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Background: While all e�orts have been undertaken to propagate the

vaccination and develop remedies against SARS-CoV-2, no satisfactory

management of this infection is available yet. Moreover, poor availability

of any preventive and treatment measures of SARS-CoV-2 in economically

disadvantageous communities aggravates the course of the pandemic. Here,

we studied a new immunomodulatory phytotherapy (IP), an extract of

blackberry, chamomile, garlic, cloves, and elderberry as a potential low-cost

solution for these problems given the reported e�cacy of herbal medicine

during the previous SARS virus outbreak.

Methods: The key feature of SARS-CoV-2 infection, excessive inflammation,

was studied in in vitro and in vivo assays under the application of the IP.

First, changes in tumor-necrosis factor (TNF) and lnteurleukin-1 beta (IL-

1β) concentrations were measured in a culture of human macrophages

following the lipopolysaccharide (LPS) challenge and treatment with IP or

prednisolone. Second, chronically IP-pre-treated CD-1 mice received an

agonist of Toll-like receptors (TLR)-7/8 resiquimod and were examined

for lung and spleen expression of pro-inflammatory cytokines and blood

formula. Finally, chronically IP-pre-treated mice challenged with LPS injection

were studied for “sickness” behavior. Additionally, the IP was analyzed

using high-potency-liquid chromatography (HPLC)-high-resolution-mass-

spectrometry (HRMS).
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Results: LPS-induced in vitro release of TNF and IL-1β was reduced by both

treatments. The IP-treated mice displayed blunted over-expression of SAA-

2, ACE-2, CXCL1, and CXCL10 and decreased changes in blood formula in

response to an injection with resiquimod. The IP-treated mice injected with

LPS showed normalized locomotion, anxiety, and exploration behaviors but

not abnormal forced swimming. Isoquercitrin, choline, leucine, chlorogenic

acid, and other constituents were identified by HPLC-HRMS and likely underlie

the IP immunomodulatory e�ects.

Conclusions: Herbal IP-therapy decreases inflammation and, partly, “sickness

behavior,” suggesting its potency to combat SARS-CoV-2 infection first of all

via its preventive e�ects.
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Introduction

Although the vaccination against SARS-CoV-2 is being

implemented worldwide to curb the epidemic, none of the

available vaccines provide full protection from the infection,

and no specific drug to combat or prevent severe SARS-

CoV-2 infection is anticipated (1, 2). As such, the search for

alternative approaches to improve this situation has become

the focus of much research (3). Excessive inflammation (i.e.,

the so-called “cytokine storm”), once established as a key

pathophysiological feature of SARS-CoV-2 infection (4), became

a target of the drug research and development in this area. The

anti-inflammatory interventions were shown to be beneficial for

both a prevention and treatment of viral infections, including

SARS (4–6). These studies have resulted in the implementation

of the preventive anti-inflammatory remedies and pathogenetic

therapies in SARS-CoV-2 patients, such as hydroxychloroquine,

chloroquine, azithromycin, ivermectin, colchicine, thalidomide

and glucocorticoids methylprednisolone and dexamethasone,

the monoclonal antibody tocilizumab, convalescent plasma

interferons, and intravenous immunoglobulin therapy (7–9).

However, these types of medicine are often unaffordable in low-

income countries (10), which become a natural reservoir of the

virus and a prerequisite of the appearance of newmutations (11).

The “cytokine storm” caused by SARS-CoV-2 can result in

detrimental effects and even death (12–14). SARS-CoV-2 can

activate the pattern recognition receptor (PRR) toll-like receptor

(TLR) 4 that triggers the myeloid differentiation primary

response (MyD) 88, causing a consequent NF-κB translocation

to the nucleus and the upregulation of central and peripheral

pro-inflammatory cytokines: tumor-necrosis factor (TNF),

interleukin (IL)-1β, and IL-6 that increase the permeability

of blood vessels and the migration of immune cells (15, 16).

The SARS-CoV-2-induced inflammatory response also involves

the IRF7-mediated TLR7/8 induction of type-1 interferon via

a MyD88-dependent cascade and the upregulation of NFkB

via the IL-1β receptor-associated kinase 1 (IRAK-1), IRAK-

4, and TNF receptor-associated factor 6 (TRAF6) and of the

type I interferons (IFNs) (15, 17). The activation of PRR toll-

like receptors TLR4 and TLR7/8, via a series of molecular

cascades, results in the upregulation of central and peripheral

cytokines expression (18). It is regulated according to the nature

of the pathogen and the TLR signaling pathways activated.

Typically, TLR-mediated immune response involves an increase

in circulating and central cytokines such as IL-1β, TNF and IL-

6, as well as chemokines such as CXCL1, CCL2 and CXCL10

(15, 18, 19) and the induction of “sickness behavior,” i.e., reduced

activity and exploration, and anxiety-like changes (15, 18–22).

