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Background: The unknown etiology of sarcoidosis with variable clinical

features leads to delayed diagnosis and limited therapeutic strategies. Hence,

exploring the latent mechanisms and constructing an accessible and reliable

diagnostic model of sarcoidosis is vital for innovative therapeutic approaches

to improve prognosis.

Methods: This retrospective study analyzed transcriptomes from 11

independent sarcoidosis cohorts, comprising 313 patients and 400 healthy

controls. The weighted gene co-expression network analysis (WGCNA) and

di�erentially expressed gene (DEG) analysis were performed to identify

molecular biomarkers. Machine learning was employed to fit a diagnostic

model. The potential pathogenesis and immune landscape were detected by

bioinformatics tools.

Results: A 10-gene signature SARDS consisting of GBP1, LEF1, IFIT3,

LRRN3, IFI44, LHFPL2, RTP4, CD27, EPHX2, and CXCL10 was further

constructed in the training cohorts by the LASSO algorithm, which performed

well in the four independent cohorts with the splendid AUCs ranging

from 0.938 to 1.000. The findings were validated in seven independent

publicly available gene expression datasets retrieved from whole blood,

PBMC, alveolar lavage fluid cells, and lung tissue samples from patients

with outstanding AUCs ranging from 0.728 to 0.972. Transcriptional

signatures associated with sarcoidosis revealed a potential role of immune

response in the development of the disease through bioinformatics analysis.
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Conclusions: Our study identified and validated molecular biomarkers for

the diagnosis of sarcoidosis and constructed the diagnostic model SARDS to

improve the accuracy of early diagnosis of the disease.

KEYWORDS

sarcoidosis, diagnostic model, WGCNA, machine learning, immune infiltration,

functional analysis, biomarker

Introduction

Sarcoidosis is a systemic autoimmune disease characterized

by non-caseous necrotizing epithelioid granulomas that can

affect various organs and tissues such as the lung, eye, skin,

heart, and nervous system, with a predominance in young

and middle-aged people (1, 2). About 25% of these patients

present a chronic, progressive process. Eventually, it can lead to

irreversible pathologies, including pulmonary fibrosis, cirrhosis,

fatal arrhythmias, and blindness, seriously affecting patients’

life quality and longevity (3, 4). Sarcoidosis has a mortality

rate of ∼7% over a 5-year follow-up period (5). However,

patients have significant heterogeneity in the tissues and organs

involved, clinical manifestations, responses to treatment, and

prognosis, leading to the diagnosis of sarcoidosis relying on a

comprehensive assessment of clinical presentation, imaging, and

pathology characteristics. Invasive methods such as pathological

biopsies are still constrained by samples’ accessibility, resulting

in delayed diagnosis. Therefore, easily accessible diagnostic

approaches are necessary to help patients be diagnosed as early

as possible before irreversible pathology to avoid delaying the

optimal time for treatment. Given that the etiology of sarcoidosis

has not been elucidated, the first line of therapy for sarcoidosis

patients is oral glucocorticoids (5), despite their severe side

effects (6).

With the rapid advances in bioinformatics, the assessment

of blood transcriptional signature may provide a fast, easily

accessible, and convenient screening approach to identify

potential molecular biomarkers for diagnosing disease

and explore the latent pathogenesis and immunological

characteristics to provide additional therapeutic perspectives

for better individual treatment. Molecular biomarkers from

the blood transcriptome are widely used for disease diagnosis

and pathogenesis exploration. Several studies have documented

that gene expression profiling of peripheral blood could be

used as biomarkers in multisystem diseases and immune-

related disorders (7–11), like monitoring multiple sclerosis

progression (12) and response to treatment and distinguishing

active tuberculosis from other infectious and inflammatory

diseases (13).

Our study collected 11 microarray cohorts of sarcoidosis

patients from the Gene Expression Omnibus (GEO). Our

study is committed to identifying specific gene profiles

correlated with sarcoidosis through bioinformatics analysis and

constructing a robust sarcoidosis diagnostic signature (SARDS).

Additionally, the results might provide new insights into the

pathogenesis, immune characteristics, and potential treatment

options for sarcoidosis.

Methods

Data collection and processing

We downloaded the gene expression profile from GEO

(http://www.ncbi.nlm.nih.gov/geo/) by searching “sarcoidosis.”

