometry, slit-lamp examination, and corneal topography

during their first visit. Patients with a history of eye trauma

or eye surgery, such as corneal refractive surgery or cataract

surgery, were excluded. Furthermore, patients who were

followed up prior to 6 months were excluded.

Clinical assessments

During the medical interview, patients described their

symptoms as progressive, consistent, and/or uncorrected visual

impairment. Basic ophthalmologic examinations included those

that can be routinely performed at each visit, including manifest

refraction to measure best corrected visual acuity (BCVA),

non-contact tonometry (NCT) to measure intraocular pressure

(IOP), and autokeratometry. When IOP was under 7 mmHg or

over 21 mmHg, measurements were repeated twice more. When

the initial measurement of refraction or keratometric power by

autokeratometry failed, a repeat measurement was performed.

Slit-lamp examination was performed by experienced corneal

specialists to evaluate the corneal sequelae of keratoconus,

including corneal thinning, scarring, and hydrops. Corneal

topography was measured by Pentacam (Oculus, Wetzlar,

Germany) imaging. The quality of each Pentacam image was

reviewed by the operator at the time of image acquisition and

repeated if required. Only data from images that displayed

a quality specification (an internal, automatic assessment of

imaging quality) of “OK” were included in this analysis (12).

Clinical and subclinical keratoconus

Topographic evidence of keratoconus was confirmed by

Pentacam, and both of following criteria were satisfied: (1)

abnormal localized steepening or an asymmetric bow-tie pattern

in tangential map and (2) D-score (BAD-D)≥2.6 (pathologic) or

≥1.6 (suspicious) in Belin-Ambrósio enhanced ectasia display

(13, 14). A BAD-D has a very low false-positive rate (15).

Topographic keratoconus progression was confirmed when

the mean corneal power in the steepest meridian (K2) or

maximum keratometry in the steepest corneal power (Kmax)

increased two or more consecutive times with each 3-month

follow-up interval (16, 17). Clinical keratoconus was confirmed

if one of following criteria with topographic evidence was

satisfied: (1) Abnormal finding of keratoconus in slit-lamp

examination, (2) symptomatically progressive visual impairment

with BCVAunder 0.8 decimal scale, (3) topographic keratoconus

progression, (4) clinical keratoconus in the contralateral eye.
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TABLE 1 Demographics and characteristics of study population.

Training

dataset*

Internal

test dataset

External

test dataset

Sreening subjects 91,367 1,556 51,447

Recruit subjects 1,518 457 638

Diagnosis

Normal (%)† 999 (65.81) 383 (83.81) 527 (82.60)

Subclinical keratoconus (%) 69 (4.55) 38 (8.32) 43 (6.74)

Clinical keratoconus‡ (%) 450 (29.64) 36 (7.88) 68 (13.66)

Recommend corneal 519 (34.19) 74 (16.19) 111 (17.40)

topography (%)

Demographics

Age, years (mean± SD) 34.43± 12.04 26.54± 8.58 28.26± 12.52

Sex

Female (%) 789 (51.98) 236 (51.64) 330 (51.72)

Male (%) 729 (48.02) 221 (48.36) 308 (48.28)

Subjective visual impairment

Right (%) 482 (31.75) 27 (5.91) 68 (10.61)

Left (%) 503 (33.14) 22 (4.81) 67 (10.50)

Basic examinations

BCVA, logMAR

Right (mean± SD) 0.265± 0.431 0.056± 0.199 0.092± 0.256

Left (mean± SD) 0.243± 0.379 0.053± 0.183 0.085± 0.258

IOP, mmHg

Right (mean± SD) 12.12± 4.52 15.78± 3.24 14.90± 3.89

Left (mean± SD) 11.98± 3.67 15.89± 3.23 14.92± 3.76

Autokeratometry

Refrective errors

Sphere, diopter

Right −3.78± 3.76 −2.51± 3.07 −2.60± 3.04

Left −3.84± 3.85 −2.36± 3.00 −2.35± 3.44

Cylinder, diopter

Right −2.94± 2.30 −1.43± 1.57 −1.81± 1.91

Left −3.14± 2.78 −1.49± 1.60 −1.91± 1.73

Cylinderic axis, degree

Right 87.99± 68.30 97.10± 71.63 91.02± 72.14

Left 114.56± 63.25 102.93± 67.44 109.80± 66.22

Corneal power

K1 (flatter), diopter

Right 43.70± 4.40 42.59± 2.11 43.30± 2.59

Left 43.27± 6.53 42.54± 1.94 43.30± 2.67

K2 (steeper), diopter

Righht 46.76± 5.72 44.25± 2.98 44.99± 4.60

Left 46.74± 5.79 44.18± 2.71 45.32± 3.67

K2 axis, degree

Right 97.226± 32.19 86.05± 26.52 89.25± 21.41

Left 81.02± 33.00 91.31± 25.81 88.57± 25.01

Corneal topography

Abnormal in tangenital map§

Right (%) 513 (33.79) 73 (15.97) 116 (18.18)

