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Pattern identification (PI) is a diagnostic method used in Traditional East Asian

medicine (TEAM) to select appropriate and personalized acupuncture points

and herbal medicines for individual patients. Developing a reproducible PI

model using clinical information is important as it would reflect the actual

clinical setting and improve the e�ectiveness of TEAM treatment. In this paper,

we suggest a novel deep learning-based PI model with feature extraction

using a deep autoencoder and k-means clustering through a cross-sectional

study of sleep disturbance patient data. The data were obtained from an

anonymous electronic survey in the Republic of Korea Army (ROKA) members

from August 16, 2021, to September 20, 2021. The survey instrument consisted

of six sections: demographics, medical history, military duty, sleep-related

assessments (Pittsburgh sleep quality index (PSQI), Berlin questionnaire,

and sleeping environment), diet/nutrition-related assessments [dietary habit

survey questionnaire and nutrition quotient (NQ)], and gastrointestinal-related

assessments [gastrointestinal symptom rating scale (GSRS) and Bristol stool

scale]. Principal component analysis (PCA) and a deep autoencoder were

used to extract features, which were then clustered using the k-means

clustering method. The Calinski-Harabasz index, silhouette coe�cient, and

within-cluster sum of squares were used for internal cluster validation and the

final PSQI, Berlin questionnaire, GSRS, and NQ scores were used for external

cluster validation. One-way analysis of variance followed by the Tukey test and

chi-squared test were used for between-cluster comparisons. Among 4,869

survey responders, 2,579 patients with sleep disturbances were obtained after

filtering using a PSQI score of >5. When comparing clustering performance

using raw data and extracted features by PCA and the deep autoencoder, the

best feature extraction method for clustering was the deep autoencoder (16

nodes for the first and third hidden layers, and two nodes for the second
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hidden layer). Our model could cluster three di�erent PI types because the

optimal number of clusters was determined to be three via the elbowmethod.

After external cluster validation, three PI types were di�erentiated by changes

in sleep quality, dietary habits, and concomitant gastrointestinal symptoms.

This model may be applied to the development of artificial intelligence-based

clinical decision support systems through electronic medical records and

clinical trial protocols for evaluating the e�ectiveness of TEAM treatment.

KEYWORDS
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Introduction

Pattern identification (PI), a diagnostic method in

Traditional East Asian medicine (TEAM), is a meaningful step

for TEAM doctors when making treatment decisions such

as selection of an appropriate acupuncture point and herbal

medicine. It uses clinical information based on traditional

diagnostic criteria, which include observation, listening,

questioning, and pulse detection (1). Particularly, the use of PI

in selecting an optimal combination with a few acupuncture

points has been an important research subject to reveal those

used in actual clinical practice (2, 3). Most clinical trials on

the effectiveness of acupuncture treatment used a fixed-point

approach, which is different from the clinical practice that

uses a more individualized approach (4). Although some

study designs such as conventional randomized clinical

trials (RCTs) with a personalized acupuncture protocol or

a pragmatic clinical trial have been suggested to overcome

the gap between acupuncture research and clinical practice,

the results of an individualized approach vs. a fixed-point

approach are still controversial (5–9). Nonetheless, several

recent experimental studies have supported the significance

of acupuncture point selection (10–13). Therefore some

studies with data-mining methods were conducted using RCT

data, medical records, virtual diagnosis data, and classical

medical texts to systematically prove the relationship between

symptoms, diseases, PI, and acupuncture point selections

(3, 14–16).

Artificial intelligence (AI) techniques have also emerged

in the research of TEAM. Previous studies used artificial

neural network models to differentiate patterns for acupuncture

point selections (17, 18), and clustering algorithms to discover

the combination rules of herbal medicine (19). Also, the

recent deep learning models such as bidirectional encoder

representations from transformers generated some new herbal

medicine prescriptions from a few medical records (20, 21).

However, to the best of our knowledge, there are few AI studies

that assist PI from large amounts of clinical information, though

most clinical guidelines recommend a PI process by a TEAM

doctor prior to providing acupuncture or herbal medicine

treatment (22, 23).

With the appropriate PI, a wide variety of conditions can

be addressed by TEAM treatment. Sleep disturbances were

one of the major target conditions for TEAM treatment in

several previous studies (19, 24–28). The Korean Medicine

Clinical Practice Guidelines for insomnia disorder, which was

officially developed by research funded by the government,

suggest that TEAM doctors may consider six types of PI before

TEAM treatment (29). Furthermore, a recent systematic review

for insomnia showed that acupuncture treatment using PI

significantly improved the total effectiveness rate compared to

conventional medication (30). However, the effect of TEAM

treatment using PI is not reproducible since PI types and

processes may be inconsistent among TEAM doctors in

clinical settings. Therefore, the development of a model that

can consistently produce the same PI for certain patient

details required.

In this paper, we suggested a novel data-driven PI

method for TEAM treatment using emerging bioinformatics

techniques in combination with feature extraction using a deep

autoencoder, one of the self-supervised deep learning models,

and clustering using k-means clustering, an unsupervised

machine learning model. To develop a new model using

various types of clinical information as input data and provide

reproducible PI as an output for TEAM treatment decisions

in patients with sleep disturbances, we used cross-sectional

study data which examined the association between sleep and

diet/digestion in Republic of Korea Army (ROKA) active duty

service members.

Materials and methods

Study population

A multi-site cross-sectional study was conducted using an

anonymous electronic survey. The study was posted in five units

of the ROKA through printed recruitment posters and electronic
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bulletin boards from August 16, 2021, to September 20, 2021.

The participants were recruited during the same period. The

original aim of this study was to examine the association between

sleep and diet/digestion in ROKA active duty service members.

The results will be published in another paper.

Among active duty service members in five units of the

ROKA who met the inclusion criteria, the participants who

provided informed consent were enrolled in the study. The

inclusion criteria were (1) age 19 years or over; (2) active

duty service members (private, private first class, corporal, and

sergeants) who completed the basic military training course, and

(3) those who voluntarily agreed to participate in the study.

There were no exclusion criteria.

Sample size calculation for
cross-sectional study

Assuming that the total number of all active duty service

members in the ROKA is approximately 300,000, the sample size

was calculated using the following equation. The margin of error

was 3% and the confidence level was 95%, and the sample size

result was 1,064 (the target number of completed surveys).

Sample size =

z2×p(1−p)
e2

1+ (
z2×p(1−p)

e2N
)

(N = number in the populations;

e = margin of error; z = Z − score)

Previous studies using surveys showed that various factors

such as the survey method, survey content, and participant

compensation were associated with the response rate of the

study subjects. In particular, the online survey method is known

to have about a 10% lower response rate compared to other

media, but the actual response rate was different in each study

(31). In this study, referring to the response rate (3.4%) reported

in a previous study that conducted a health-related survey in

adult males, the response rate was set to 3%, and the target

number of questionnaires was determined to be 35,467 (31).

Survey instrument of cross-sectional
study

The survey instruments were refined to reveal the military

environment by healthcare professionals (seven TEAM doctors

including five military doctors). This involved the refinement

of the questionnaire by changing the phrasing and modifying

questions to clarify the premise of each item within the

questionnaire. The final questionnaire was designed and

distributed through the web-based application Survey Monkey.