The inclusion criteria were as follows: (i) The datasets contained

total RNA gene expression microarray data; (ii) the datasets

included sarcoidosis and normal samples: the samples can be

one of the five forms, including whole blood, peripheral blood

mononuclear cells (PBMC), bronchoalveolar lavage (BAL) cells,

and lung tissue; and (iii) the datasets had five samples of both

sarcoidosis and normal patients at least. The data processing

procedure of the research was illustrated in the workflow

(Figure 1).

Weighted gene co-expression network
analysis

The consensus WGCNA approach was employed to cluster

genes with similar expression patterns and filter out clusters of

co-expressed genes called “modules” which are highly associated

with sarcoidosis via the “WGCNA” R package (14). First, the

expression of genes was ranked by standard deviation, and

the top 5,000 genes were selected for the subsequent analysis.

Next, hierarchical cluster analysis was performed to determine

whether there were outlier samples. Soft-thresholding power

was based on scale-free analysis and set as the lowest power with

a scale-free topology model fit >0.9 by the “pickSoftThreshold”

function in the “WGCNA” R package. The soft threshold and

the gene similarity matrix calculated by Pearson correlation

values between each gene pair were used to construct the

adjacency matrix. Subsequently, the adjacency matrix was
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FIGURE 1

The flowchart of this study.

transformed into a topological overlap matrix (TOM) and a 1-

TOM, reflecting the similarity and dissimilarity between genes

separately. MinModuleSize was set to 50 to ensure each module

had a minimum of 50 genes. Deep Split was set to two to

identify modules using dynamic tree cut. MEDissThres was set

to 0.2 to cluster module eigen genes (MEs). These genes were
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classified into different MEs calculated to represent the gene

expression. We calculated the correlation between diagnosis and

MEs to screen key modules for further analysis. The genes with

high gene significance andmodule membership were considered

essential genes.

Functional enrichment analysis

The functional enrichment analysis contained Gene

Ontology (GO) enrichment analysis and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathways enrichment analysis.

The biological processes, cellular components, molecular

functions, and relevant pathways of the genes in the key

MEs were implemented via the “clusterProfiler” R package

(15). According to the Benjamini–Hochberg procedure, the

P-adjusted value was further computed. Set P-adjusted value

<0.05 as statistically significant.

Identification of key regulative genes

The differentially expressed genes (DEGs) between

sarcoidosis and normal blood samples were screened via

the “limma” R package. We set P-adjusted value <0.05 and

|log2 fold change (logFC)| >1 as the threshold of DEGs. The

intersection of the GSE83456 positively correlated module

genes with the upregulated differentially expressed genes

of GSE42826, GSE42830, and GSE42834 was believed to

be the key upregulated genes of sarcoidosis. Similarly, the

intersection of the GSE83456 negatively related module genes

with the downregulated differentially expressed genes of

GSE42826, GSE42830, and GSE42834 was thought to be the key

downregulated genes of sarcoidosis.

LASSO machine learning algorithm

The least absolute shrinkage and selection operator (LASSO)

was performed to obtain a robust diagnostic performance

model. LASSO is a popular algorithm that is broadly

utilized in medical studies (16–18). 10-fold cross-verification

was performed to determine the Lambda minimum. This

machine learning algorithmic procedure was implemented

with the “glmnet” R package. In addition, LASSO can

obtain relevant genes for the diagnosis of sarcoidosis for

further mechanistic studies. The receiver operator characteristic

(ROC) curves were generated, and the area under the

ROC curve (AUC) assessed the performance of the disease

diagnostic model.

Gene set enrichment analysis

The normalized enrichment scores (NES) were calculated

for sarcoidosis based on the diagnostic model scores

on GO terms and KEGG pathway in the Molecular

Signature Database (MSigDB) via all GO gene sets

(c5.go.v7.4.symbols.gmt) and KEGG gene sets as Gene

Symbols (c2.cp.kegg.v7.4.symbols.gmt), respectively. We set

|NES| >1.50, and P-adjusted value <0.01 as cutoff criteria.

Evaluation of immune landscape

Single sample GSEA (ssGSEA) (19) that generates

enrichment scores for a single sample was used to explore

differences in immune cell infiltration between sarcoidosis

and normal samples. The abundance of the 24 immune

infiltrating cells was calculated and visualized by the “GSVA”

R package (v1.42.0). In addition, correlation coefficients

between the diagnostic model scores and the immune cell

abundance of the samples were calculated to investigate the

significant immune cells involved in sarcoidosis and the

immune mechanisms.