(Continued)

TABLE 1 Continued

Training

dataset*

Internal

test dataset

External

test dataset

Left (%) 496 (32.67) 73 (15.97) 116 (18.18)

D-score in BAD

Right (mean± SD) 2.14± 0.67 1.65± 0.33 1.80± 0.41

Pathologic (%) 431 (28.39) 35 (7.66) 81 (12.70)

Left (mean±SD) 2.13± 0.67 1.65± 0.33 1.80± 0.41

Pathologic (%) 421 (27.73) 30 (6.56) 83 (13.01)

BCVA, best-corrected visual acuity; BAD, Belin/Ambrósio enhanced ectasia display; SD,

standard deviation.

*Down sampling method was adjusted for normal subjects.
†Normal in both eyes.
‡Clinical keratoconus in at least one eyes.
§Abnormal localized steepening or an asymmetric bow-tie pattern.

Subclinical keratoconus was confirmed as follows: (1) only

topographic evidence exist in both eyes, (2) no topographic

evidence of keratoconus but clinical keratoconus in the

contralateral eye (5).

Artificial intelligence modeling

Python version 3.8 was used for AI development

and statistical analysis. The following information from

both eyes for an individual subject were considered as

input variables: (1) presence of visual impairment (2)

BCVA, (3) IOP, (4) autokeratometry values including the

refractive power [sphere (Sph), cylinder (Cyl), cylinderic

axis (Ax)], and the flatter (K1) and steeper (K2) corneal

power and K2 axis (K2ax), (5) mean corneal power (Km,

(K1+K2)/2) and corneal astigmatism (Kast, K2-K1), and

(6) differences in BCVA, IOP, spherical equivalent (SE,

sphere+cylinder/2), Km, and Kast between the right and left

eyes. When one or both eyes of an individual patient was

considered to have clinical or subclinical keratoconus, we

confirmed that corneal topography is recommended, and

the recommendation of corneal topography was set as the

output variable.

The AI model was developed with five types of AI

architecture, with three individual architectures including:

(1) a 5-layer fully connected neural network (FcNN) with

L2 regularization and dropout 0.5, (2) the XGBoost (18),

and (3) the TabNet (19). Two ensemble models of these

individual architectures were also used, including: (4)

“Ensemble model 1” using the ensemble method of “hard

voting,” which predicts the class with the largest sum of

votes from models, and (5) “Ensemble model 2” using

the ensemble method of “soft voting,” which predicts the

class with the largest summed probability from models

(Figure 1).
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Keratoconus has a low prevalence, and imbalance between

classes can bias the model used for AI training and validation

(20). For our training dataset, we first extracted information

pertaining to the subjects who were recommended corneal

topography. Next, we randomly extracted information of twice

as many normal subjects as those who were recommended

corneal topography, by age-matched down-sampling

using Python.

For duplicate IOP data, the lowest value was considered

because inaccurately high readings of NCT measurement are

frequent in poorly compliant patients if they squeeze their

eyelids (21). The unmeasured values of autokeratometry were

converted to the highest possible values available on the

autokeratometry instruments.

Statistical analysis

To evaluate the performances of AI architectures, four

parameters including accuracy, sensitivity, specificity, and

positive predictive value (PPV) were calculated. Error rate was

defined as (1-accuracy). In the internal and external tests, the

error rates of individual AI models were evaluated according to

the BAD-D and the classes of normal, subclinical keratoconus,

and clinical keratoconus on a single eye. For explainable AI

modeling, feature (input variable) importance of each single

model was analyzed. Feature importance was evaluated with

feature attribution of input variable. The Shapley (SHAP) value

in the FcNN model (22), built-in F-score in the XGBoost model

(18), and built-in feature attribution in the TabNet model were

used (19). The average value of right and left eyes was used

for a single feature. Relative feature attribution was calculated

as a value relative to the maximum value of feature attribution

in each AI model. Features were ranked according to relative

feature attributions. The average values of ranks and feature

attributions in the features were calculated and ranked for

feature importance.

Results

Overall demographics and characteristics of the study

population are described in Table 1. For the AI training

dataset, 91,367 patients were screened and 1,518 patients were

selected. Among them, 34.19% were subjects for whom corneal

topography was recommended. A total of 457 patients were

enrolled in the prospective internal test, and 16.19% of them

were recommended corneal topography. A total of 638 patients

were selected in the dataset for external validation, and 17.40%

of them were recommended corneal topography.

For the performance of the AI models, in the training

dataset, the XGBoost and the Ensemble 1 models showed the

highest accuracy of 94.7% (Table 2). Sensitivity was highest

TABLE 2 Performances of artificial intelligence models.

