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A prediction and interpretation
machine learning framework of
mortality risk among severe
infection patients with
pseudomonas aeruginosa

Chen Cui†, Fei Mu†, Meng Tang†, Rui Lin, Mingming Wang,

Xian Zhao, Yue Guan* and Jingwen Wang*

Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, China

Pseudomonas aeruginosa is a ubiquitous opportunistic bacterial pathogen,

which is a leading cause of nosocomial pneumonia. Early identification of the

risk factors is urgently needed for severe infection patients with P. aeruginosa.

However, no detailed relevant investigation based on machine learning has

been reported, and little research has focused on exploring relationships

between key risk clinical variables and clinical outcome of patients. In this

study, we collected 571 severe infections with P. aeruginosa patients admitted

to the Xijing Hospital of the Fourth Military Medical University from January

2010 to July 2021. Basic clinical information, clinical signs and symptoms,

laboratory indicators, bacterial culture, and drug related were recorded.

Machine learning algorithm of XGBoost was applied to build a model for

predicting mortality risk of P. aeruginosa infection in severe patients. The

performance of XGBoost model (AUROC= 0.94± 0.01, AUPRC= 0.94± 0.03)

was greater than the performance of support vector machine (AUROC = 0.90

± 0.03, AUPRC = 0.91 ± 0.02) and random forest (AUROC = 0.93 ± 0.03,

AUPRC = 0.89 ± 0.04). This study also aimed to interpret the model and to

explore the impact of clinical variables. The interpretation analysis highlighted

the e�ects of age, high-alert drugs, and the number of drug varieties. Further

stratification clarified the necessity of di�erent treatment for severe infection

for di�erent populations.

KEYWORDS

machine learning, interpretation, stratification analysis, Pseudomonas aeruginosa,

severe infection, risk factors

Introduction

Pseudomonas aeruginosa (P. aeruginosa), a ubiquitous Gram-negative pathogen, can

colonize almost any part of the human body (1). More than 50% of severe acute and

chronic hospital-acquired infections are caused by P. aeruginosa (2), such as ventilator-

associated pneumonia and catheter infections in immunocompromised patients (3–5).

It contributes to mortality rates as high as 13.5% in ventilation-associated pneumonia
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caused by P. aeruginosa (6). The most common cause of death

from cystic fibrosis is P. aeruginosa lung infections (7).

Pseudomonas aeruginosa infection with diverse pathological

background exerts a heavy health burden for modern society.

Thus, there is an urgent need to identify the mortality

risk factors of infection for severe infection patients with

P. aeruginosa early. A retrospective study has shown that

APACHE II score and septic shock are critical factors for

mortality in P. aeruginosa bacteremia, and combination

therapy does not significantly reduce overall 14-day mortality

(8). Several other studies have analyzed the risk factors for

mortality of P. aeruginosa using logistic regression, such as

age, sex, ICU admission, glucocorticoid use, inappropriate

treatment regimens, mechanical ventilators, the use of a central

venous catheter, and a higher APACHE II score (8–10). In a

multi-center study, risk factors for mortality of community-

acquired P. aeruginosa included previous pseudomonas

infection/colonization, tracheostomy, bronchiectasis, invasive

respiration and/or vasopressor therapy (IRVS), and very severe

chronic obstructive pulmonary disease (COPD) (11). Using

of previous antibiotic and ICU admission is important risk

factors for drug-resistant P. aeruginosa (12), which increases

the number of days in hospital stays and all-cause mortality

in hospitalized patients significantly (13). Most of studies

above used traditional logistic regression to predict the risk

factors of P. aeruginosa infection, and there was no research for

identification of the mortality risk prediction of P. aeruginosa

infection in severe patients.