Statistical analysis

Data processing, statistical analysis, and plotting were

carried out in the R 4.1.2 software. The correlation between

two continuous variables was assessed using Pearson’s

correlation coefficient. Comparisons of categorical variables

were done using the Chi-square test, while comparisons of

continuous variables were done using the Wilcoxon rank-

sum test or t-test. P-value <0.05 was determined to be

statistically significant.

Results

Data acquisition from GEO

A total of 313 sarcoidosis patients from 11 public datasets

were collected for further analysis (Supplementary Table 1).

A total of 11 datasets were selected: six came from

whole blood samples (GSE42834, GSE83456, GSE42826,

GSE42830, GSE18781, and GSE34608), two came from

PBMC samples (GSE19314 and GSE37912), two came from

BAL cells samples (GSE73394 and GSE75023), and one

came from lung tissue samples (GSE16538). The baseline

characteristics can be found in Supplementary Table 2. The

gene expression data of four datasets (GSE83456, GSE42834,

GSE42826, and GSE42830) were used to screen the essential
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genes. The seven remaining datasets were used as the

validation sets.

Identification of key modules through
WGCNA

The GSE83456 dataset was used to identify the key MEs

related to sarcoidosis. First, no outlier sample was removed

based on the sample tree, and then totaling 110 samples, the

top 5,000 genes were used for WGCNA. The soft-thresholding

power was set to nine to fit the scale-free network (Figures 2A,B).

Second, the gene similarity matrix was constructed as an

adjacency matrix according to the Pearson correlation values.

The adjacency matrix was converted to the TOM and 1-

TOM, reflecting the similarity and dissimilarity between genes

separately. Third, the co-expression modules in the network

were identified using the “cutreeDynamic” function, and all

genes were clustered into 10 modules. These modules were

further merged to nine MEs using the “mergeCloseModules”

function plotted by clustering dendrogram (Figure 2C) and

heatmap of the eigengene adjacency (Figure 2D). Figure 2E

shows the heatmap of the topological overlap matrix of genes

selected by WGCNA. The relationships between the MEs and

sarcoidosis were visualized in the module-trait relationship

diagram (Figure 2F).

Enrichment analyses of genes in key
modules

Among the nine modules, the brown module was the

most positively correlated module with sarcoidosis, including

493 genes, and the correlation between module membership

and gene significance was 0.769 (P < 0.0001) (Figure 3A).

The turquoise module was the most negatively correlated

module, including 684 genes and the correlation was 0.519

(P < 0.0001) (Figure 3B). Figure 3C displayed that the genes

of the brown module were significantly enriched in “defense

response to virus,” “defense response to symbiont,” “response

to virus,” “type I interferon signaling pathway,” and “regulation

of innate immune response” in GO terms. Figure 3D illustrated

that the genes of the turquoise module were significantly

enriched in “ncRNA processing,” “ncRNA metabolic process,”

and “ribonucleoprotein complex biogenesis” in GO terms.

The enriched KEGG pathways of the brown module genes,

including “Epstein-Barr virus infection,” “Influenza A,” “Antigen

processing and presentation,” and “Allograft rejection” were

shown in Figure 3E. The enriched KEGG pathways of the

turquoise module included the “RNA degradation,” “Th17

cell differentiation,” and “T cell receptor signaling pathway”

(Figure 3F). The enrichment analysis results indicated that

inflammatory and immune cells played an essential role in the

process of sarcoidosis.

Identification of DEGs

The DEGs between sarcoidosis and normal patients were

explored by the “limma” R package. In the GSE42826 dataset,

20 significantly upregulated genes and eight significantly

downregulated genes were defined, shown as a volcano plot

and heatmap in Figures 4A,B. The GSE42830 dataset identified

26 considerably upregulated genes and 14 significantly down-

regulated genes, shown in Figures 4C,D. Similarly, in the

GSE42834 dataset, 16 upregulated genes and 8 significantly

downregulated genes were defined, demonstrated as a volcano

plot and heatmap in Figures 4E,F.

