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prognostic biomarker and
associated with immune
infiltration in glioma
Hanwen Lu1,2†, Liwei Zhou1,3†, Bingchang Zhang1,3,
Yuanyuan Xie1,3, Huiyin Yang1,2 and Zhanxiang Wang1,2,3*
1Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital
of Xiamen University, School of Medicine, Xiamen University, Xiamen, China, 2Department of
Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China,
3Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, School of Medicine,
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Recent studies have found that the protein encoded by the FDX1 gene

is involved in mediating Cuproptosis as a regulator of protein lipoylation

and related to immune response process of tumors. However, the specific

biological function of FDX1 in glioma is currently unclear. To explore the

potential function of FDX1, this study explored the correlation between

the expression of FDX1 in cancers and survival prognosis by analyzing the

public databases of GEPIA and Cbioportal. Immune infiltration was analyzed

by the TIMER2.0 database in tumors. The possible biological processes

and functions of FDX1-related in glioma were annotated through gene

enrichment. Relationship between Cuproptosis and autophagy was explored

through gene co-expression studies. Summary and conclusions of this study:

(1) FDX1 is highly expressed in gliomas and associated with poor prognosis in

low-grade gliomas (LGG). (2) Gene annotation indicates that FDX1 is mainly

involved in the tumor protein lipoylation and cell death. (3) FDX1 expression is

positively correlated with the infiltration of immune cells. (4) LIPT2 and NNAT,

two other genes involved in lipoylation, may be unidentified marker gene

for Cuproptosis. And the Cuproptosis genes related to FDX1 were positively

correlated with the expression of autophagy marker genes Atg5, Atg12, and

BECN-1. This evidence suggests that there may be some interaction between

FDX1 mediated Cuproptosis and autophagy. In summary, FDX1 may serve as a

potential immunotherapy target and prognostic marker for Glioma.
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Introduction

Glioma is one of the most common central nervous
system malignancies (1–6). Evidence shows that high-grade
glioma (HGG) has obvious aggressiveness and heterogeneity
(7–14). In 2022, the World Health Organization (WHO)
updated the classification criteria of glioma according to
the molecular characteristics of different gliomas, which will
help patients obtain more accurate diagnoses and precise
personalized treatment in clinical practice (1, 2). Therefore,
exploring new molecular marker is important work. FDX1 is a
mitochondrial-associated protein, named ferredoxin 1 (FDX1)
for it is closely related to iron-sulfur protein synthesis (15–
17). Meanwhile, it acts as a key regulator of lipoylation to
regulate protein lipoylation process (18, 19). It is worth noting
that a recent report found that FDX1, as a key enzyme,
regulates the Cuproptosis by regulating protein lipoylation
process (20).

However, the role and biological function of FDX1 in
gliomas are currently unclear. Currently, it is generally
accepted that the tumor microenvironment (TME) is one
of the key factors in tumor initiation and progression (7,
21–29). It is mainly composed of tumor cells, fibroblast
cells, immune cells, various signal molecules, extracellular
matrix, special physical and chemical factors (30–33).
Evidence shows that the tumor microenvironment
significantly affects tumor diagnosis, survival outcomes,
and clinical treatment sensitivity (21, 23, 33–35). In recent
years, related immunological studies have found that
immune cell infiltration plays a key role in the tumor
microenvironment in the formation, occurrence and
development (31, 36–47). The most concerned are the
immune checkpoint protein PD-1 and its ligands PD-
L1 and PDCD1LG2, tumor transforming growth factor
B1 (TGFB1) and its receptors TGFB1R (48–54). TGFB1
plays an immunosuppressive role in the process of tumor
progression. Inhibiting the activation and differentiation
of B lymphocytes and T lymphocytes, further leads to
the immune dysfunction of the body, allowing tumor
cells to escape the surveillance of the immune system
(55–57).