Machine learning is a data-driven computingmethod, which

does a lot of work based on big data. While machine learning has

been demonstrated in a few different fields, it has only recently

been gaining popularity in the field of medicine. Compared to

logistic regression, machine learning methods are often more

comprehensive, accurate, and rapid in clinical risk prediction

(14). Various machine learning methods have been widely

used in constructing prediction models of disease risk, such as

gastrointestinal bleeding risk assessment, prediction of mortality

in intensive care units, and sepsis-associated thrombocytopenia

(15–17). Ma et al. used an unsupervised learning algorithm

to classify septic shock into five phenotypes, investigate the

associated risk factors, and determine the best treatment strategy

for these phenotypes (18). However, there has not yet been

a machine learning method for the mortality risk of severe

infection patients with P. aeruginosa.

In this study, we proposed a mortality risk prediction

framework for severe infection patients with P. aeruginosa

infection based onmachine learning. Our framework focused on

decision support and model interpretation. Based on XGBoost

algorithm and electronic medical records (EMR) data, we built

a machine learning model with good predictive performance

using grid searching and cross-validation (19). Furthermore,

the SHapley Additive exPlanation (SHAP) values were used

to explain the prediction model from a global perspective

for overcoming the shortcomings of machine learning models

(20). It has the advantage of providing more details about the

relationship between predictive variables and outcomes, and

describing in detail the relationship between clinical factors and

risks. The interpretative analysis revealed key clinical features of

the risk of mortality P. aeruginosa infection in severe patients.

Finally, we conducted a stratified analysis of patients from

three aspects: infection site, advanced age, and the number of

intravenous drug varieties. The results have some implications

for P. aeruginosa clinical practice. Our study enables accurate

predictions of the risk of mortality P. aeruginosa infection in

severe patients, as well as interpretation of key variables that can

support clinical decisionmakingmore accurately and effectively.

Materials and methods

Patient selection

The study was conducted at the Xijing Hospital of the

Fourth Military Medical University, and a total of 571 patients

with severe infections were included in the study between

January 2010 and July 2021. There were 338 patients in

the death group and 233 patients in the control group.

Our study was approved by the domestic ethics committee

with the approval number KY20212130-C-1. This study is a

retrospective, observational study design that does not require

informed consent. The collected research data were de-identified

and analyzed anonymously.

Data collection

Data collected using EMR at the First Affiliated Hospital

of Fourth Military Medical University: basic information: age,

sex, etc.; drug related: number of drug varieties, number

of antibiotics drugs varieties, high-alert medication, etc.;

clinical signs and symptoms: headache, cough, temperature,

etc.; laboratory indicators: white blood cell count, absolute

neutrophil value, etc.; bacterial culture: blood culture, urine

culture, etc. All data collected are provided in the Supplementary

Section (Supplementary Table 1). Here, high-alert medication

refers to drugs that may cause serious injury or death to

patients due to improper use of medication errors (17).

According to the severity of adverse consequences that may be

caused by their clinical use, high-alert medication is divided

into 3 grades: A, B, and C. For the specific classification

of high-alert medication, please refer to the recommended

list of high-alert medication in China recommended by the

Chinese Pharmaceutical Association (https://www.cpa.org.cn/

index.php?do=info&cid=75676) and the management of high-

alert medication in Xijing Hospital of the Fourth Military
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Medical University. The details of high-alert medication can be

found in the Supplementary Section (Supplementary Table 2).

Inclusion criteria and exclusion criteria

Inclusion criteria: From January 2010 to July 2021,

hospitalized patients with severe infection who associated with

P. aeruginosa infection; Diagnosis of severe infection with P.

aeruginosa, severe infection was defined as requiring at least

3 days of intravenous antibiotic therapy and at least 3 days of

hospitalization after the diagnosis of confirmed infection. The

ICD code for the diagnosis of severe infection in this study is

shown in Supplementary Table 3. The P. aeruginosa infection

was defined by combining the patient’s clinical symptoms,

signs, laboratory indicators, microbial culture, imageology, etc.

Culture specimens of microorganisms come from different

sites of infection, such as blood culture, urine culture, and

sputum culture. The result of the patient’s treatment was death

or recovery.