Construction of a sarcoidosis diagnosis
signature via machine learning

First, the key regulated genes were screened to further

model construction by the intersection of the genes in the

key module of WGCNA and the significantly regulated genes

in the three datasets. Fourteen key upregulated genes were

screened through the intersection of the brown module genes

of WGCNA and the significantly upregulated genes of the

three datasets (Figure 5A). Likewise, six key downregulated

genes were screened through the intersection of the turquoise

module genes and the significantly downregulated genes of

three datasets (Figure 5B). A total of 20 key genes have been

exploited as stable and reliable sarcoidosis diagnostic signatures

(SARDS) to diagnose sarcoidosis at the gene level by applying

the LASSO algorithm. The optimal lambda was 0.026 when the

LASSO regression partial likelihood deviation was minimized

(Figure 5C). Therefore, 10 key genes with non-zero LASSO

coefficients were considered the main variables in the diagnostic

model (Figure 5D). The 10 genes were GBP1, LEF1, IFIT3,

LRRN3, IFI44, LHFPL2, RTP4, CD27, EPHX2, and CXCL10

with the coefficients 0.244, −0.0925, 0.0855, −0.0732, −0.0703,

0.0292, 0.0149, −0.0131, −0.00522, and 0.000941, respectively.

The SARDS was established with the following formula: SARDS

score= 0.445+ 0.244× ExpGBP1 - 0.0925× Exp LEF1 - 0.0855

× Exp IFIT3 - 0.0732 × Exp LRRN3 - 0.0703 × Exp IFI44 +

0.0292 × Exp LHFPL2 + 0.0149 × Exp RTP4 - 0.0131 × Exp

CD27 - 0.00522× Exp EPHX2 - 0.000941× Exp CXCL10.

SARDS validation in di�erent cohorts

ROC curves were used to assess the diagnostic efficacy

of SARDS in 11 cohorts. The GSE83456, as the training

cohort, performed an excellent AUC of 1.00 (Figure 6A). The
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FIGURE 2

The weighted gene co-expression network analysis of sarcoidosis. (A) Scale-free topological model fit at various soft-thresholding powers. (B)

Mean connectivity for di�erent soft-thresholding powers of the network. (C) Gene clustering dendrograms based on hierarchical clustering

under optimal soft-thresholding power. (D) The heatmap of the eigengene adjacency. (E) The heatmap of the topological overlap matrix of

genes selected by WGCNA. (F) The relationships between MEs and sarcoidosis.
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FIGURE 3

Enrichment analysis of genes in key MEs. (A) The scatter plot correlation between the brown module membership and gene significance. (B) The

scatter plot of correlation between the turquoise module membership and the gene significance. (C) Go enrichment analysis of genes in the

brown module. (D) GO enrichment analysis of genes in the turquoise module. (E) KEGG pathway analysis of genes in the brown module. (F)

KEGG pathway analysis of genes in the turquoise module.
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FIGURE 4

Di�erential expression genes analysis of three sarcoidosis datasets. (A) The volcano plot of DEGs in GSE42826. (B) The heatmap of the top 50

DEGs in GSE42826. (C) The volcano plot of DEGs in GSE42830. (D) The heatmap of the top 50 DEGs in GSE42830. (E) The volcano plot of DEGs

in GSE42834. (F) The heatmap of the top 50 DEGs in GSE42834.
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FIGURE 5

The construction of the SARDS based on the LASSO algorithm. (A) The Venn diagram of the intersection between the upregulated DEGs in three

datasets and genes in the brown module. (B) The Venn diagram of the intersection between the downregulated DEGs in three datasets and

genes in the turquoise module. (C) Determination of the optimal lambda was obtained when the partial likelihood deviance reached the

minimum value, and further generated the key gene with nonzero coe�cients. (D) LASSO coe�cient profiles of the candidate gene for SARDS

construction.

GSE42830, GSE42834, and GSE42826, which were involved

in screening the key genes, performed outstanding AUCs of

0.987, 0.951, and 0.938 (Figures 6B–D). The GSE34608 and

GSE18781, as the validation dataset of whole blood samples,

had superior diagnostic efficacy in that AUCs were 0.972 and

0.960 (Figures 6E,F). Meanwhile, the cohorts with samples of
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FIGURE 6

The validation of the SARDS in 11 cohorts. (A) The ROC curve of the modeling dataset (GSE83456). (B–K) The ROC curves of validation datasets

(GSE42830, GSE42834, GSE42826, GSE34608, GSE18781, GSE19314, GSE37912, GSE16538, GSE75023, and GSE73394).
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PBMC, BAL cells, and lung tissue were enrolled in the validation

cohort of the SARDS. The GSE19314 and GSE37912 of PBMC

samples performed AUCs of 0.933 and 0.732 (Figures 6G,H).