The survey consisted of six sections: (1) demographics

(birth, recruitment date, height, weight, military identification

number, rank, military unit, education, smoking status,

alcohol consumption habits, caffeine consumption, exercise, and

physical grade); (2) medical history (present/past history of sleep

disorders, present/past history of gastrointestinal disorders,

present/past history of general diseases including hypertension,

diabetes, hyperlipidemia, and cardiac disease, stress status,

and drug history); (3) military duty (branch, position, night

shift with or without tomorrow duty-off, and its effect on

sleep and/or fatigue); (4) sleep-related assessments (Pittsburgh

sleep quality index (PSQI), Berlin questionnaire, and sleeping

environment); (5) diet/nutrition-related assessments [dietary

habit survey questionnaire and nutrition (32) quotient (NQ)];

and (6) gastrointestinal-related assessments [gastrointestinal

symptom rating scale (GSRS) and Bristol stool scale (BSS)].

The PSQI, a self-assessment questionnaire to evaluate sleep

quality within the past month, contains 19 items consisting of

seven component scores, including sleep quality, sleep latency,

sleep duration, daytime dysfunction, sleep efficiency, sleep

disturbances, and sleeping medication use (33). A final score of

>5 out of 21 indicates significant sleep disturbance.

The Berlin questionnaire has 11 questions grouped into

three categories (34). The first category comprises five questions

concerning snoring, witnessed apnea, and the frequency of

such events. The second category comprises four questions

addressing daytime sleepiness, with a sub-question on drowsy

driving. The third category comprises two questions concerning

a history of high blood pressure (> 140/90 mmHg) and a body

mass index (BMI) of >30 kg/m2. Categories 1 and 2 were

considered positive if there were two positive responses in each

category, while category 3 was considered positive with a self-

report of high blood pressure and/or a BMI of > 30 kg/m2.

The study patients were scored as being at high risk of having

obstructive sleep apnea (OSA) if the scores were positive for two

or more of the three categories.

The dietary habit survey questionnaire consists of 25 items

to evaluate the dietary habits of Korean adults (35). It includes

the number of meals per day, mealtime regularity, the amount

consumed, time taken for a meal, the frequency of missed

meals, the frequency of having breakfast, the reason for missing

breakfast, the frequency of dinners with family, the frequency of

overeating, meal at which overeating occurred (breakfast, lunch,

dinner or not), the frequency of eating out, the frequency of

eating snacks, the time of eating snacks, the types of snacks,

the time of late-night meals, whether certain foods were not

eaten, the reasons for not eating certain foods, and the frequency

of food intake (grains, meat, fish, eggs and legumes, fruits,

vegetables, milk and dairy products, fatty foods, instant foods,

and fast foods).

The NQ comprehensively evaluates the nutritional status

and meal quality of individuals or groups of Korean adults

through a checklist consisting of 21 items (36). It provides
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the global NQ score (NQ global), and scores for four factors:

nutritional balance (NQ balance), food diversity (NQ diversity),

moderation in the amount of food eaten (NQ moderation), and

dietary behavior (NQ behavior). It is considered “good” if the

score is 58 or higher, and “monitoring is necessary” if it is

below 58.

The GSRS evaluates gastrointestinal symptoms via an

inquiry table consisting of 15 items for the evaluation of general

gastrointestinal symptoms (37). Each GSRS item is rated on

a 7-point Likert scale ranging from “no discomfort” to “very

severe discomfort.”

The BSS examines the stool status in the past 24 h (32). The

score is based on a one to seven scale where one corresponds to

a hard stool and seven corresponds to watery diarrhea.

Data preprocessing

Data preprocessing to improve data quality and impute

missing values was performed in three steps. In the first step,

from all survey responders, the participants who provided

multiple responses were eliminated to ensure survey reliability.

Second, the participants who did not meet the inclusion criteria

were removed. The participants who completed the survey

remained. Last, a few samples with outliers, which might be

caused by miswriting in open question items such as height,

weight, smoking amount, and smoking duration were also

eliminated after exploratory data analysis (EDA).

Each PSQI, Berlin questionnaire, NQ, and GSRS score was

calculated and the remaining questionnaire responses were used

for input data. In clinical practice, TEAM doctors’ questions

to patients are closer to each item of the questionnaire, and

conversely, calculating each questionnaire’s scores one by one is

closer to the purpose of the clinical study. The calculated scores

were used for external cluster evaluation.

Since this study was conducted to examine patients with

sleep disturbances, the participants with PSQI scores of over five

were collected as a total data set. Then, the data set was randomly

split into a training set (80%) and test set (20%) for evaluating the

machine learning models.

Feature extraction

The autoencoder is a simple unsupervised learning model.

It learns hidden features through encoding and decoding

unlabeled data. Consider a d-dimensional data set X =

{x1, x2, . . . , xd}, where d is the number of variables presented

at the input layer. The autoencoder attempts to reconstruct X

at the output layer, which is the same as the identity function

f (x) = x (38). Then, the hidden layer is forced to learn a

compressed representation of the data X from the input layer,

which is reconstructed at the output layer as X̂. The optimized

model can be evaluated by the root mean squared error (RMSE)

between X and X̂.

In this study, we built a symmetric deep autoencoder model

composed of d-dimensional input and output layers, and three

hidden layers: J nodes for the second hidden layer (bottleneck),

and 8 × J nodes for the first and third hidden layers. Also,

a grid search using 1 ≤ J ≤ 10 was conducted to

find the optimal number of nodes in the hidden layers. When

compiling the model, RMSE and Adam were applied as the loss

function and training optimizer, respectively. For the training

process with 10-fold cross-validation, the batch size and the

number of epochs were set to 64 and 100, respectively. Finally,

representative nodes in the second hidden layer were used to

extract features for the clustering process. We also conducted

principal component analysis (PCA), one of the conventional

feature extraction methods, before k-means clustering.

K-means clustering

K-means clustering is an unsupervised machine learning

algorithm (39). This algorithm is less computationally intensive

for processing our large study data than hierarchical clustering.

Also, the number of clusters (k) can be predefined by this

algorithm to reveal our prior medical knowledge since the

number of PI types is generally ≤10 in TEAM. Consider a

d-dimensional data set X = {x1, x2, . . . , xn}, where d is

the number of variables, this algorithm aims to partition the

n observations into k (≤ n) sets S = {S1, S2, . . . , Sk} to

minimize the within-cluster sum of squares (WCSS). Formally,

the objective is to find:

argmin
s

k∑

i=1

∑

x∈Si

‖x− µi‖
2

(µi = mean of points in Si)

In this study, k-means clustering was performed on

the data set using raw data and PCA-extracted and deep

autoencoder-extracted features. The performance of the clusters

was compared between each input type. We set the candidate

number of clusters from k = 1 to k = 10, and 300 iterations for

each k using the expectation-maximization style algorithm.

Cluster evaluation

Cluster evaluation was conducted in two parts, internal

cluster evaluation and external cluster evaluation. The Calinski-

Harabasz index and silhouette coefficient were initially assessed

for internal cluster evaluation (40). The optimal number of

clusters was determined by the elbow method after plotting the

WCSS with k values. All the above processes were conducted

using the training set only. After determining the whole PI

model including the feature extraction and clustering methods,
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FIGURE 1

Flow chart illustrating the construction of the data set for the study.
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the test set was inferred by the trained PI model. The

PSQI, Berlin questionnaire, GSRS, and NQ scores, which were

not used in feature extraction, were compared by external

cluster evaluation.