Exclusion criteria: Non-P. aeruginosa infection; Patients

with incomplete data and medical record information (the

missing value of laboratory indicators exceeds 50%, incomplete

medical history, no medication records); Some comorbidities

such as autoimmune diseases (systemic lupus erythematosus,

ANCN-associated vasculitis, rheumatoid arthritis, etc.,),

malignant tumors (stomach cancer, ovarian cancer, lung

cancer, etc.,) were excluded; Suspected contaminated specimens

(the same sample culture of 3 or more pathogenic bacteria);

Non-infected or colonized patient, such as the patient’s clinical

symptoms, signs, laboratory indicators, imageology were not

abnormal; Hospitalization for less than 3 days.

Preprocessing and imputation of clinical
variables

All the clinical variables we collected could be divided

into numerical and categorical variables according to clinical

significance, and longitudinal and non-longitudinal variables

according to whether repeated monitoring occurred during

admission. Then, the categorical variables were converted

into one-hot vectors. For clinical longitudinal variables, we

extracted the maximum increase and maximum decrease during

hospitalization for each variable. For laboratory longitudinal

variables, we extracted the slope of all laboratory variables

over time, the maximum increase and decrease during

hospitalization. Finally, we got 91 variables in total (including

derived variables). A detailed description and classification

of all variables can be found in the Supplementary Section

(Supplementary Table 1).

Outliers were detected using the interquartile range (IQR).

As a threshold, the 2 times of IQR were used, and points

exceeding this threshold (the upper quartile + 2 times of

IQR, or the lower quartile – 2 times of IQR) were defined

as outliers. Data points out of the valid value threshold were

identified as outliers. The excluded outliers were modified as the

nearest threshold.

Variables which had more than 50% missing values were

deleted, while variables which had less than 20% missing values

were replaced by the median values. Multivariate imputation by

chained equations (MICE) was used to impute missing values

while loss rates of variables were between 20 and 50%.

Finally, the z-score normalization was only performed for

the all continuous values used by Support Vector Machine

(SVM) (21). Since tree-based models such as XGBoost did

not require standardization, the z-score normalization step was

omitted when interpreting XGBoost, LightGBM (22), CatBoost

(23), and Random Forests (RF) (24).

Model algorithm

The XGBoost is a scalable end-to-end tree boosting system,

which implements machine learning algorithms in a gradient

enhancement framework that is efficient, flexible, and portable.

It could be used for handling sparse data, and solving many

data science problems quickly and accurately. The XGBoost has

been widely used by data scientists to obtain state-of-the-art

results inmanymachine learning challenges. The equations were

as follow:

L (∅) =

n
∑

i

l
(

ŷi, yi
)

+

k
∑

j

�(fj) (1)

Here, l is a loss function that measures the differences between

the prediction ŷiand the target yi. The � penalizes the

complexity of the model.

In order to minimize the L, the function could be write as:

L̃
(t) =

n
∑

i=1

[

gift (Xi) +
1

2
hif

2
t (Xi)

]

+ �(ft) (2)

gi = ∂ŷ(t−1) l
(

yi, ŷ
(t−1)

)

(3)

hi = ∂2
ŷ(t−1) l(yi, ŷ

(t−1)) (4)

Here, all XGBoost models were implemented by using XGBoost

(version 1.5.1). All codes were implemented using Python 3.7.9.

Method comparison

In order to evaluate the performance of our model, we

compared the XGBoost with LightGBM, CatBoost, SVM, and
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RF methods. All models have been optimized by grid searching

to adjust hyperparameters. The detailed hyperparameters of

XGBoost were described in Section 3.2. We selected the best

model for predicting mortality risk for patients with severe P.

aeruginosa infection.

The different parameters of LightGBM, CatBoost,

SVM, and RF are summarized in Supplementary Section

(Supplementary Tables 4–7). LightGBM and CatBoost were

implemented by lightgbm 3.3.2 and catboost 1.0.6 in Python

3.7.9. The SVM and RF models were implemented by using

scikit-learn. All code was implemented using Python 3.7.9.