FcNN* XGBoost TabNet Ensemble 1† Ensamble 2‡

A. Training dataset

Accuracy 0.943 0.947 0.875 0.947 0.870

Sensitivity 0.934 0.944 0.985 0.977 0.985

Specificity 0.948 0.948 0.819 0.932 0.811

PPV 0.903 0.738 0.904 0.882 0.730

B. Internal test dataset

Accuracy 0.930 0.947 0.906 0.956 0.934

Sensitivity 0.676 0.784 0.892 0.838 0.905

Specificity 0.979 0.979 0.909 0.979 0.940

PPV 0.862 0.906 0.653 0.886 0.744

C. External test dataset

Accuracy 0.875 0.901 0.856 0.893 0.854

Sensitivity 0.757 0.901 0.919 0.856 0.964

Specificity 0.899 0.901 0.843 0.901 0.831

PPV 0.613 0.658 0.551 0.646 0.546

FcNN, fully connected neural network; PPV, positive predictive value.

*A 5-layered fully connected neural network with L2 regularization and dropout 0.5.
†Hard voting ensamble method with FcNN, XGBoost, and TabNet.
‡Soft voting ensamble method with FcNN, XGBoost, and TabNet.

Bold values indicate the best result of the individual performance (row).

in the TabNet and the Ensemble 2 models (both 98.5%).

In the internal test dataset, the Ensemble 1 model showed

the highest accuracy and specificity of 95.6 and 97.9%,

respectively. Sensitivity was highest in Ensemble 2 (90.5%).

In the external test dataset, the XGBoost model showed

the higest accuracy, specificity, and PPV of 90.1, 90.1, and

65.8%, respectively. Sensitivity was highest in the Ensemble 2

model (96.5%).

For error analysis, in the internal test, the error rates within

the suspicous BAD-D range were 37.5, 25.0, 20.4, 18.8, and

17.6%, respectively, and those within the pathologic BAD-D

range were 27.9, 18.6, 2.3, 13.9, and 2.3% in the FcNN, XGBoost,

TabNet, Ensemble 1, and Ensemble 2 models, respectively

(Figure 2). In the external test, the error rates within the

suspicous BAD-D range were 33.0, 12.0, 12.3, 22.1, and 7.6%,

and those within the pathologic BAD-D range were 19.1, 8.8, 5.9,

10.3, and 1.5%, respectively. Over 95% of errors occurred under

3.5 range of BAD-D. Subclinical keratoconus showed the highest

error rate in most of the AI models except the TabNet and

Ensemble 2 models in the external test dataset. The Ensemble 2

model showed the lowest error rate in detecting both subclinical

and clinical keratoconus.

For feature importance analysis, IOP was ranked highest

followed by the difference in Km in the average value of

the feature attributions (Figure 3). The five difference values

between both eyes were positioned up to rank 8 out of 18 features

in the TabNet model, which had higher sensitivity than the

FcNN and XGBoost models.
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FIGURE 2

Error rates of the artificial intelligence models according to D-score of Belin-Ambrósio enhanced ectasia display (A) and classification of

subclinical and clinical keratoconus (B).

Discussion

In this study, we developed an AI model to identify

patients for keratoconus screening by corneal topography,

based on results of basic ophthalmologic examinations. The

Ensemble 2 model with soft-voting ensemble method showed

superior sensitivity compared with the other AI models in

screening for keratoconus. This result was consistent with those

of the internal prospective validation and external validation

performed at the primary medical institution with a different

patient population.

The most important consideration when designing this

study was whether it is possible to identify patients who

need corneal topography for keratoconus by using basic

ophthalmologic examinations that are commonly performed

in the clinical setting. Despite aiming to detect both clinical

and subclinical keratoconus, the AI models performed fairly

well. Although the error analysis suggested that the range

of suspicion of BAD-D and subclinical keratoconus were the

main error interval of this AI model, considering that it is

difficult to predict keratoconus without corneal topography

in this interval (13), and, in the local regression analysis of

our training dataset (locally weighted smoothing [LOESS], α

= 0.5, λ = 1) (23), BCVA started to deteriorate from BAD-

D 3.6 and was worse than 0.1 logMAR from BAD-D 5.6

(Supplementary Figure 1), the AImodel is expected to effectively

screen for keratoconus. Moreover, in the case of clinical

keratoconus, the screening accuracy was excellent, especially

by the Ensemble 2 model. Corneal topography is essential

to confirm the shape of the cornea to diagnose subclinical

and mild cases of keratoconus; the AI model may facilitate

early detection and treatment by selecting patients suspected of

keratoconus before visual impairment based on the results of

basic ophthalmologic examinations, rather than late, incidental

detection often associated with advanced state of the disease.