Statistical analysis

Summaries of the continuous variables are presented as

means and standard deviations, and the categorical variables

are presented as frequencies and percentages. For continuous

variables, one-way analysis of variance (ANOVA) was used for

comparing means among three clusters, followed by the Tukey-

Kramer test for post-hoc multiple comparisons between two

clusters with unequal sample sizes. For categorical variables, the

chi-squared test was also performed. Statistical significance was

set at p < 0.05.

Tools

Python 3.8.0 (Python Software Foundation, Wilmington,

DE, USA) was used for data preprocessing, model development

and validation, visualization, and statistical analysis. The

Python libraries Pandas and Numpy were adopted for data

preprocessing; Scikit-learn was used for data preprocessing,

PCA, and k-means clustering; Keras with Tensorflow backend

for building and evaluating the deep autoencoder model;

Statsmodels for statistical analysis of comparisons between

clusters, and Seaborn with Matplotlib for data visualization.

Google Colab, a cloud service for machine learning research, was

used in this study. It provides various libraries and frameworks

for deep learning and a robust graphics processing unit.

Results

Data set construction

Of a total of 4,869 survey responders, 35 multiple

responders, and 139 responders who did not meet the

inclusion criteria were excluded. A total of 4,408 responders

completed the survey. After removing a few outliers for

height (below 110 cm or above 200 cm), weight (below 40 kg

or above 160 kg), smoking amount (above five packs per

day), and smoking duration (above 20 years) through EDA,

4,389 responses remained. The data set of 2,579 patients

with sleep disturbances was obtained after filtering by PSQI

scores of >5, which were randomly split into a training

FIGURE 2

Variance of the components in the training set.
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set (n = 2,063; 80%) and a test set (n = 516; 20%). The

flow chart of the data set construction process is shown in

Figure 1.

Feature extraction using PCA

For comparison with the main feature extraction method,

the deep autoencoder, PCA was first conducted using the

training set. It showed that variance dropped off when

the number of components was four, and the first four

components explained the majority of the variance in the

training set (Figure 2). Therefore, feature extraction using PCA

was conducted with four components.

Feature extraction using deep
autoencoder

Ten-fold cross-validation was conducted while training the

deep autoencoder. The mean RMSE of the training set and

validation set after 100 epochs (Table 1), and the change in

RMSE of the validation set during training (Figure 3) are

presented in each deep autoencoder architecture (the number of

nodes in the second hidden layer).

Internal cluster validation

The Calinski-Harabasz index and silhouette coefficient after

k-means clustering (2 ≤ k ≤ 10) are presented in Figure 4;

Supplementary Table 1. The performance of clustering after

feature extraction with the deep autoencoder was much better

than that with raw data or PCA. Comparing the results of

clustering after all feature extraction methods including PCA

and the deep autoencoder in this study, the deep autoencoder (J

= 2)—which presented the highest values of both the Calinski-

Harabasz index and the silhouette coefficient in the small

numbers of clusters (k ≤ 4)–might be the best feature extraction

method for k-means clustering. The final deep autoencoder

model architecture is shown in Figure 5. Also, considering

both the Calinski-Harabasz index and the silhouette coefficient,

k = 2 or 3 might be candidate clustering numbers. Finally,

the optimal number (k = 3) of clusters was determined by

the elbow method, a heuristic approach for determining the

appropriate point for the local optimum (41, 42), as shown in

Figure 6.

External cluster validation

The patient characteristics in each cluster of the training set

and test set are presented in Tables 2, 3 respectively. Among the

TABLE 1 The mean RMSE for each model.

The number of nodes in the

second hidden layer (J)

RMSE

Training set Validation set

1 0.820 ± 0.004 0.821 ± 0.013

2 0.796 ± 0.002 0.802 ± 0.014

3 0.776 ± 0.002 0.787 ± 0.014

4 0.760 ± 0.002 0.774 ± 0.012

5 0.745 ± 0.003 0.763 ± 0.013

6 0.732 ± 0.003 0.752 ± 0.013

7 0.719 ± 0.003 0.744 ± 0.012

8 0.708 ± 0.004 0.737 ± 0.012

9 0.696 ± 0.004 0.732 ± 0.011

10 0.686 ± 0.004 0.725 ± 0.012

Values are presented as the mean± standard deviation.

RMSE, root mean squared error.

clusters, the PSQI (p < 0.001), GSRS (p < 0.001), NQ balance (p

= 0.008), NQmoderation (p< 0.001), NQ behavior (p< 0.001),

and Berlin scores (p < 0.001) were significantly different in the

training set, and PSQI (p < 0.001), GSRS (p < 0.001), NQ global

(p < 0.001), NQ moderation (p < 0.001), and Berlin scores (p <

0.001) were significantly different in the test set (Table 4).

Through post-hoc analysis (Table 4), the mean PSQI score of

cluster A was significantly lower than that of cluster B (−3.24,

95% confidence interval (CI) −3.84, −2.64], p < 0.001) and

cluster C (−1.62, 95% CI [−1.91, −1.34], p < 0.001) in the

training set. The mean PSQI score of cluster B was significantly

higher than that of cluster C (1.62, 95% CI [0.99, 2.24], p <

0.001) in the training set. The mean PSQI score of cluster A was

significantly lower than that of cluster B (−2.78, 95% CI [−4.02,

−1.53], p< 0.001) and cluster C (−1.68, 95% CI [−2.24,−1.12],

p < 0.001) in the test set. The mean PSQI score of cluster B was

also higher but not significantly different than that of cluster C

(1.09, 95% CI [−0.20, 2.39], p= 0.117) in the test set.

The mean GSRS score of cluster A was significantly lower

than that of cluster B (−15.76, 95% CI [−16.55, −14.98], p

< 0.001) and cluster C (−4.21, 95% CI [−4.59, −3.84], p <

0.001) in the training set. The mean GSRS score of cluster B was

significantly higher than that of cluster C (11.55, 95% CI [10.73,

12.37], p < 0.001) in the training set. The mean GSRS score of

cluster A was significantly lower than that of cluster B (−17.69,

95% CI [−19.28,−16.10], p < 0.001) and cluster C (−4.44, 95%

CI [−5.16, −3.72], p < 0.001) in the test set. The mean GSRS

score of cluster B was significantly higher than that of cluster C

(13.25, 95% CI [11.60, 14.91], p < 0.001) in the test set.

The mean NQ global score of cluster A was lower but not

statistically different from that of cluster B (−1.27, 95% CI

[−3.59, 1.05], p = 0.404) and cluster C (−0.60, 95% CI [−1.71,

0.50], p = 0.406) in the training set. The mean NQ global score
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FIGURE 3

The change in RMSE during the model training process in each deep autoencoder architecture. Curves are averaged over 10 folds, with the

shaded area representing the 95% confidence interval across folds. RMSE, root mean squared error.

of cluster B was higher but not significantly different than that

of cluster C (0.67, 95% CI [−1.76, 3.09], p = 0.774) in the

training set. The mean NQ global score of cluster A was lower

but not statistically different than that of cluster B (−4.41, 95%

CI [−9.31, 0.50], p = 0.089) and significantly lower than that

of cluster C (−3.52, 95% CI [−5.74, −1.30], p < 0.001) in the

test set. The mean NQ global score of cluster B was higher but

not significantly different than that of cluster C (0.88, 95% CI

[−4.23, 6.00], p= 0.900) in the test set.