Evaluation metrics

The performance of the machine learning classifier was

assessed using accuracy (ACC), receiver operator characteristics

(ROC) curve, precision recall (PR) curve, area under the

receiver operator characteristics curve (AUROC), and area

under the precision recall curve (AUPRC), as defined by the

following metrics:

ACC =
TP + TN

TP + TN + FP + FN
(5)

Recall = True Positive Rate =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

False Positive Rate =
FP

TN + FP
(8)

where TP, TN, FP, and FN refer to true positives, true negatives,

false positives, and false negatives, respectively. Here, a “positive”

label means that the outcome indicator of sample is death.

Interpretation algorithm

In order to interpret the prediction results of XGBoost,

Shapley additive explanations values were introduced, which

unify Shapley regression values (20), Shapley sampling values,

local interpretable model-agnostic explanations (LIME) (25),

and other three existing additive feature attribution methods

(DeepLIFT) (26), layer-wise relevance propagation (27), and

quantitative input influence. Shapley values were defined as a

class of additive feature attribution methods, which have an

explanation model that is a liner function of binary variables

as follow:

g
(

z′
)

= ∅0 +

M
∑

i=1

∅izi
′ (9)

Where z′ ∈ {0, 1}M ,M is the number of simplified input feature,

and ∅i ∈ R. ∅0 is the constant of the interpretation model, ∅i

is the predicted mean value of all training samples, and is the

attribution value of each feature.

Statistical analysis

In this paper, two independent-sample t-tests were used

for the statistical analysis. A p-value of less than 0.05 was

considered significant. All statistical analyses were performed

using Scipy 1.7.2.

Results

General information

A total of 571 hospitalized patients infected with P.

aeruginosa were included in this study. The flow chart of this

study is shown in Figure 1. In terms of the source of infection,

pulmonary infections accounted for the highest percentage of

455 cases (80%), followed by bloodstream infections with 57

cases (10%) and skin and soft tissue infection with 54 cases (9%).

A detailed description of the clinical characteristics of the whole

cohort is provided in Table 1.

Model optimization and performance

To optimize the XGBoost model, the dataset was divided

into five sets. One of the five sets was selected as test set,

the rest four sets were selected as training set. We explored

different hyperparameters through a grid search, such as the

maximum depth, the number of estimators, and learning rate.

We considered the maximum depth with 2, 4, 8, 16, and 32,

the number of estimators with 5, 10, 15, 20, 25, and 30, and

the learning rate with 0.01, 0.05, 0.1, 0.2, 0.3, and 0.5. The best

models with different hyperparameters were selected according

to the mean performance based on cross validation.

The ROC curve and PR curve of three machine learning

models are shown in Figure 2. The AUC of 5-fold cross

validations were between 0.90 and 0.96 and PR of 5-fold cross

validations was between 0.91 and 0.97. The ACC, AUROC, and

AUPRC of mean performance of 5-fold cross validation were

displayed in Table 2. The results shown that XGBoost had better

prediction ability than other methods.

Model interpretation

Although the XGBoost model can achieve good predictions

performance, the lacking of interpretation limits the application

in clinical practice. To facilitate interpretation of the prediction

model, an artificial intelligence SHAP values for global model

interpretation were introduced (20). Compared with traditional
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FIGURE 1

Flow chart of the study.

feature importance methods (such as decision tree weights

importance), SHAP values have better consistency and can show

the positive or negative relationship of each predictive variable

with respect to the target.

Importance of clinical variables

According to the importance and impacts of variables on

model prediction, a bee swarm plot was formed for each feature.

As shown in Figure 3, a series bee swarm plots were listed in their

order of importance.

We found that older (red) patients had a higher risk

of mortality than younger (blue) patients (large on the

horizontal). Similarly, patients who used more types of high-

alert medications and more types of intravenous drugs had

higher risk of mortality than those who used fewer types. The

lower the maximum decrease in respiratory rate (significantly

lower than normal), the higher the risk of mortality. In addition,

patients who underwent drainage (red) had a lower risk of

mortality than patients who did not undergo drainage (blue).