This study aimed to explore the relationship and possible
signaling pathways between FDX1 expression and the prognosis
of glioma patients utilizing bioinformatics. In addition,
by analyzing the expression correlation between immune
cell signatures and FDX1 expression, we explored the
relationship between FDX1 expression and the infiltration
of immune cells in the tumor microenvironment and further
clarified whether FDX1 could be used as a new type of
glioma patient immunotherapy markers. At the same time,
potential Cuproptosis mediators and whether Cuproptosis and
ferroptosis have common features in autophagy dependence
were identified by gene co-expression research method.

Materials and methods

Public database

The patient transcriptome data and corresponding
clinical information used in this study were derived
from the Chinese Glioma Patient Genome Atlas
(CGGA,1) (58) and The Cancer Genome Atlas (TCGA,
see text footnote 1) public database. Gene annotation
and differential gene analysis are completed by the
GENEMAINA2 data platform (GENEMAINA is a
visualization platform that integrates a large amount of
annotation information and gene interactions, which can
identify co-expressed genes of specific gene in tumors.
Gene functions and signaling pathway informations
can be predicted through the annotated informations
(59).

The mutation information analysis of the FDX1 gene
was completed by the cBioPortal3 platform TCGA-GBM
and TCGA-LGG datasets. Correlation between the FDX1
gene and the level of tumor immune infiltration was
performed by the analysis tool TIMER2.0. TIMER2.0 is
an immune assessment tool constructed based on tumor
gene signatures expression in TCGA, which can be used to
assess the correlation between different genes and immune
cell subtypes, as well as the immune level and purity of
infiltration.4 LinkedOmics is an analysis tool for identifying
differentially expressed genes associated with FDX1. In this
study, the statistical methods used were all tested and
distinguished by Pearson correlation coefficient (60). The
relationship between the FDX1 gene and immune-related
factors, as well as the GO annotation of the gene and
the KEGG signaling pathway enrichment analysis, were
completed by the TISIDB database. TISIDB is an analysis
platform to study the interaction between genes and tumor
immunity5 (61).

Gene set enrichment analysis

In this study, the online tool LinkedOmics was used to
analyze potential genes related to FDX1 function. According
to the expression abundance of key genes, which were
divided into high and low expression groups. GSEA6

module was employed to cellular process enrichment, and
GSEA enrichment was estimated using the normalized

1 http://www.cgga.org.cn/

2 http://genemania.org/

3 http://www.cbioportal.org/

4 https://cistrome.shinyapps.io/timer/

5 http://cis.hku.hk/TISIDB/index.php

6 http://software.broadinstitute.org/gsea/index.jsp
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enrichment score (FDR ≤ 0.25, p ≤ 0.05 indicating a
statistical difference).

Statistical analysis

The statistical methods used in this study were
Spearman’s tests to evaluate the significance and correlation
between the expressed genes. 50% of the gene expression
value was set as the critical point, and all sample were
divided into two groups according to the expression
level. The differences and significance of survival rates
among the groups were further evaluated by the Kaplan-
Meier algorithm. ANOVA analysis was used to count the
expression of FDX1 gene in three independent datasets in
the CGGA database.

Results

Pan-cancer expression analysis of
FDX1 gene

To understand the expression of the FDX1 gene in cancers,
TIMER2.0 was used to analyze the transcriptome expression
level of the FDX1 gene in different tumors and normal tissues.
The results showed that the FDX1 gene was abnormally
expressed in most tumor tissues compared to normal tissues.
It is worth noting that the expression of the FDX1 gene
was abnormally high in glioma than normal tissues, especially
in glioblastoma (GBM), the expression level was the highest
(Figure 1A). Next, the expression level of FDX1 in different
tumor and normal tissues was further evaluated through the

FIGURE 1

Expression of FDX1 gene in different cancers. (A) Expression of FDX1 gene in different cancer and normal tissues of TIMER2.0 database
(*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001). (B) Expression of FDX1 Transcripts in different cancer and normal tissues in GEPIA database (*P ≤ 0.05,
**P ≤ 0.01, ***P ≤ 0.001).
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GEPIA online database (Figure 1B). The results showed that the
transcripts level of FDX1 in GBM and Low grade glioma (LGG)
was significantly higher than normal tissues. This is consistent
with the conclusions obtained from TIMER2.0.