The mean NQ balance score of cluster A was higher but

not statistically different than that of cluster B (2.18, 95% CI

[−1.51, 5.88], p = 0.349) and significantly higher than that of

cluster C (2.20, 95% CI [0.44, 3.96], p = 0.010) in the training

set. The mean NQ balance score of cluster B was higher but not

significantly different than that of cluster C (0.02, 95%CI [−3.85,

3.88], p = 0.900) in the training set. The mean NQ balance

score of cluster A was lower but not statistically different than

that of cluster B (−3.66, 95% CI [−11.39, 4.08], p = 0.508) and

cluster C (−1.42, 95% CI [−4.92, 2.08], p = 0.599) in the test

set. The mean NQ balance score of cluster B was higher but not

significantly different than that of cluster C (2.24, 95%CI [−5.82,

10.30], p= 0.770) in the test set.

The mean NQ diversity score of cluster A was higher but not

statistically different than that of cluster B (0.73, 95% CI [−0.33,

1.79], p = 0.240) and lower but not statistically different than

that of cluster C (−0.16, 95% CI [−0.66, 3.48], p = 0.728) in

the training set. The mean NQ diversity score of cluster B was

lower but not significantly different than that of cluster C (−0.89,

95% CI [−1.99, 0.22], p = 0.147) in the training set. The mean

NQ diversity score of cluster A was higher but not statistically

different than that of cluster B (0.72, 95% CI [−1.43, 2.86], p

= 0.694) and lower but not statistically different than that of

cluster C (−0.54, 95% CI [−1.51, 0.43], p = 0.386) in the test

set. The mean NQ diversity score of cluster B was lower but

not significantly different than that of cluster C (−1.26, 95% CI

[−3.49, 0.97], p= 0.382) in the test set.

The mean NQ moderation score of cluster A was

significantly lower than that of cluster B (−4.25, 95% CI [−5.35,

−3.15], p< 0.001) and cluster C (−2.48, 95% CI [−3.00,−1.95],

p < 0.001) in the training set. The mean NQ moderation score

of cluster B was significantly higher than that of cluster C (1.77,

95% CI [0.62, 2.92], p < 0.001) in the training set. The mean

NQ moderation score of cluster A was significantly lower than

that of cluster B (−4.89, 95% CI [−7.13, −2.64], p < 0.001) and

cluster C (−3.28, 95% CI [−4.29, −2.26], p < 0.001) in the test

set. The mean NQmoderation score of cluster B was also higher

but not significantly different than that of cluster C (1.61, 95%

CI [−0.73, 3.95], p= 0.238) in the test set.

The mean NQ behavior score of cluster A was significantly

higher than that of cluster B (1.72, 95% CI [0.85, 2.58], p <

0.001) and cluster C (1.49, 95% CI [1.08, 1.90], p < 0.001) in

the training set. The mean NQ behavior score of cluster B was

lower but not significantly different than that of cluster C (−0.23,

95% CI [−1.13, 0.68], p = 0.806) in the training set. The mean
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FIGURE 4

Calinski-Harabasz index (A) and silhouette coe�cient (B) depending on each feature extraction method. J is the number of nodes in the second

hidden layer. DAE, deep autoencoder; PCA, principal component analysis.

NQ behavior score of cluster A was higher but not significantly

different than that of cluster B (0.70, 95% CI [−1.15, 2.55], p =

0.639) and cluster C (0.65, 95% CI [−0.18, 1.49], p = 0.159) in

the training set. The mean NQ behavior score of cluster B was

lower but not significantly different than that of cluster C (−0.04,

95% CI [−1.97, 1.89], p= 0.900) in the test set.

The Berlin score showed that cluster A had a significantly

lower risk of OSA than that of cluster B (odds ratio (OR)= 0.24,

95% CI [0.16, 0.38], X2 = 42.61, p < 0.001) and cluster C (OR=

0.30, 95% CI [0.23, 0.38], X2 = 103.92, p< 0.001) in the training

set. The Berlin score showed that cluster B had a higher risk than

that of cluster C (OR= 1.22, 95% CI [0.78, 1.91], X2 = 0.57, p=
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FIGURE 5

The final selected deep autoencoder model architecture for feature extraction.

0.452) in the training set. The Berlin score showed that cluster A

had a significantly lower risk of OSA than that of cluster B (OR

= 0.27, 95% CI [0.11, 0.68], X2 = 7.00, p = 0.008) and cluster C

(OR = 0.37, 95% CI [0.23, 0.59], X2 = 16.95, p < 0.001) in the

test set. The Berlin score showed that cluster B had a higher risk

than that of cluster C (OR= 1.36, 95%CI [0.53, 3.48],X2 = 0.16,

p= 0.693) in the test set.

Three–dimensional clustering visualizations were presented

with the major components that were statistically different by

multi-comparison and post-hoc analysis in both the training and

test sets, and statistically different by multi-comparison only in

both the training and test sets; NQ moderation between cluster

B and C was not statistically different by post-hoc analysis in the

test set (Figure 7).

Discussion

This study demonstrated that the deep autoencoder method

was a better feature extraction method for the clustering

of sleep disturbances than PCA. This result is comparable

to that of other studies in that the autoencoder effectively

reduces the high-dimensionality of the various types of data

since it can learn non-linear feature representations (43–45).

Specifically, based on internal cluster validation and the elbow

method, the best architecture of the deep autoencoder for

extracting features for clustering our study samples with sleep

disturbances was 16 nodes for the first and third hidden

layers, and two nodes for the second hidden layer, while the

optimal number of clusters was considered to be three. After
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FIGURE 6

The change in WCSS with the number of clusters after feature extraction by the deep autoencoder (J = 2). WCSS, within-cluster sum of squares.

external cluster validation, three PI types were differentiated

by changes in sleep quality, dietary habits, and concomitant

gastrointestinal symptoms.

PI has been used in TEAM for the personalized care of

various conditions including sleep disorders. As the accurate

diagnosis and precise evaluation of individual patients are the

key for personalized care in conventional medicine, PI, as well

as diagnosis according to the International Classification of

Diseases, Tenth Revision (ICD-10), is an important principle

in personalized TEAM treatments such as acupuncture point

selections and combinations of herbal medicines. Although

several previous studies have tried to standardize PI and

suggested new methods for PI in different types of data, it

is considered a “black box” in which the external validity or

usability in clinical TEAM practice cannot be ensured (14, 15,

46–48). Therefore, in another aspect of PI standardization, we

proposed a new paradigm, the clinical data-driven PI model,

applying advanced machine learning techniques. The PI model

is flexible in the data characteristics that can be used and is

reproducible for certain data to enhance the effectiveness of

TEAM treatment in clinical practice (Figure 8).

There were three main aspects to this study, data type,

feature extraction, and clustering. First, whole raw data from a

cross-sectional study were used. The cross-sectional study data

were generally composed of fundamental clinical information

such as age, sex, and medical history, and symptoms, and/or

a disease-related questionnaire. Particularly, our used cross-

sectional study included several questionnaires with different

domains including sleep, diet, nutrition, and gastrointestinal

status. Since TEAM doctors usually ask not only about sleep

conditions but also about other conditions to select the

appropriate acupuncture points and/or herbal medicines for

treating insomnia patients (28, 30), this type of data was suitable

for reflecting clinical settings. Furthermore, this data type

may assure external cluster validation. Clustering validation,

which measures the goodness of clustering results, can be

categorized into two methods: internal cluster validation and

external cluster validation (49). The internal cluster validation

is conducted without the need to obtain any additional

information, such as evaluating the average between- and

within-cluster sums of squares (Calinski-Harabasz index), or

the difference of the between- and within-cluster distances
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TABLE 2 Patient characteristics in each training set cluster.