It is important to emphasize that all effects only describe

the behavior of the model and are not causality in the

real world.

Detailed dependencies of variables

To further elucidate the detailed relationship between

mortality risk and clinical variables, SHAP interaction values

were used to reveal the dependencies relationships based on

the key feature of importance the bee swarm plots. Here,

each point corresponds to a sample of infected patients,

and each scatter plot shows the effect of features on

SHAP interaction values. The results were shown in SHAP

dependence plots (Figure 4). By analyzing the dependencies

factors, it was found that the risk of mortality was significantly

higher in patients with higher maximum increases in urea

and creatinine when the number of intravenous drugs

was higher.

Evaluation on di�erent pathogens
infection

In addition to P. aeruginosa, Klebsiella pneumoniae (K.

pneumoniae) is major hospital-acquired pathogen, causing

pneumonia, urinary tract infection, intra-abdominal infection,

and bacteremia in immunocompromised patients (28).

Here, we build a clinical dataset of K. pneumoniae

infections as an external validation for testing and discussing the

generalization performance of our model. The hyperparameters

of model were obtained from the best performance in

Section 3.2. Five sub-models trained on the 5-fold cross

validation were used in the external validation set. The average

performance of each sub-model on these external test sets

is shown in Table 3. We can find that the performance

of model on K. pneumoniae still had some degree of

predictive ability, but it is a little worse than prediction for

infection patients with P. aeruginosa. It suggested that our
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TABLE 1 Characteristics of patients at baseline and clinical outcomes.

Categories Variables Total (n= 571)

Basic information Age (years) [median (IQR)] 64 (47–81)

Male [No. (%)] 428 (74.86%)

Hosp (days) [median (IQR)] 23 (13–40)

Drug Allergy [No. (%)] 69 (12%)

Smoking [No. (%)] 105 (18%)

Alcohol User [No. (%)] 55 (10%)

Drug related Number of Drug Varieties [median (IQR)] 52 (39-66)

Number of Intravenous Drugs Varieties [median (IQR)] 7 (4-10)

Clinical signs and symptoms Headache [No. (%)] 91 (16%)

Cough [No. (%)] 365 (64%)

Expectoration [No. (%)] 322 (56%)

Sore Throat [No. (%)] 15 (3%)

Hemoptysis [No. (%)] 7 (1%)

Dyspnea [No. (%)] 149 (26%)

Vomiting [No. (%)] 187 (33%)

Diarrhea [No. (%)] 76 (13%)

Lymphadenopathy [No. (%)] 14 (2%)

Drainage [No. (%)] 222 (39%)

Tracheotomy [No. (%)] 104 (18%)

Endotracheal Intubation [No. (%)] 150 (26%)

Central Venous Catheter [No. (%)] 43 (8%)

Indwelling Catheter [No. (%)] 302 (53%)

PICC Catheter [No. (%)] 141 (25%)

Temperature (◦C) [median (IQR)] 36.9 (36.5–37.6)

Respiratory Rate (min−1) [median (IQR)] 21.0 (19.0–25.0)

Heart Rate (min−1) [median (IQR)] 89.0 (78.0–105.0)

DBP (mmHg) [median (IQR)] 68.0 (60.0–76.0)

SBP (mmHg) [median (IQR)] 116.0 (102.0–129.0)

Bacterial culture Blood [No. (%)] 57 (10%)

Urine [No. (%)] 16 (3%)

Phlegm [No. (%)] 455 (80%)

Secretions [No. (%)] 54 (9%)

Cerebrospinal Fluid [No. (%)] 7 (1%)

Feces [No. (%)] 0 (0%)

Number of Concurrent Infection [No. (%)] 399 (70%)

Laboratory Indicators WBC(× 10
9
/L) [median (IQR)] 10.08 (6.9–14.39)