The GSE16538 of lung tissue had an AUC of 0.917, shown in

Figure 6I. The GSE75023 and GSE73394 displayed the great

AUCs of 0.728 and 0.821 (Figures 6J,K). The SARDS has

been proven to be a robust and reliable diagnostic model

of sarcoidosis.

Exploration of mechanisms based on the
SARDS score

The correlation between SARDS scores and gene expression

was calculated for gene sequencing to detect latent mechanisms

of sarcoidosis by applying GSEA. The most important GO

terms and the KEGG pathways were displayed in the ridge

plot (Figures 7A,B). Among these, Figure 7C depicted the

top five positively relevant GO terms, including “Response to

interferon gamma,” “Response to type I interferon,” “Antigen

processing and presentation of exogenous peptide antigen

via MHC class I,” “Defense response to virus,” and “Myeloid

leukocyte mediated immunity.” Figure 7D depicted the top five

negatively relevant GO terms, comprising “Nuclear transcribed

mRNA catabolic process nonsense mediated decay,” “ncRNA

processing,” “Ribosome biogenesis,” “Ribonucleoprotein

complex biogenesis,” and “ncRNA metabolic process.” On

the other hand, Figure 7E described the top five positively

correlated KEGG pathways, consisting of “Leishmania

infection,” “Lysosome,” “Toll like receptor signaling pathway,”

“Proteasome,” and “Graft vs. host disease.” Likewise, Figure 7F

described the top five negatively correlated KEGG pathways,

consisting of “Ribosome,” “RNA degradation,” “Alanine

aspartate and glutamate metabolism,” “Nucleotide excision

repair,” and “Spliceosome.”

The immune landscape of sarcoidosis

Given that sarcoidosis is a systemic inflammatory disease

of unknown mechanisms, it is essential to exploit the

immune microenvironment of sarcoidosis patients. The ssGSEA

algorithm was performed to estimate the infiltration abundance

of 24 types of immune cells between sarcoidosis and normal

patients. The heatmap and boxplot demonstrated the fraction

and expression differences of 24 types of immune cells in

the GSE83456 cohort (Figures 8A,B). It was evident that the

superior abundance of the anchorage-dependent cell (aDC),

macrophages, immature dendritic cells (iDC), neutrophils,

plasmacytoid dendritic cells (pDC), eosinophils, Th1 cells, and

mast cells and the inferior infiltration of T cells, Central Memory

T cell (Tcm), T follicular helper cell (TFH), CD8T cells, B

cells, Th2 cells, and T helper cells were the immune signatures

of the sarcoidosis patients. The correlations between different

immune cells were shown in the heatmap (Figure 8C). The

T helper cells and CD8T cells showed the strongest positive

correlation, and DC and T helper cells showed the strongest

negative correlation. The correlation between the SARDS score

and immune infiltration was shown in Figure 8D. We can see

that the infiltration level of aDC cells (r = 0.680, P < 0.0001),

macrophages (r = 0.591, P < 0.0001), iDC (r = 0.423, P <

0.0001), neutrophils (r = 0.355, P = 0.0001), pDC (r = 0.309,

P = 0.0011), and eosinophils (r = 0.213, P = 0.0260) were

positively correlated with the SARDS score; the infiltration level

of T cells (r = −0.643, P <0.0001), Tcm (r = −0.618, P <

0.0001), TFH (r=−0.531, P< 0.0001), CD8T cells (r=−0.463,

P < 0.0001), B cells (r = −0.420, P < 0.0001), and Th2 cells

(r = −0.405, P < 0.0001) were negatively associated with the

SARDS score.

Discussion

The diversity of clinical symptoms in sarcoidosis and the

lack of a single reliable diagnostic criterion make prompt

and accurate diagnosis challenging. In addition, the etiology

and pathogenesis of sarcoidosis remain unknown, making

treatment available considerably limited. Therefore, exploring

the latent mechanisms and constructing an accessible and

reliable diagnostic model of sarcoidosis is vital for innovative

therapeutic approaches to improve prognosis.

Our study was based on gene transcriptome analysis of 303

sarcoidosis samples and 400 normal controls. Two modules

with the highest correlation to sarcoidosis were identified

through WGCNA, namely brown and turquoise modules.