Characteristics Cluster A

(n= 1,396)

Cluster B

(n= 98)

Cluster C

(n= 569)

Age, years (mean± SD) 20.8± 1.2 21.2± 1.6 21.1± 1.4

Height, cm (mean± SD) 174.6± 5.6 175.2± 6.0 174.8± 5.6

Weight, kg (mean± SD) 72.2± 9.2 75.1± 11.1 73.8± 11.1

BMI, kg/m2 (mean± SD) 23.6± 2.6 24.4± 3.2 24.1± 3.2

Smoking status

Never, n (%) 739 (52.9) 53 (54.1) 244 (42.9)

Past, n (%) 84 (6.0) 4 (4.1) 44 (7.7)

Active, n (%) 573 (41.0) 41 (41.8) 281 (49.4)

Pack-years (mean± SD) 0.97± 1.95 1.65± 3.07 1.57± 2.48

Alcohol, n (%)

<1 time/month 322 (23.1) 28 (28.6) 113 (19.9)

<1 time/week 396 (28.4) 26 (26.5) 130 (22.8)

1–2 times/week 493 (35.3) 25 (25.5) 199 (35.0)

3–7 times/week 185 (13.3) 19 (19.4) 127 (22.3)

Caffeine, n (%)

Coffee

<1 cup/week 511 (36.6) 34 (34.7) 193 (33.9)

1–2 cups/week 299 (21.4) 16 (16.3) 114 (20.0)

3–6 cups/week 252 (18.1) 15 (15.3) 90 (15.8)

1 cup/day 184 (13.2) 13 (13.3) 77 (13.5)

2 cups/day 102 (7.3) 11 (11.2) 59 (10.4)

≥3 cups/day 48 (3.4) 9 (9.2) 36 (6.3)

Energy drink

<1 cup/week 907 (65.0) 46 (46.9) 335 (58.9)

1–2 cups/week 266 (19.1) 17 (17.3) 88 (15.5)

3–6 cups/week 113 (8.1) 19 (19.4) 69 (12.1)

1 cup/day 72 (5.2) 8 (8.2) 43 (7.6)

2 cups/day 22 (1.6) 3 (3.1) 23 (4.0)

≥3 cups/day 16 (1.1) 5 (5.1) 11 (1.9)

Bacchus
R©

<1 cup/week 1,245 (90.9) 77 (78.6) 484 (85.1)

1–2 cups/week 121 (8.8) 13 (13.3) 60 (10.5)

3–6 cups/week 16 (1.2) 3 (3.1) 12 (2.1)

1 cup//day 10 (0.7) 2 (2.0) 7 (1.2)

2 cups/day 3 (0.2) 2 (2.0) 3 (0.5)

≥ 3 cups/day 1 (0.1) 1 (1.0) 3 (0.5)

Rank, n (%)

Private 80 (5.7) 2 (2.0) 15 (1.2)

Private first class 606 (43.4) 38 (38.8) 211 (8.4)

Corporal 560 (40.1) 45 (45.9) 251 (11.6)

Sergeant 150 (12.9) 13 (13.3) 92 (3.7)

Education, n (%)

Elementary school 1 (0.1) 0 (0.0) 0 (0.0)

Middle school 1 (0.1) 0 (0.0) 3 (0.5)

High school 1,326 (95.0) 89 (90.8) 518 (91.0)

University or college 68 (4.9) 9 (9.2) 48 (8.4)
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TABLE 2 Continued

Characteristics Cluster A

(n= 1,396)

Cluster B

(n= 98)

Cluster C

(n= 569)

Exercise, n (%)

<1 day/week 217 (15.5) 27 (27.6) 121 (21.3)

1–2 days/week 331 (23.7) 20 (20.4) 140 (24.6)

3–4 days/week 399 (28.6) 27 (27.6) 162 (28.5)

≥5 days/week 449 (32.2) 24 (24.5) 146 (25.7)

Physical grade in the military, n (%)

First 413(29.6) 17 (17.3) 142 (25.0)

Second 596 (42.7) 43 (43.9) 224 (39.4)

Third 379 (27.1) 38 (38.8) 198 (34.8)

Fourth 4 (0.3) 0 (0.0) 3 (0.5)

Fifth or above 4 (0.3) 0 (0.0) 2 (0.4)

Sleep disorders, n (%)

Present history

None 1,306 (93.6) 65 (66.3) 470 (82.6)

Insomnia 37 (2.7) 16 (16.3) 50 (8.8)

Narcolepsy 30 (2.1) 17 (17.3) 27 (4.7)

Obstructive sleep apnea 5 (0.4) 6 (6.1) 12 (2.1)

Restless leg syndrome 7 (0.5) 2 (2.0) 14 (2.5)

Periodic limb movement 7 (0.5) 4 (4.1) 8 (1.4)

Past history

None 1,353 (96.9) 80 (81.6) 526 (92.4)

Insomnia 32 (2.3) 11 (11.2) 31 (5.4)

Narcolepsy 3 (0.2) 8 (8.2) 3 (0.5)

Obstructive sleep apnea 4 (0.3) 2 (2.0) 7 (1.2)

Restless leg syndrome 2 (0.1) 1 (1.0) 4 (0.7)

Periodic limb movement 1 (0.1) 1 (1.0) 1 (0.2)

Gastrointestinal disorders, n (%)

Present history

None 1,337 (95.8) 67 (68.4) 487 (85.6)

Gastroesophageal reflux 23 (1.6) 19 (19.4) 41 (7.2)

Gastric ulcer 0 (0.0) 0 (0.0) 3 (0.5)

Duodenal ulcer 0 (0.0) 0 (0.0) 0 (0.0)

Irritable bowel syndrome 37 (2.7) 17 (17.3) 40 (7.0)

Past history

None 1,263 (90.5) 63 (64.3) 440 (77.3)

Gastroesophageal reflux 74 (5.3) 26 (26.5) 74 (13.0)

Gastric ulcer 1 (0.1) 1 (1.0) 7 (1.2)

Duodenal ulcer 1 (0.1) 1 (1.0) 1 (0.2)

Irritable bowel syndrome 62 (4.4) 17 (17.3) 60 (10.5)

General diseases, n (%)

None 1,322 (94.7) 85 (86.7) 527 (92.6)

Hypertension 65 (4.7) 12 (12.2) 34 (6.0)

Diabetes 5 (0.4) 2 (2.0) 2 (0.4)

Hyperlipidemia 4 (0.3) 1 (1.0) 5 (0.9)

Cardiac diseases 9 (0.6) 2 (2.0) 4 (0.7)

Medications, n (%)

(Continued)
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TABLE 2 Continued

Characteristics Cluster A

(n= 1,396)

Cluster B

(n= 98)

Cluster C

(n= 569)

Sleeping pills 12 (0.9) 9 (9.2) 15 (2.6)

Sleep health supplements 5 (0.4) 5 (5.1) 12 (2.1)

Oral steroids 6 (0.4) 4 (4.1) 6 (1.1)

Melatonin 2 (0.1) 0 (0.0) 2 (0.4)

Anticonvulsants 0 (0.0) 0 (0.0) 2 (0.4)

Antidepressants 19 (1.4) 9 (9.2) 14 (2.5)

Beta blockers 1 (0.1) 0 (0.0) 0 (0.0)

Bronchodilators 4 (0.3) 2 (2.0) 5 (0.9)