Abnormally expression of FDX1 gene in
gliomas

The present study analyzed three independent
transcriptome datasets in the CGGA database, and the
results showed that FDX1 gene expression was higher in HGG
relative to LGG (Figure 2A). To further check the accuracy
of the above results, expression levels of FDX1 were analyzed
using the glioma transcriptome datasets published by different
experimental groups provided by the Gliovis platform.7 The
results showed that FDX1 was abnormally up-regulated in both
TCGA and Rembrandit datasets relative to LGG and HGG
samples (Figure 2B). The results are consistent with previous.
Meanwhile, we analyzed the expression of FDX1 protein in
glioma cells by HPA (Human Protein Database)8. The results

7 http://gliovis.bioinfo.cnio.es/

8 https://www.proteinatlas.org/

showed that FDX1 protein was expressed in the glioma cell line
U251 cells, and was mainly expressed in the cytoplasm and cell
membrane (Figure 2C).

To further verify our analysis results, we detected the
expression of FDX1 in glioma tissues and cell lines. The results
showed that the protein expression of FDX1 in grade II, III,
and GBM of glioma was significantly up-regulated compared
with the normal group (Figures 3A,B). The results showed
that the protein expression of FDX1 in Normal glial cell (NHA
cell) and glioma cell lines (U87-MG, U251, U373, and A172)
was significantly up-regulated compared with the normal group
(Figures 3C,D). In order to further prove our conclusion,
we also detected the mRNA expression of FDX1 gene in
NHA cell and glioma cell lines. The results showed that the
mRNA expression of FDX1 in U251, U373, and A172 cell were
significantly higher than NHA cell (Figure 3E).

To further understand the relationship between the
expression of FDX1 gene and the clinical characteristics of
glioma patients, we performed univariate and multivariate
regression analysis. The results showed that in CGGA database,
FDX1 expression was statistically correlated with patient age,
tumor grade, chemotherapy resistance, IDH mutation and
1p19q codeletion. The results in TCGA database showed that
the expression of FDX1 was statistically correlated with tumor
grade and 1p19q codeletion (Tables 1, 2).

FIGURE 2

Expression level analysis of Fdx1 gene in multiple public databases. (A) Expression of Fdx1 gene in three independent research cohorts of CGGA.
(B) Expression of Fdx1 gene in TCGA dataset (LGG-GBM). (C) Expression of FDX1 in glioma cell line U251 cells (the data from Human Protein
Altas public database).
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FIGURE 3

Expression level analysis of FDX1 in glioma tissue glioma cell lines. (A) Expression of FDX1 protein in Normal and glioma tumor tissue (Grade II,
Grade III, and GBM). (B) Statistical analysis of FDX1 protein relative to GAPDH gene expression in normal tissues and glioma tissues. (C)
Expression of FDX1 protein in normal glial cell line (NHA cell) and glioma cell lines (U87-MG cell, U251 cell, U373 cell, and A172 cell). (D)
Statistical analysis of FDX1 relative to GAPDH gene expression J in glia cell line and glioma cell lines. (E) mRNA expression of FDX1 gene in
normal glial cell (NHA cell) and glioma cell lines. (*P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001).

TABLE 1 Cox regression analysis of the clinical variables, and overall survival in CGGA cohorts.

Variables Univariates Multivariates

HR (95% CI for HR) P-value HR (95% CI for HR) P-value

FDX1 1.720 (1.453–2.037) <0.001* 1.299 (1.104–1.528) <0.002*

Age 1.622 (1.343–1.958) <0.001* 1.267 (1.037–1.547) <0.021

Gender 1.046 (0.867–1.261) 0.639 1.079 (0.892–1.307) 0.433

Grade 2.884 (2.527–3.292) <0.001* 2.790 (2.041–3.814) <0.001*

Radio 0.928 (0.719–1.197) 0.565 0.842 (0.641–1.105) 0.216

Chemo 1.645 (1.326–2.041) <0.001* 0.659 (0.517–0.840) <0.001*

IDH-mutation 0.317 (0.262–0.384) <0.001* 0.621 (0.492–0.783) <0.001*

1p19q_codeletion 0.231 (0.169–0.315) <0.001* 0.413 (0.296–10.578) <0.001*

TABLE 2 Cox regression analysis of the clinical variables, and overall survival in TCGA cohorts.