The brown module, containing 493 genes, demonstrated

that the defense response to the virus and innate immune

response might play an essential role in the pathogenesis of

sarcoidosis, which was consistent with the results of previous

studies. Numerous immunological arguments had indicated that

inadequate clearance of viral particles, accompanied by various

immunodeficiencies, might be relevant to sarcoidosis disease

(20). In patients with sarcoidosis, viruses have evolved strategies

to evade or suppress host cell defenses utilizing the process of

autophagy (20). The primary regulator of the innate immune

response in sarcoidosis was the alveolar macrophage, which

both produced pro-inflammatory cytokines, such as tumor

necrosis factor-α (TNF-α), contributing to the production of

granulomatous lesions, and acted as an antigen-presenting cell

(APC) interacting with T cells via human leucocyte antigen

(HLA) molecules and T cell receptors (21, 22). The turquoise

module, containing 684 genes, revealed that non-coding

RNA (ncRNA), including processing, metabolic processes and

degradation, and immune cells, was strongly associated with

sarcoidosis through enrichment analysis. Regulative ncRNAs

can be classified into microRNAs (miRNAs), long ncRNAs
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FIGURE 7

Gene set enrichment analysis. (A) The ridge plot of the top 20 GO terms with ranked genes of the GSE83456. (B) The ridge plot of the top 20

KEGG pathways with ranked genes of the GSE83456. (C,D) The positive and negative top five GO terms with ranked genes of the GSE83456.

(E,F) The positive and negative top five KEGG pathways with ranked genes of the GSE83456.
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FIGURE 8

The immune landscape of sarcoidosis. (A) The heatmap of the immune infiltration in sarcoidosis and normal groups. (B) The boxplot of the 24

types of immune cell infiltration in sarcoidosis and normal groups. *P < 0.05, **P < 0.01, ***P < 0.001. (C) The heatmap of the correlations

between di�erent immune cells. (D) The relationship between the SARDS score and immune infiltration.

(lncRNAs), and small interfering RNAs. Previous research has

indicated potential associations between the dysregulation of

some miRNAs and the diagnosis and prognosis of sarcoidosis

(23, 24). In PBMCs from patients with sarcoidosis, levels

of miRNA-34a were increased, which downregulated sirtuin

(SIRT) 1 and stimulated the secretion of INF-γ (25). SIRT1

is an essential mediator of energy metabolism and tissue

survival, and INF-γ is necessary to develop and maintain the
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sarcoidosis status. These all contributed to the NF-κB-mediated

inflammatory response in patients with sarcoidosis (26). In

addition, miR-let7f, miR-15b, miR-16, miR-20a, miR-27b, miR-

128a, miR-130a, miR-192, miR-221, and miR-222, miRNAs

that target genes involved in angiogenesis and extracellular

matrix remodeling, were found differentially expressed in a

study between patients with sarcoidosis and controls (27). These

genes were essential in the pathogenesis of sarcoidosis, including

granuloma formation and fibrosis. Further research into the

function of ncRNAs and immune cells in disease enhanced the

understanding of the pathogenesis of sarcoidosis and provided

new perspectives for translation into innovative therapeutic

strategies (28).

Multiple reliable bioinformatics approaches were performed

in our study to screen for essential molecular biomarkers

associated with sarcoidosis. The intersection of WGCNA-

associated module genes and differentially expressed genes

was considered the critical gene, most strongly correlated

with sarcoidosis and significantly differentially expressed in

other sarcoidosis cohorts. A total of 20 genes were screened

for dimensional reduction to construct the diagnostic model,

and 10 genes were ultimately identified to the SARDS using

the LASSO algorithm, including GBP1, LEF1, IFIT3, LRRN3,

IFI44, LHFPL2, RTP4, CD27, EPHX2, and CXCL10. GBP1, as

an IFN-γ-related gene in whole blood gene expression, was

independently and positively correlated with T-bet+ frequency

in Th17 cells, as the expression of T-bet in Th17.0 cells

might indicate the degree of granulomatous inflammation

in sarcoidosis patients (29). This result was consistent with

previous enrichment analyses, demonstrating that IFN-γ and

Th17 cells had an essential effect on the development and

progression of granulomatous tissues in sarcoidosis (30, 31).