Stimulants 3 (0.2) 4 (4.1) 6 (1.1)

Antihistamines 31 (2.2) 3 (3.1) 12 (2.1)

Weight loss pills 4 (0.3) 3 (3.1) 6 (1.1)

Weight loss supplements 26 (1.9) 8 (8.2) 21 (3.7)

Digestive pills 31 (2.2) 13 (13.3) 33 (5.8)

Digestive supplements 54 (3.9) 12 (12.2) 52 (9.1)

Stress* (mean± SD) 3.46± 1.57 3.41± 1.16 3.40± 1.44

Night shift with tomorrow duty-off

Frequency, n (%)

None 781 (55.9) 47 (48.0) 289 (50.8)

1 time/month 58 (4.2) 7 (7.1) 29 (5.1)

2 times/month 115 (8.2) 9 (9.2) 36 (6.3)

3 times/month 134 (9.6) 10 (10.2) 61 (10.7)

4 times/month 94 (6.7) 9 (9.2) 44 (7.7)

≥5 times/month 214 (15.3) 16 (16.3) 110 (19.3)

Sleep disturbance or fatigue* (mean± SD) 4.07± 0.87 4.43± 0.85 4.25± 0.89

Night shift without tomorrow duty-off

Frequency, n (%)

None 710 (50.9) 44 (44.9) 210 (36.9)

1 time/month 45 (3.2) 5 (5.1) 18 (3.2)

2 times/month 58 (4.2) 9 (9.2) 21 (3.7)

3 times/month 52 (3.7) 5 (5.1) 22 (3.9)

4 times/month 62 (4.4) 3 (3.1) 29 (5.1)

≥5 times/month 469 (33.6) 32 (32.7) 169 (29.7)

Sleep disturbance or fatigue* (mean± SD) 4.28± 0.85 4.50± 0.77 4.42± 0.85

Values are presented as the mean± standard deviation (range) or number (%).
*Five-point Likert scale.

BMI, body mass index.

(silhouette coefficient). On the other hand, the external cluster

validation is conducted with other external information, such

as a true class of cluster or previous knowledge about data.

In this study, instead of obtaining the true labels of each

cluster, which require large amounts of cost and time for TEAM

doctors, we used the final scores of PSQI, NQ, GSRS, and

the Berlin score, which were not used in the input features

of clustering, but which could be calculated using specific

non-linear functions respectively to externally compare the

clustering results.

Second, feature extraction was conducted by a deep

autoencoder model. Two methods have been used before

the clustering process, feature selection (selecting a small

subset of actual features from the data) and feature extraction

(constructing a small set of artificial features from the data).

Most clinical studies conducted feature selection through

statistical methods such as the t-test or chi-squared test between

two groups or it was determined by clinical experience or

medical knowledge. However, in a large series of data, so-called

high-dimensional data, it was difficult to find the best feature
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TABLE 3 Patient characteristics in each test set cluster.

Characteristics Cluster A

(n= 352)

Cluster B

(n= 22)

Cluster C

(n= 142)

Age, years (mean± SD) 21.0± 1.4 21.9± 2.2 21.1± 1.5

Height, cm (mean± SD) 174.2± 5.5 175.3± 4.7 174.9± 5.1

Weight, kg (mean± SD) 72.5± 9.7 74.9± 7.8 74.6± 10.9

BMI, kg/m2 (mean± SD) 23.8± 2.6 24.4± 2.5 24.4± 3.1

Smoking status

Never, n (%) 186 (52.8) 6 (27.3) 60 (42.3)

Past, n (%) 19 (5.4) 3 (13.6) 11 (7.7)

Active, n (%) 147 (41.8) 13 (59.1) 71 (50.)

Pack-years (mean± SD) 0.94± 1.80 2.07± 2.99 1.78± 2.68

Alcohol, n (%)

<1 time/month 77 (21.9) 6 (27.3) 25 (17.6)

<1 time/week 107 (30.4) 4 (18.2) 35 (24.6)

1–2 times/week 122 (34.7) 8 (36.4) 41 (28.9)

3–7 times/week 46 (13.1) 4 (18.2) 41 (28.9)

Caffeine, n (%)

Coffee

<1 cup/week 131 (37.2) 8 (36.4) 35 (24.6)

1–2 cups/week 89 (25.3) 2 (9.1) 31 (21.8)

3–6 cups/week 56 (15.9) 4 (18.2) 24 (16.9)

1 cup/day 44 (12.5) 6 (27.3) 24 (16.9)

2 cups/day 20 (5.7) 1 (4.5) 21 (14.8)

≥3 cups/day 12 (3.4) 1 (4.5) 7 (4.9)

Energy drink

<1 cup/week 234 (66.5) 15 (68.2) 75 (52.8)

1–2 cups/week 65 (18.5) 3 (13.6) 37 (26.1)

3–6 cups/week 29 (8.2) 3 (13.6) 10 (7.0)

1 cup/day 13 (3.7) 1 (4.5) 11 (7.7)

2 cups/day 7 (2.0) 0 (0.0) 4 (2.8)

≥3 cups/day 4 (1.1) 0 (0.0) 5 (3.5)

Bacchus
R©

<1 cup/week 321 (91.2) 18 (81.8) 118 (83.1)

1–2 cups/week 27 (7.7) 3 (13.6) 12 (8.5)

3–6 cups/week 3 (0.9) 1 (4.5) 7 (4.9)

1 cup/day 0 (0.0) 0 (0.0) 3 (2.1)

2 cups/day 1 (0.3) 0 (0.0) 1 (0.7)

≥3 cups/day 0 (0.0) 0 (0.0) 1 (0.7)

Rank, n (%)

Private 25 (7.1) 2 (9.1) 7 (4.9)

Private first class 142 (40.3) 3 (13.6) 48 (33.8)

Corporal 136 (38.6) 10 (45.5) 66 (46.5)

Sergeant 49 (13.9) 7 (31.8) 21 (14.8)

Education, n (%)

Elementary school 0 (0.0) 0 (0.0) 0 (0.0)

Middle school 0 (0.0) 1 (4.5) 1 (0.7)

High school 329 (93.5) 19 (86.4) 134 (94.4)

University or college 23 (6.5) 2 (9.1) 7 (4.9)

(Continued)
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TABLE 3 Continued

Characteristics Cluster A

(n= 352)

Cluster B

(n= 22)

Cluster C

(n= 142)

Exercise, n (%)

<1 day/week 50 (14.2) 6 (27.3) 23 (16.2)

1–2 days/week 91 (25.9) 5 (22.7) 35 (24.6)

3–4 days/week 88 (25.0) 5 (22.7) 36 (25.4)

≥5 days/week 123 (34.9) 6 (27.3) 48 (33.8)

Physical grade in the military, n (%)

First 103 (29.3) 8 (36.4) 31 (21.8)

Second 141 (40.1) 6 (27.3) 63 (44.4)

Third 107 (30.4) 7 (31.8) 47 (33.1)

Fourth 1 (0.3) 1 (4.5) 1 (0.7)

Fifth or above 0 (0.0) 0 (0.0) 0 (0.0)

Sleep disorders, n (%)

Present history

None 334 (90.9) 18 (81.8) 114 (80.3)

Insomnia 10 (2.8) 3 (13.6) 14 (9.9)

Narcolepsy 5 (1.4) 2 (9.1) 7 (4.9)

Obstructive sleep apnea 1 (0.3) 0 (0.0) 2 (1.4)

Restless leg syndrome 1 (0.3) 1 (4.5) 6 (4.2)