NEUT# (× 10
9
/L) [median (IQR)] 7.96 (5.12–11.82)

NEUT% [median (IQR)] 0.83 (0.74–0.89)

RBC (× 1012/L) [median (IQR)] 3.19 (2.77–3.66)

PLA (× 10
9
/L) [median (IQR)] 166.0 (91.0–258.0)

HGB (g/L) [median (IQR)] 95.0 (84.0–110.0)

ALT (IU/L) [median (IQR)] 29.0 (17.0–57.0)

AST (IU/L) [median (IQR)] 31.0 (20.0–55.0)

DBIL (µmol/L) [median (IQR)] 8.4 (4.6–16.0)

CREA (µmol/L) [median (IQR)] 78.0 (59.0–115.0)

Urea (mmol/L) [median (IQR)] 8.87 (5.7–15.0)

ALB (g/L) [median (IQR)] 31.6 (28.5–34.8)

(Continued)
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TABLE 1 Continued

Categories Variables Total (n= 571)

SAA (mg/L) [median (IQR)] 202.0 (72.1–421.0)

ESR (mm/h) [median (IQR)] 56.0 (26.25–84.5)

CRP (mg/L) [median (IQR)] 60.5 (25.25–116.15)

IL-6 (pg/mL) [median (IQR)] 56.96 (25.03–139.2)

PCT (ng/mL) [median (IQR)] 0.95 (0.31–3.42)

NEUT# represents the neutrophil count.

FIGURE 2

Receiver operator characteristics (ROC) curve and precision recall (PR) curve of five machine learning models.

TABLE 2 Methods comparison based on AUROC and AUPRC.

Method ACC AUROC AUPRC

XGBoost 0.88± 0.02 0.94± 0.01 0.94± 0.03

LightGBM 0.86± 0.05 0.92± 0.02 0.93± 0.05

CatBoost 0.86± 0.02 0.93± 0.03 0.93± 0.03

Random Forest 0.86± 0.03 0.93± 0.03 0.89± 0.04

Support Vector Machine 0.84± 0.03 0.90± 0.03 0.91± 0.02

prediction model had some capacity for prediction on different

pathogens infection.

Stratification analysis

Stratified analysis of infection sites

Figures 5A,B shows the number and proportion of P.

aeruginosa cultured at different infection sites. The percentage of

P. aeruginosa cultured in phlegm, others, and blood was higher.

Here, others refer to infection sites except blood, urine, phlegm,

secretions, cerebrospinal fluid, and feces. Compared with the

control group, more P. aeruginosa was cultured in phlegm of

patients in the death group. And the proportion of P. aeruginosa

cultured in sputum and urine, sputum and blood at the same

time was significantly higher than the death group. At the same

time, we analyzed the association between the infection site

and the number of concurrent infections. Figure 5C suggests

that there was a statistically significant difference between the

number of co-infections in the death group and the control

group (p< 0.01), and the death group was often accompanied by

0–3 co-infections, when infection site was blood. The association

between the infection site and the number of high warning

drugs used was also analyzed. Figure 5D shows that when P.

aeruginosa was detected in sputum culture or blood culture,

the number of A-Alert drug use was more in the death group

than in the control group, and the difference was significant (all

p < 0.01).
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FIGURE 3

Summarize bee swarm plots for top 15 clinical variables of SHAP values. In a bee swarm plot, each point corresponding to a sample of single P.

aeruginosa infected patient of data set. The position of each point on the horizontal axis indicated the e�ect of that feature on the model

prediction, and the color of a point reflected the eigenvalue of the case. For binary variables (such as drainage or not), red dots and bule dots

correspond to 1 and 0 respectively. For numerical variables (such as age), the color of dots represented high and low values, respectively.

Overlapping points that fall in the same horizontal position will be scattered vertically to show the density.