Lymphoid enhancer-binding factor 1 (LEF1) is one of the Hippo

signaling pathway hub genes, and it has been suggested that

macrophage proliferation is related to the downregulation of

the Hippo signaling pathway (32). The pathology of sarcoidosis

is characterized by chronic granulomas with a core infiltration

of macrophages and a peripheral infiltration of lymphocytes

visually (33). Therefore, the downregulation of LEF1 contributed

to the diagnosis of sarcoidosis in our study. The single-cell

analysis identified a new sub-group of macrophages called

IFN-responsive macrophages (IFNRM) that expressed IFN-

responsive genes (such as IFIT3) and secreted the cytokine

CXC motif chemokine 10 (CXCL10), which regulated the

proliferation and differentiation of satellite cells (34). On the

question of CD27, the research found that the abundant B-

cell infiltration in granuloma tissue indicated that B cells

were directly involved in the inflammatory process in patients

with sarcoidosis. And CD27(-) B cells may be a biomarker

for treatment with TNF-α blocking agents. In addition, we

found that LRRN3, IFI44, LHFPL2, RTP4, and EPHX2 were all

involved in diagnosing sarcoidosis, which might shed light on

the mechanisms of sarcoidosis and provide potential biomarkers

for diagnosis. Overall, results from 11 different cohorts of

whole blood, PBMC, BAL cells, and lung tissue supported the

diagnostic efficacy of the essential genes, with the splendid

AUCs ranging from 0.938 to 1.000 in training datasets and

ranging from 0.728 to 0.972 in validation datasets. He J et al.

found that BATF2 and PDK4 could be used as diagnostic

molecular markers for sarcoidosis through bioinformatics

approaches in two cohorts (35). Our SARDS model, which

combined the construction and validation of 11 cohorts, had

higher diagnostic efficacy than other diagnostic models, further

validating that SARDS was feasible and reliable in diagnosing

patients with sarcoidosis.

Considering that both functional enrichment analysis and

GSEA results based on SARDS scores indicated the involvement

of immune cells and their processes in sarcoidosis, it was

essential to explore the immune landscape in patients with

sarcoidosis. This study found that the high infiltration of iDCs,

macrophages, pDCs, neutrophils, and eosinophils and the low

infiltration of T cells, Tcm, TFH, CD8T cells, B cells, and Th2

cells constituted the immune microenvironment of sarcoidosis.

As we know, dendritic cells comprise three lineages including

myeloid DC (mDC), pDC, and Langerhans cells (LC). In

the immune process of sarcoidosis, dendritic cells migrate to

lymph nodes and participate in t-cell proliferation through t-

cell receptors and costimulatory molecules (36). Subsequently,

alveolar macrophages are activated to secrete TNF chemotactic

leukocytes, which promote granuloma formation (21). The iDCs

were enriched in BALF and skin lesions of patients, while

mature DCs were located in lymph nodes (37). The pDCs

resemble lymphocytes that produce large amounts of interferon-

alpha (IFN-α) upon viral invasion, which is consistent with the

results of the enrichment analysis regarding the viral response.

Taken together, these results suggest that TNF is an important

mediator in the pathogenesis of sarcoidosis. More surprisingly,

TNF receptors are also abundant in DCs, making DCs possible

for therapeutic targets. Following the present results, previous

studies have demonstrated that patients with sarcoidosis had

strong immuno-stimulability of DCs and macrophages in both

the lung and blood (38, 39).

Overall, our research had limitations and strengths. The

limitations of the study were that the cohorts in our study

contained only diagnostic information lacking clinical aspects.

Besides, the essential genes screened were not validated

experimentally. Further studies need to be carried out to validate

the value of the clinical application. However, it had the strength

of a sufficiently large sample size of sarcoidosis, containing

313 patients and 400 healthy controls in 11 cohorts with four

different sample sources. Validation in various sample sources

and diverse cohorts compensated for experimental validation.

In addition, advanced bioinformatics methods and machine

learning algorithms reduce the impact of disease heterogeneity

and confounding factors on diagnostic models. Collecting and

analyzing circulating cells, indicative of pathogenic mechanisms
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and immune characteristics, are less invasive and less costly for

new diagnostic tools.

In summary, our study systematically identified a feasible

and credible diagnostic signature (termed SARDS) comprising

10 essential molecular biomarkers for the diagnosis of

sarcoidosis and validated its robustness and translation in

multiple cohorts of different source types. The study also

had significant implications in exploring the underlying

pathogenesis and the immune landscape of sarcoidosis for

innovative therapeutic strategies. Taken together, SARDS could

be a promising tool to optimize the diagnosis and treatment of

patients with sarcoidosis.
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