Variables Univariates Multivariates

HR (95% CI for HR) P-value HR (95% CI for HR) P-value

FDX1 1.088 (0.815–1.452) 0.567 1.028 (0.765–1.381) 0.855

Age 2.039 (1.397–2.977) 0.5 1.608 (1.075–2.408) 0.021

Gender 0.774 (0.611–0.982) 0.035 0.765 (0.596–0.980) 0.034

Grade 1.512 (1.329–1.722) <0.001* 1.386 (1.208–1.590) <0.001*

Radio 0.685 (0.516–0.908) 0.008 0.804 (0.579–1.115) 0.19

Chemo 0.884 (0.698–1.120) 0.308 0.952 (0.728–1.245) 0.72

IDH-mutation 0.699 (0.309–1.579) 0.389 1.616 (0.682–3.828) 0.275

1p19q_codeletion 0.019 (0.003–0.145) <0.001* 0.018 (0.002–0.151) <0.001*
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The prognostic value of FDX1 in glioma
patients

To further explore the correlation between FDX1 expression
and clinical characteristics of glioma patients. Online tool
GEPIA9 was used to performed the survival analysis of
LGG and GBM samples. The results showed that FDX1
expression was associated with overall survival (OS) and
progression-free survival (PFS) in patients with low-grade
glioma, but not with OS or PFS in GBM patients (Figure 4A).
Further, we separately analyzed the correlation between FDX1
expression and prognosis in all glioma patients, LGG and

9 http://gepia.cancer-pku.cn/

GBM patients. The results showed that high expression of
FDX1 was significantly associated with the prognosis time of all
glioma patients. FDX1 expression is significantly associated with
prognosis in LGG. However, the prognosis is not significantly
different from that of GBM (Figure 4B). At the same time, we
verified the result in three independent cohorts of CGGA, and
the conclusion indicate that high expression of FDX1 gene was
associated with the overall prognosis of glioma (Figure 4C).

Analysis of the expression of FDX1 in
glioma

To further understand the relationship between FDX1
gene mutations and tumor clinical characteristics, we used the

FIGURE 4

Potential prognostic value of FDX1 in glioma. (A) The overall survival and progression-free survival curve of FDX1 in glioma. (B) Survival analysis
of glioma in TCGA database. (C) Survival analysis of glioma in CGGA datasets.
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FIGURE 5

Genetic alterations and interactions of FDX1 gene in glioma. (A) Genetic alterations of FDX1 gene in cBioPortal database. (B) Mutation frequency
of FDX1 gene in GBM and LGG samples. (C) Interaction network analysis of FDX1 gene was performed by GeneMANIA.

cBioPortal platform to analyze the frequency mutations in 33
cancers from the TCGA database. The results showed that
FDX1 had a lower mutation frequency in tumors (Figure 5A).
The mutation frequencies were 0.6 and 0.4% in GBM and
LGG samples (Figure 5B). At the same time, FDX1 gene
interaction network constructed by GeneMANIA database. The
results suggested that FDX1 may be closely related to redox
homeostasis, nutritional stress and assembly process of oxygen-
sulfur cluster complexes (Figure 5C).

FDX1 gene co-expression network
construction in glioma

To further explore the function of FDX1 in glioma, we used
the LinkedOmics database to analyze the gene co-expression
network centered on FDX1 in glioma. As shown below, in
the volcano plot, red represents positive correlated genes co-
expressed with FDX1, and the green represents negatively
correlated genes co-expressed with FDX1 (Figure 6A). We
selected genes in the top 50% for further correlation analysis
and visualized them with a heatmap (Figure 6B). Gene
GO annotation and KEGG pathway enrichment analysis
(GSEA) results showed that FDX1 and its co-expressed genes
were mainly related to cellular protein lipoylation, lipid
metabolism, small molecule metabolism and immune response
(Figures 6C,D).