Periodic limb movement 2 (0.6) 1 (4.5) 5 (3.5)

Past history

None 344 (97.7) 20 (90.9) 131 (92.3)

Insomnia 5 (1.4) 2 (9.1) 6 (4.2)

Narcolepsy 2 (0.6) 0 (0.0) 3 (2.1)

Obstructive sleep apnea 0 (0.0) 0 (0.0) 1 (0.7)

Restless leg syndrome 1 (0.3) 0 (0.0) 1 (0.7)

Periodic limb movement 0 (0.3) 0 (0.0) 1 (0.7)

Gastrointestinal disorders, n (%)

Present history

None 329 (93.5) 20 (90.9) 130 (91.5)

Gastroesophageal reflux 13 (3.7) 2 (9.1) 3 (2.1)

Gastric ulcer 0 (0.0) 0 (0.0) 0 (0.0)

Duodenal ulcer 0 (0.0) 0 (0.0) 0 (0.0)

Irritable bowel syndrome 12 (3.4) 0 (0.0) 10 (7.0)

Past history

None 300 (85.2) 15 (68.2) 119 (83.8)

Gastroesophageal reflux 22 (6.3) 5 (22.7) 11 (7.7)

Gastric ulcer 5 (1.4) 1 (4.5) 0 (0.0)

Duodenal ulcer 1 (0.3) 0 (0.0) 0 (0.0)

Irritable bowel syndrome 27 (7.7) 3 (13.6) 14 (9.9)

General diseases, n (%)

None 331 (94.0) 12 (54.5) 129 (90.8)

Hypertension 18 (5.1) 5 (22.7) 10 (7.0)

Diabetes 1 (0.3) 0 (0.0) 2 (1.4)

Hyperlipidemia 3 (0.9) 0 (0.0) 2 (1.4)

Cardiac diseases 1 (0.3) 2 (9.1) 2 (1.4)

Medications, n (%)

(Continued)
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TABLE 3 Continued

Characteristics Cluster A

(n= 352)

Cluster B

(n= 22)

Cluster C

(n= 142)

Sleeping pills 0 (0.0) 1 (4.5) 3 (2.1)

Sleep health supplements 1 (0.3) 0 (0.0) 1 (0.7)

Oral steroids 2 (0.6) 1 (4.5) 1 (0.7)

Melatonin 0 (0.0) 1 (4.5) 0 (0.0)

Anticonvulsants 0 (0.0) 0 (0.0) 0 (0.0)

Antidepressants 2 (0.6) 2 (9.1) 3 (2.1)

Beta blockers 0 (0.0) 0 (0.0) 0 (0.0)

Bronchodilators 1 (0.3) 0 (0.0) 1 (0.7)

Stimulants 1 (0.3) 0 (0.0) 0 (0.0)

Antihistamines 10 (2.8) 1 (4.5) 4 (2.8)

Weight loss pills 0 (0.0) 0 (0.0) 0 (0.0)

Weight loss supplements 3 (0.9) 1 (4.5) 10 (7.0)

Digestive pills 9 (2.6) 2 (9.1) 6 (4.2)

Digestive supplements 12 (3.4) 2 (9.1) 9 (6.3)

Stress* (mean± SD) 3.57± 1.57 3.41± 1.30 3.42± 1.38

Night shift with tomorrow duty-off

Frequency, n (%)

None 192 (54.5) 10 (45.5) 72 (50.7)

1 time/month 19 (5.4) 3 (13.6) 7 (4.9)

2 times/month 36 (10.2) 2 (9.1) 7 (4.9)

3 times/month 32 (9.1) 3 (13.6) 13 (9.2)

4 times/month 21 (6.0) 2 (9.1) 7 (4.9)

≥5 times/month 52 (14.8) 2 (9.1) 36 (25.4)

Sleep disturbance or fatigue* (mean± SD) 3.96± 0.89 4.13± 0.74 4.43± 0.80

Night shift without tomorrow duty-off

Frequency, n (%)

None 175 (49.7) 10 (45.5) 84 (59.2)

1 time/month 19 (5.4) 2 (9.1) 6 (4.2)

2 times/month 13 (3.7) 2 (9.1) 5 (3.5)

3 times/month 15 (4.3) 1 (4.5) 4 (2.8)

4 times/month 16 (4.5) 0 (0.0) 13 (9.2)

≥5 times/month 114 (32.4) 7 (31.8) 30 (21.1)

Sleep disturbance or fatigue* (mean± SD) 4.24± 0.88 4.67± 0.62 4.42± 0.76

Values are presented as the mean± standard deviation (range) or number (%).
*Five-point Likert scale.

BMI, body mass index.

selection strategy for efficiently reducing the dimension of the

data (50). Therefore, some algorithms such as PCA and the

autoencoder have been suggested for feature extraction (51),

very similar to a TEAM doctor’s PI process made by observing

patients with not just a few pieces of clinical information

but comprehensively, using a lot of clinical information.

This characteristic of TEAM doctors’ decision-making might

also be related to the reason why deep autoencoder model

extraction was much more efficient than that of other methods

in our study. As decision-making in TEAM is complex

and the interactions between clinical information and PI

are non-linear, autoencoder architecture learning non-linear

mapping allows for the transformation of high-dimensional data

into more clustering-friendly representations, whereas PCA is

fundamentally limited to linear embedding, and it is possible to

lose essential features (38). Another strength of using the deep

autoencoder for feature extraction is that it can extract features

from non-quantizable questionnaire responses (e.g., dietary

habit survey questionnaire), which does not use a formula

to generate a single score, and efficiently prevents the curse
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TABLE 4 Results of external cluster validation in the training set and test set.

Cluster A Cluster B Cluster C Cluster A vs. B Cluster A vs. C Cluster B vs. C

mean± SD or

ratio

mean± SD or

ratio

mean± SD or

ratio

F/X2 p-value Difference or OR

[95% CI]

p-value Difference or OR

[95% CI]

p-value Difference or OR

[95% CI]

p-value

Training set n= 1,396 n= 98 n= 569

PSQI 8.33± 2.20 11.57± 3.31 9.96± 2.81 149.27 <0.001 −3.24

[−3.84,−2.64]

<0.001 −1.62

[−1.91,−1.34]

<0.001 1.62

[0.99, 2.24]

<0.001

GSRS 2.18± 2.15 17.94± 7.38 6.39± 4.09 1,305.82 <0.001 −15.76

[−16.55,−14.98]

<0.001 −4.21

[−4.59,−3.84]

<0.001 11.55

[10.73, 12.37]

<0.001

NQ global 41.51± 8.78 42.78± 11.24 42.11± 10.65 1.45 0.234 −1.27

[−3.59, 1.05]

0.404 −0.60

[−1.71, 0.50]

0.406 0.67

[−1.76, 3.09]

0.774

NQ balance 35.44± 14.33 33.25± 15.37 33.24± 16.73 4.79 0.008 2.18

[−1.51, 5.88]

0.349 2.20

[0.44, 3.96]

0.010 0.02

[−3.85, 3.88]

0.900

NQ diversity 12.67± 4.21 11.95± 4.54 12.83± 4.55 1.76 0.172 0.73

[−0.33, 1.79]

0.240 −0.16

[−0.66, 3.48]

0.728 −0.89

[−1.99, 0.22]

0.147

NQ moderation 8.65± 4.18 12.9± 5.85 11.12± 4.91 90.63 <0.001 −4.25

[−5.35,−3.15]