FIGURE 4

(A,B) SHAP dependence plots for interaction of crucial clinical variables. The x axis represents the eigenvalue of the axis title, and the y axis

indicates the corresponding SHAP value, representing the contribution of this feature to prediction results of model. The color of every dot

reflects the eigenvalues of right axis title. The larger the value of the x-coordinate of the sample point, the variable of x-axis is more large. The

larger the value of the y coordinate of the sample point, the greater risk of mortality of the sample point, and the redder the color of the sample

point, the higher the value of the right index.

Stratified analysis of age

These results in Figures 6A,B suggested an increasing trend

in the number of deaths with increasing age. When the patients

were older than 75, the maximum decrease in respiratory rate

in the death group was significantly different from that in the

control group (Figure 6C, p < 0.01). Figure 6D shows that when

patients were older than 18, the maximum increase in platelets

was significantly lower in the death group than that in the

control group (all p < 0.01). Figure 6E shows that the older

the age, the greater the number of A-alert drugs was used. And

when the patients were younger than 75, the number of A-alert

drugs used in the death group was significantly different from

the control group (all p < 0.05 or p < 0.01). While the patients

were older than 75, the number of B-alert drugs used in the death
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TABLE 3 Performance of model on external validation sets.

Infection ACC AUROC AUPRC

P. aeruginosa 0.88± 0.02 0.94± 0.01 0.94± 0.03

K. pneumoniae 0.85± 0.04 0.91± 0.03 0.92± 0.05

group was significantly different from that of the control group

(Figure 6F, p < 0.01).

Stratified analysis of drug varieties

Figure 7 shows the association between the number of drug

varieties and the maximum increase in creatinine, the maximum

increase in urea, the maximum decrease in respiratory rate,

and the maximum decrease in diastolic blood pressure. The

results in Figures 7C,D show that the higher the number of

intravenous drug varieties, the more significant the maximum

increase was in creatinine and urea (p < 0.01 or p <

0.05). Figure 7E reveals the association between the number

of intravenous drug varieties and the maximum decrease

of respiratory rate. When the number of intravenous drug

varieties was < 7, the maximum decrease of respiratory rate

in the death group was significantly smaller than that of the

control group (p < 0.01). Figure 7F suggests that when the

number of intravenous drug varieties was < 10, the maximum

decrease in diastolic blood pressure in the death group was

statistically significantly different from that of the control group

(all p < 0.01), and close attention should be paid to patients

whose maximum decreases in diastolic blood pressure were

small and the number of intravenous drug varieties was more

than 10.

Discussion

P. aeruginosa infection constitutes a major clinical challenge

(29). Therefore, it is of great significance to predict the risk

factors of mortality for P. aeruginosa in severe patients. In

this study, we assessed the risk factors of 571 patients with

severe infection with P. aeruginosa, such as 338 deaths and 233

cures. A prediction model for mortality risk of P. aeruginosa

in severe patients was established. Compared to some other

machine learning algorithms, the XGBoost model achieved the

best performance in ACC, AUROC, and AUPRC. Furthermore,

in order to indicate the relationship between the clinical

variables and the risk of mortality, the SHAP values were

introduced to evaluated the importance of clinical variables

in predictor.

The most obvious finding to emerge from the analysis above

was that advanced age was one of the mortality risk factors for

P. aeruginosa infection in severe patients, which was consistent

with the results of a previous study (10). Then, the number

of high-alert medication types and intravenous drug types

were risk factors for mortality from P. aeruginosa infection,

which had not been described in previous severe infection

studies. The combination of many drugs is likely to cause some

side effects on patients, and studies have shown that paying

attention to high-risk drugs will greatly reduce hospitalization,

disability, death, and other conditions (30). When the number

of high-alert medication types and intravenous drugs types

is too much, it reminds clinicians to pay more attention to

the medication situation of patients. Timely adjustments of

medication regimen are expected to improve the prognosis

and reduce mortality of patients. Drainage is also a mortality

risk factor for P. aeruginosa infection in severe patients. The

results of this study indicate that patients who have been

drained have a lower risk of mortality than patients who do

not have been drained. This result is in accord with the fact

that drainage is conducive to the timely discharge of purulent

secretions, effusions, blood, and exudates from the wound.