Correlation between FDX1 gene
expression and immune infiltration
level in Glioma

Next, to clarify the relationship between FDX1 gene
expression and immune cell infiltration in the tumor
microenvironment, the TIMER2.0 platform were used to
analyze different dimensions of immunity. The results
showed a positive correlation between FDX1 expression
and infiltration of CD4 + positive T cells, T lymphocytes,
Macophage cells and dendritic cells, and negative correlation
with B cells (Figure 7A). We further analyzed the relationship
between FDX1 expression and immune cell infiltration
through the TISIDB database. The results showed that
FDX1 expression was positively correlated with myeloid-
derived suppressor cells, CD4 + T central memory
T cells, Macrophage cells, and active Dendritic cells
(Figures 7B,C).

In order to know more about the relationship between
FDX1 expression and immune cells, we analyzed the expression
difference of immune cells between the high expression group
and the low expression group of FDX1 gene through ssGSEA.
The results showed that in FDX1 overexpression group, aDCs
(dendritic cells), CD8+ T cells, helper T cells, Th1 cells (helper
type 1 T cells) and Treg cells were significantly up-regulated
(Figure 8).
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FIGURE 6

Co-expression network of FDX1 gene in glioma. (A) The scheme showed FDX1-related differentially expressed genes in glioma. (B) The scheme
showed FDX1-related genes in glioma. (C) Genes of FDX1 co-expressed enrichment analysis performed by LinkedOmics (GSEA method).

The relationship between FDX1 gene
and immune microenvironment
markers expression in glioma

To clarify the relationship between FDX1 expression
and immune microenvironment. Correlation between
FDX1 gene expression and immune regulatory genes, and
chemokines was analyzed using the TISIDB online tool.
The results suggest there was a correlation between FDX1
and immunosuppressive gene expression. The five inhibitor
genes that were highly correlated with FDX1 included
HAVCR2, TGFB1, CD96, IL10, and IL10Rb (Figure 9A).
The genes CD86, CXCR4, MICB, and TNFRSF9 were also
positively correlated with FDX1 (Figure 9B). In addition,
we analyzed correlation between FDX1 expression with
chemokines and apoptosis. The top four significantly
positively correlated chemokines included CCL2, CCL8,
CXCL14, and CXCL15 (Figure 9C). We also analyzed the
relationship between FDX1 expression and chemokine
receptors, and the top four receptors included CCR1, CCR5,
CXCR4, and CX3CR1 (Figure 9D). Based on the above
information, we speculate FDX1 may be an important immune
regulatory gene.

FDX1 co-expression identifies potential
Cuproptosis genes and relationship to
autophagy

Since the key genes and important regulatory mechanisms
of Cuproptosis are still in the preliminary stage of exploration,
the upstream regulators of FDX1, downstream effector proteins,
Cuproptosis signals transduction and the specific lethal
molecular mechanisms have not yet been elucidated. Available
evidence indicate that Cuproptosis of tumor cells mainly depend
on protein lipoylation process. However, only 10 key genes have
been identified so far, and the identification of more Cuproptosis
key genes is of great significance for further elucidating its
molecular mechanism. It is also due to the programmed death
“ferroptosis” induced by metal ions homeostasis inblanced,
which is generally considered to be an autophagy-dependent
programmed death process. This phenomenon enlightens us,
on whether the Cuproptosis process is also an autophagy-
dependent death process?

Although, recent reports and our enrichment results in this
study indicate that FDX1 expression is associated with cell death.
But there are still many questions that remain unexplained.
To further explore the potential key genes of Cuproptosis
and whether there is a correlation between Cuproptosis and
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FIGURE 7

The relationship between FDX1 gene expression and immune infiltration level in glioma. (A) Expression of FDX1 gene related to immune
infiltration of CD4 + T cells, Dendritic cells, B cells and macrophage cells in glioma. (B) Analysis between FDX1 gene expression and immune
infiltration levels by TISIDB. (C) Correlations between FDX1 gene expression and Dendritic cells, effector memory CD4 T cells, Myeloid-derived
suppressor cells and macrophage cells infiltration in glioma.

autophagy, we analyzed the relationship between FDX1-related
genes through gene co-expression network analysis methods.
Correlations between lipoylation and autophagy-related genes.