<0.001 −2.48

[−3.00,−1.95]

<0.001 1.77

[0.62, 2.92]

<0.001

NQ behavior 11.38± 3.46 9.67± 3.74 9.90± 3.66 42.07 <0.001 1.72

[0.85, 2.58]

<0.001 1.49

[1.08, 1.90]

<0.001 −0.23

[−1.13, 0.68]

0.806

Berlin score (low/high) 1,230/166 63/35 391/178 122.00 <0.001 0.24

[0.16, 0.38]

<0.001 0.30

[0.23, 0.38]

<0.001 1.22

[0.78, 1.91]

0.452

Test set n=352 n=22 n=142

PSQI 8.36± 2.12 11.14± 3.45 10.04± 2.84 34.32 <0.001 −2.78

[−4.02,−1.53]

<0.001 −1.68

[−2.24,−1.12]

<0.001 1.09

[−0.20, 2.39]

0.117

GSRS 2.08± 2.05 19.77± 8.15 6.52± 3.73 406.57 <0.001 −17.69

[−19.28,−16.10]

<0.001 −4.44

[−5.16,−3.72]

<0.001 13.25

[11.60, 14.91]

<0.001

NQ global 40.30± 8.28 44.71± 17.48 43.83± 10.59 8.31 <0.001 −4.41

[−9.31, 0.50]

0.089 −3.52

[−5.74,−1.30]

<0.001 0.88

[−4.23, 6.00]

0.900

NQ balance 33.89± 13.10 37.55± 24.27 35.30± 17.34 0.95 0.387 −3.66

[−11.39, 4.08]

0.508 −1.42

[−4.92, 2.08]

0.599 2.24

[−5.82, 10.30]

0.770

NQ diversity 12.33± 4.05 11.62± 5.69 12.88± 4.12 1.34 0.263 0.72

[−1.43, 2.86]

0.694 −0.54

[−1.51, 0.43]

0.386 −1.26

[−3.49, 0.97]

0.382

NQ moderation 8.43± 4.02 12.32± 5.49 11.71± 4.88 37.53 <0.001 −4.89

[−7.13,−2.64]

<0.001 −3.28

[−4.29,−2.26]

<0.001 1.61

[−0.73, 3.95]

0.238

(Continued)
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of dimensionality without suffering from high computational

complexity in large-scale data (38).

Third, k-means clustering, an unsupervised machine

learning algorithm serving as a powerful computational method

to analyze high-dimensional data in the form of sequences or

expressions, was used in this study (38). It does not need data

labeling, which is costly and time-consuming in biomedical

research using supervised learning. In addition, even if data

labeling is performed by several TEAM doctors, the labeling

results are highly likely to be inconsistent because the types of PI

are inconsistent among TEAM doctors and each TEAM society

and different depending upon the disease. Therefore, a data-

driven approach to PI for TEAM research, which is flexible for

changes in data and reproducible for certain data, might bemore

reasonable than a standardization approach using a few TEAM

research experts.

Each cluster of sleep disturbance patients could be

differentiated, as shown in Figure 7. The patients in cluster A

had relatively mild sleep disturbances, severe immoderation in

the amount of food consumed, and good gastrointestinal status

compared to the other clusters. The patients in cluster B had

relatively severe sleep disturbances, mild immoderation in the

amount of food consumed, and severe gastrointestinal problems

compared to the other clusters. The patients in cluster C had

relatively moderate sleep disturbances, moderate immoderation

in the amount of food consumed, and mild-to-moderate

gastrointestinal problems compared to the other clusters.

Although the statistical analysis of the Berlin score indicated that

cluster A had a much lower risk than the other two clusters, it

could not be observed in the 3-dimensional visualizations.

The clustering results can be interpreted in two aspects,

the changes in sleep quality and the concomitant symptoms.

As sleep quality deteriorates, the appetite associated with food

moderation decreases, and the condition of the gastrointestinal

system worsens. Based on a recent systematic review and meta-

analysis of acupuncture using PI and TEAM clinical guidelines

for insomnia patients, cluster Amay bematched to the “stomach

disharmony pattern” type using ST36, CV12, and ST25; cluster

C may be matched to the “pattern of lingering phlegm” type

using ST40 and CV12; and cluster B may be matched to the

“pattern of dual deficiency of heart and spleen” type using CV12,

ST36, and ST40 (29, 30). This clusteringmodel can automatically

and consistently provide the same PI for a certain patient,

which ensures reliability for both TEAM doctors and patients.

However, it should be noted that this clustering model is flexible

to the number of patient data, changes in patient features, or

changes in the target disease, so-called “transfer learning” and

“fine-tuning” in machine learning techniques (52), which might

provide a different output for the number or types of patterns

identified. Therefore, the novel PI model in the present study

can be advanced, modified, or expanded for other studies.

The applications of this study include AI-based clinical

decision support systems (CDSSs) through electronic medical
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FIGURE 7

3D visualization of clusters with major components (PSQI, Berlin, GSRS scores, and NQ moderation) in the training set (A,B) and test set (C,D).

GSRS, gastrointestinal symptom rating scale; NQ, nutrition quotient; PSQI, Pittsburgh sleep quality index.

records (EMRs) and clinical trial protocols for evaluating

the effectiveness of TEAM treatment. If a TEAM doctor in

clinical practice obtains clinical data from insomnia patients

and documents them in the EMR, the PI model in AI-

based CDSSs suggests the candidate PI with the associated

probability and recommends a fundamental combination of

acupuncture points and herbal medicines. In addition, most

pragmatic trial protocols with individualized TEAM treatment

depend completely upon (one person or more) the TEAM

doctor’s PI for each patient. The reliability and validity of

PI itself, which might affect the effect size of individualized

TEAM treatments, are limited. However, the PI model in this

study could suggest a consistent PI technique for patients with

similar features, although the model’s effect on the results

of individualized TEAM treatment should be validated in a

prospective clinical trial.

Some limitations of this study follow. First, this cross-

sectional study data might not be fully sufficient to mimic the
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FIGURE 8

Flow diagram of the proposed PI model for acupuncture point and herbal medicine selection.

interaction between doctors and patients in clinical practices.

Some data obtained from free medical notes or an AI

speaker in clinical settings might be helpful to overcome this

limitation. Second, since this data was obtained from a single

sample of sleep disturbances in the ROKA, another study

sample is required for external validation of our proposed

model. Third, this study sequentially used a feature extraction

model and a clustering model separately. Emerging machine

learning research such as a deep clustering network, which

optimizes the feature extraction model and the clustering model

simultaneously, might perform better than the techniques used

in our study. This will be considered in future studies. Fourth,

the PI data used for each patient made by TEAM doctors were

limited in this study. However, the correlation between our

model’s output and actual PI by TEAM doctors in this study

should be observed to externally and more robustly validate

our clustering results. Fifth, although all features of data were

included to reflect a clinical setting wherein TEAM doctors

might consider all information of patients as much as possible

to find the appropriate PI, the feature selection algorithms,

such as univariate statistical test, Lasso regularization, or Boruta

algorithm can be applied in future studies to improve upon our

results. Finally, the specific combinations of acupuncture points

and herbal medicines after PI process were not represented

in this study. Although this study revealed the basic concepts

of the novel data-driven PI model, more research such as a

systematic review of published clinical articles, including case

series, or a survey of TEAM doctors is required to recommend

the appropriate acupuncture points and/or herbal medicines

after the determination of PI.
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