Drainage might possess dual roles in clinical treatment, one

in assessing the condition patients and the other in facilitating

wound healing. For abscess without effective drainage, the

minimum effective concentrations for antimicrobial activity

may not be reached.

In addition, we further stratified to explore the relationships

between the site of infection, age stratification, and the

number of medication species with important variables, laying

the foundation for future variable interaction studies. The

conclusion also verified that the risk of death from blood

culture with P. aeruginosa was higher than other sites, and it

was consistent with our common knowledge. Simultaneously,

with patients’ ages increasing and the higher the number

of intravenous drug varieties used, the number of deaths

showed an increasing trend. It suggested that risk factors

such as advanced age and the number of drug varieties

used need to be actively paid attention to for patients

infected with P. aeruginosa, especially when the age was

greater than 75 and the number of drug species was >

10. These conclusions were preliminary and needed to be

further validated.

This retrospective study still had several limitations.

Firstly, this was a single-center study and, therefore, has

all the limitations inherent in such a study design. The

distribution and characteristics of the clinical data used in this

study could vary among different regions. In future works,

integrating more data and having more precise estimates

are possible. The clinical data from the multi-centric will

help researchers to build more generalization and prospective

prediction models. Future works should be used in elucidate

the diversity of AMP resistance mechanisms in more realistic

clinical settings. In future works, our model should be used

in the multi-centric study or other clinical datasets such

as MIMIC III (31) or a critical care database involving

patients with infection (32). Secondly, our model was built
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FIGURE 5

Stratified analysis of infection sites. (A) Histogram showing the number of P. aeruginosa cultured at di�erent infection sites. (B) Histogram

showing the proportion of P. aeruginosa cultured at di�erent infection sites. (C) Violin plots showing the number of concurrent infections

between di�erent infection sites. (D) Violin plots showing the number of A-Alert drugs between di�erent infection sites.

based on the clinical data from patients with P. aeruginosa

infection. Although it showed some predictive capacity in testing

on clinical data from patients with Klebsiella pneumoniae

infection, it still has significant shortcomings compared to

the performance in P. aeruginosa infection. And it needs

to be improved in future studies to expand the application

of the model. Thirdly, the clinical data used in this study

only included part of structured clinical information. Other

informative data, such as nursing notes and radiology reports

were not used. More detailed clinical data such as drug

dosage or time, mechanical ventilation time and effectiveness

evaluation will provide a new perspective for deep analysis

and interpretation. Finally, since only the correlation rather

than the causal relationship between the predictors and risk
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FIGURE 6

Stratified analysis of age. (A) Histogram showing the number of age stratification. (B) Histogram showing the proportion of age stratification. (C)

Violin plots showing the maximum decrease in respiratory rate between di�erent age stratification. (D) Violin plots showing the maximum

increase in platelets between di�erent age stratification. (E) Violin plots showing the number of A-alert drugs between di�erent age stratification.

(F) Violin plots showing the number of B-alert drugs between di�erent age stratification.
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FIGURE 7

Stratified analysis of intravenous drugs varieties. (A) Histogram showing the number of intravenous drugs varieties stratification. (B) Histogram

showing the proportion of intravenous drugs varieties stratification. (C) Violin plots showing the maximum increase in creatinine between

di�erent intravenous drugs varieties stratification. (D) Violin plots showing the number of maximum increase in urea between di�erent

intravenous drugs varieties stratification. (E) Violin plots showing the maximum decrease in respiratory rate between di�erent medication

varieties stratification. (F) Violin plots showing the maximum decrease in diastolic diastolic blood pressure between di�erent medication varieties

stratification.
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outcome was considered in this study, our conclusions still

required further prospective trials to evaluate. More in-depth

investigation of the causal relationship between the clinical

feature and risk is essential for supporting clinical control

and decision.
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