Interestingly, except identified lipoylation process genes
LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, and
CDKN2A. Two other key genes of lipoylation, LIPT2 and PPAT,
may be potential Cuproptosis regulator genes, which may be
downstream effectors of FDX1 according to the annotation
results (Figures 10B,C). At the same time, by analyzing the
correlation between the FDX1 gene and autophagy genes, we
found that FDX1 was significantly positively correlated with the
expression of key genes Atg5, Atg12, BECN-1, and Atg16L in the
autophagy process (Figure 10A). This information suggests that
Cuproptosis, similar to ferroptosis, may be a programmed death
of cells associated with the development of autophagy.

Discussion

As an vital part of the tumor microenvironment,
multiple pieces of evidence have shown that immune cells

in the microenvironment are involved in regulating tumor
invasion and progression. Due to the recent performance of
immunotherapy in clinical applications, immunosuppressants
for specific targets represented by PD1 and PD-L1 have been
successfully developed. For example, monoclonal antibodies
or bispecific antibodies corresponding to antigens such as
EGFR, VEGFR, PD-L1, TGFB1, and CTLA-4 have been used
to treat tumors, such as acute lymphoma leukemia, colorectal
cancer, and breast cancer (62–68). Although according to the
existing reports and actual clinical manifestations, the benefit of
immunotherapy for patients with brain tumors, especially high-
grade gliomas, is limited (66, 69–73). Therefore, we speculate
that the heterogeneity of the tumor microenvironment is one
of the important factors limiting glioma patients’ benefit from
biologically targeted therapies (70–72).

Through the analysis of data from CGGA and TCGA, we
found a positive correlation between FDX1 expression and
glioma grade. Further, we performed gene annotation on the
co-expressed genes of FDX1 in glioma, GO annotation, and
KEGG signaling pathway enrichment analysis showed that
FDX1 expression is closely related to immune response and
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FIGURE 8

The expression abundance of immune infiltrating cells in Fdx1 high and low expression group was calculated by ssGSEA method (single sample
GSEA). P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001.

inflammation. In this study, we also found that high FDX1
expression was associated with the infiltration of immune cells,
including MDSC, Tcm-CD4 cells, macrophage cells and Act-
DCs in GBM and LGG.

According to current reports and consensus, the
effectiveness of tumor immunotherapy mainly depends on
the immune microenvironment of the tumor. One of the
key factors affecting the immune microenvironment is the
expression of immune checkpoint genes. By exploring the
relationship between the FDX1 gene and immune checkpoint
genes, we found that there is a strong co-expression relationship
between the FDX1 gene and immune checkpoint Suppressor
gene TGFB1 in glioma. This evidence suggests that FDX1
expression may be associated with the up-regulation of immune
checkpoints.

Previous reports have found that abnormal aggregation of
lipoylated proteins interferes with iron-sulfur cluster proteins
in the respiratory chain complex, resulting in proteotoxic stress
and cell death. FDX1 is an important regulator in the process of
protein lipoylation, and its abnormal function may be related
to some cell death. It is noteworthy that, Zhang Z et al.
found that FDX1 gene was associated with the prognosis of
Lung adenocarcinoma (LUAD) and FDX1 can promote ATP
production (74). Zhang C et al. found that the expression of
FDX1 has prognostic value for the survival of Adrenocortical
Cancer (ACC), Kidney Clear Cell Carcinoma (KIRC), Head