Unlike traditional statistical analyses methods such as

the linear regression analysis, AI analyzes the variability

of individual elements through the reduction/increase and

distortion of dimensionality expressed as a single variable (24).

This AI mechanism accompanies problems such as vanishing

gradient or curse of dimensionality (25, 26), but may also

provide a solution to multi-factorial questions that are difficult
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Rank in individual model Relative Attribution in individual model Rank (Average)

FcNN XGBoost TabNet FcNN XGBoost TabNet Average

Age 8 4 15 0.205 0.687 0.126 0.339 7

Sex 16 17 11 0.038 0.144 0.249 0.144 17

Vision* 14 18 18 0.081 0.054 0.012 0.049 18

BCVA 17 9 17 0.030 0.387 0.045 0.154 15

IOP 1 3 2 1.000 0.737 0.787 0.841 1

Refraction

Sphere 6 1 16 0.273 1.000 0.079 0.451 4

Cylinder 11 8 14 0.148 0.418 0.151 0.239 13

Axis 4 11 13 0.289 0.342 0.151 0.261 10

Keratometry

K1 (flatter) 18 15 12 0.019 0.184 0.242 0.148 16

K2 (steeper) 12 12 7 0.124 0.290 0.354 0.256 12

K2ax 10 7 9 0.163 0.432 0.256 0.284 9

Km 13 15 10 0.102 0.184 0.255 0.180 14

Kast 7 6 5 0.247 0.462 0.420 0.376 6

Difference values between both eyes

diff. BCVA 15 5 1 0.043 0.575 1.000 0.539 3

diff. IOP 9 14 3 0.176 0.188 0.598 0.321 8

diff. SE 5 13 8 0.282 0.207 0.289 0.259 11

diff. Km 2 2 4 0.661 0.820 0.552 0.678 2

diff. Kast 3 10 6 0.440 0.343 0.418 0.400 5

FIGURE 3

The explainable interpretation of feature importances in the individual AI models. *Symptoms as progressive, consistent, and/or uncorrected

visual impairment. BCVA, best-corrected visual acuity; IOP, intra-ocular pressure; Km, mean value of corneal power; Kast, corneal astigmatism;

SE, spherical equivalent.
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for humans to recognize. Interpretation of high-performance

AI can be difficult because it is unintuitive. Nevertheless,

by using the analysis of feature importance/attribution, we

can determine which value the AI considers to have the

greatest weight in solving a problem (27–29). In this study,

IOP showed the highest feature attribution. In keratoconus,

corneal refractive power and astigmatism are expected to

increase in autokeratometry, visual acuity may also worsen

with disease progression (30), and corneal hysteresis and

thickness, which affect IOP measurements, are also changed

(31, 32). The present study shows that IOP was a more

dominant feature in early keratoconus screening compared

to BCVA and the autokeratometry results of which numerical

changes were not clearly determined, implying that it may

be worthwhile reconsidering the importance of factors other

than morphological changes in examining clinical findings

of keratoconus. Moreover, the difference in examination

values between the eyes were also important features of

this study. The patterns of progression of keratoconus in

the two eyes are usually different (33), and the results of

this study suggest that the difference between the right

and left eyes is important in screening for the disease.

Considering factors such as IOP and the relationship

between the eyes will be important in future studies to

predict the progression or examine prognostic factors

of keratoconus.

A strength of this study is that only basic ophthalmologic

examinations were used to develop an AI model to recommend

corneal topography for detection of both clincial and subclinical

keratoconus. Additionally, extra-validation confirmed that

this method could be applied in primary medical settings.

However, our study had some limitations. First, the AI

was validated only in Korean populations. Therefore, further

studies involving other ethnic groups are needed. Second,

although the AI models, especially the Ensemble 2 model,

showed high sensitivity of more than 90%, which is enough

to be applicable in the actual clinical field, it exhibited

relatively low PPV; therefore, a cost-effectiveness analysis

may be required for its application for general health

check-ups, where keratoconus is not as prevalent as in the

hospital setting.

This study is the first to develop an AI system to recommend

corneal topography for keratoconus detection based on

basic ophthalmic examinations. An external evaluation

with a different patient group demonstrated a sensitivity

of over 90%. This study demonstrates a method by which

early diagnosis and better prognosis may be achieved by

recommending corneal topography in patients who may be

affected by keratoconus. Furthermore, our findings highlight

the utility of AI to reconsider the role of examinations that

may have been underestimated for keratoconus detection in

clinical practice.
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SUPPLEMENTARY FIGURE 1

The scatter plot demonstrating the relationship between the D-score of

Belin-Ambrósio enhanced ectasia display and best-corrected visual

acuity. The fitting curve of local regression (red solid line, α = 0.5, λ = 1)

shows that BCVA started to deteriorate from BAD-D 3.6, and was worse

than 0.1 logMAR from BAD-D 5.6.
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