and Neck Cancer (HNSC), Thyroid Cancer (THCA), and LGG.
In addition, the expression level of FDX1 was confirmed to
be closely related to immune infiltration (75). Zhang Y. et al.
found that FDX1 is an independent prognostic factor and
potential prognostic biomarker of WHO grade II/III glioma
(76). Wang X et al. found that the high expression of FDX1 was
significantly correlated with the overall survival rate of Renal
Cell Carcinoma (RCC) (p < 0.05). Variable regression analysis
showed that the high expression of FDX1 was an important
independent predictor of overall survival, which could be used
as a potential prognostic indicator and therapeutic target for
RCC (77). Zhang et al. found that the overall survival rate and
disease-specific survival rate of colon adenocarcinoma patients
(COAD) in the FDX1 high-expression group were better than
low expression group. GO-KEGG enrichment analysis showed
that FDX1 and its co-expressed genes were related to the
pathogenesis of COAD. In addition, the expression of FDX1
in COAD was positively correlated with “inflammation level”.
The expression of FDX1 was positively correlated with the
infiltration level of CD8+T cells, NK cells and neutrophil
cells but negatively correlated with CD4+T cells and cancer
associated fibroblasts (78).

Recent blockbuster reports have found that FDX1, a key
regulator of Cuproposis, regulates cell death by influencing
fatty protein lipoylation. To further explore the role of FDX1
in gliomas, we attempted to identify potential Cuproptosis
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FIGURE 9

The relationship between FDX1 and immune-related genes expression. (A) The relationship between FDX1 and immunosuppressive genes
expression in glioma. (B) The relationship between FDX1 and glioma immunostimulatory genes expression in glioma. (C) The relationship
between FDX1 and chemokine genes expression in gliomas. (D) The relationship between FDX1 and receptor genes expression in glioma.

FIGURE 10

Correlation analysis between key Cuproptosis genes, autophagy-related genes and lipoylation genes. (A) Correlation analysis between
Fdx1-related Cuproptosis genes and autophagy-related genes. (B) Correlation analysis between Fdx1-related Cuproptosis genes and key genes
of protein lipoylation. (C) Illustration of the intersection of identified Cuproptosis and protein lipoylation genes.
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key genes by bioinformatics analysis, comparing the
co-expression gene of FDX1 in gliomas with with an
additional 6 lipoacylation-related genes (79–82). The
key genes were subjected to intersection analysis and
expression correlation analysis, to screen and identify
potential Cuproptosis process genes through co-expression
network research methods. Our results show that LIPT2
and NNAT and lipoylation genes such as LIAS and
GLS have been reported to be strongly correlated with
FDX1 expression, but not identified in this report.
Therefore, we speculate that LIPT2 and NNAT may be
potential key genes for Cuproptosis. Further experimental
identification needs to be verified in the follow-
up work.

Similar to ferroptosis, Cuproptosis is also a programmed
cell death process induced by excessive accumulation
of metal ions. More and more reports show that the
ferroptosis of cells is an autophagy-dependent programmed
death. To further explore the relationship between
Cuproptosis and autophagy, we analyzed the correlation
between the molecular markers of the Cuproptosis process
represented by FDX1 and the key genes of autophagy
in glioma by co-expression network analysis. Consistent
with our expectations, the key genes for Cuproptosis
and autophagy key genes, such as Atg5, Atg12, and
BECN-1, were co-expressed and strongly correlated. This
evidence suggests that there may be some correlation
between the two. Therefore, we boldly put forward the
hypothesis that as metal ion toxicity induces programmed
cell death, autophagy is also a pre-stress process of
Cuproptosis. When cells fail to regulate cellular homeostasis
through autophagy to ensure normal cell operation,
they switch to the activation of the copper ionophore
receptor protein FDX1, which initiates the toxicity-induced
Cuproptosis process.

The innovation of this study is that, for the first time,
we found that FDX1 in glioma is associated with poor
patient prognosis, and also explored the possible mechanism of
FDX1 in glioma involved in the immune microenvironment.
We further confirmed the correlation of FDX1 with glioma
immune infiltration and proposed that FDX1 may serve as a
novel immunotherapy biomarker. Therefore, our results will
provide a certain reference for immunotherapy of glioma
in the future. It is worth mentioning that we discovered
the underlying genes LIPT2 and NNAT for Cuproptososis
through co-expression analysis. We speculate that there is
a certain correlation between Cuproposis and autophagy,
but whether the correlation is as autophagic dependent
as ferroptosis is more experimental evidence to prove in
the future.
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