The clinical management of “cytokine storm” is not a trivial

challenge. For instance, the use of corticosteroids in SARS

patients in 2003 increased mortality (23). Other therapies were

not sufficiently effective either (24). At the same time, in the

literature, the beneficial effects of herbal medicine combined

with traditional medicine in SARS patients were demonstrated

(4–6, 25–27), giving hope that therapeutically effective herbal

compositions might combat the severe course of SARS-CoV-

2. In addition, animal studies suggested possible mechanisms

of anti-inflammatory immunomodulatory effects of medicinal

herbs that target inflammatory pathways of TLRs-induced

mechanisms, e.g., polysaccharides from red seaweed suppressed

the expression of TNF, receptor-associated factor-6 in a model of

LPS-induced toxicity (26), the use of vanilla extract suppressed

free radical production in a mouse model of cancer (28, 29),

ginger phenolics decreased lipid peroxidation and oxidative

stress in rats (30). Our recent studies with a mouse ultrasound

model of “emotional stress” have shown the beneficial action of

herbal compositions with anti-inflammatory properties on the

oxidative stress markers malondialdehyde and protein carbonyl
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and the expression of IL-1β and IL-6 (31, 32). Given important

roles of excessive inflammation in the pathophysiology of

severe course of SARS-CoV-2 infection, and beneficial effects of

preventive and therapeutical application of herbal medicine with

viral infections, we sought to study a preventive potential of a

novel herbal composition that could be affordable as for instance

in the communities with insufficient healthcare systems.

Therefore, we investigated the effects of a new

immunomodulatory phytotherapy (IP), an extract of

blackberry, chamomile, garlic, cloves, and elderberry (for

the IP content, see Supplementary Table 1), that was designed

as an anti-inflammatory composition (see Supplementary File)

in previously established in vitro and in vivo models of

inflammation (21, 22, 33). These paradigms were adapted

from the classic experimental models that are based on the

activation of TLRs, which implicate distinct but overlapping

pathways (19). In particular, we recently established a model

of peripheral inflammation that is induced by resiquimod, an

agonist of TLR7/8 (33). In this model, strong up-regulation of

IL-1β, TNF, IL-6, and chemokines in lungs, spleen, liver, and

brain was decreased by the anti-inflammatory drug nafamostat

(33). These recent studies showed that gene over-expression

of SAA-2, ACE-2, CXCL1 and CXCL10 in the liver and

spleen were effectively reduced by applied anti-inflammatory

therapy and thus was investigated in the present work. We

also used lipopolysaccharide (LPS), an agonist of TLR4, in

an in vitro model of macrophage IL-1β and TNF release (19)

and in an in vivo paradigm of “sickness behavior,” measuring

inflammation-induced signs of anxiety, hypolocomotion, and

suppressed exploration in mice (21, 22, 34, 35). High potency

liquid chromatography (HPLC-HRMS) was employed to study

the constituents of the IP.

Methods

Study flow

In the in vitro study, we studied the release of TNF

and IL-1β by LPS-challenged human macrophages that were

pre-treated with IP or prednisolone, about 10 samples

were used per condition. We next pre-treated CD-1 mice

with an IP herbal composition for 2 weeks (36) and

intraperitoneally injected them with resiquimod (200 µg).

Mice (n = 7–8 in each group) were culled 6 h post-

challenge and examined for liver and spleen genes mRNA

concentrations of inflammatory markers whose expression

was most profoundly altered in our previous study: SAA-

2, ACE-2, CXCL1, CXCL10, IL-1β, IL-6, and for blood

formula (33) (Figure 1A). Finally, using the same IP dosing

conditions, pre-treated CD-1 mice were challenged with a

low dose of LPS (0.05 mg/kg) and 6 h post-challenge were

investigated for helplessness, locomotion, anxiety-like, and

exploratory behaviors in the open field, novel cage, and

forced swim models (n = 6–7 in each group, Figure 1B).

Separately, high potency liquid chromatography (HPLC)-

high resolution-mass-spectrometry (HRMS) was employed

to analyze biologically active constituents of the IP. All

experiments were approved by the University of Oxford local

committees (LERP, ACER) in accordance with the UK Animals

(Scientific Procedures) Act 1989 and iCell2 METC Zuyderland

Zuid, the Netherlands and MSMU#11-18-2018/2019 and were

compliant with ARRIVE guidelines (http://www.nc3rs.org.uk/

arrive-guidelines).

Experiments were performed on male 2.5-months-old CD-

1 male mice that were purchased by a provider licensed

by Charles River (http://www.spf-animals.ru/about/providers/

animals). Mice were housed under standard conditions (in

plastic cages 27 cm × 22 cm × 15 cm, 22 ± 1◦C, 55% humidity,

food and water ad libitum), reversed 12-h light/dark cycle

(lights on at 19:00). All efforts were undertaken to minimize the

potential discomfort of the animals.

A study of LPS-induced cytokine release
by human macrophages

Human macrophages from healthy volunteers of both

sexes were used. The effects of the IP application on the

LPS-stimulated release of IL-1β and TNF were determined

and compared against potential effects of the IP on

non-stimulated macrophages, the effects of a standard

anti-inflammatory treatment with prednisolone, and a

release of non-treated LPS-challenged macrophages (see

Supplementary File). Separate studies that were carried out

to rule out potential effects of the IP-alcohol-containing

vehicle on these read-outs showed a lack of such effects

(Supplementary Figure 1).

Induction of systemic inflammation in
mice

The first cohort of mice received an intraperitoneal (i.p.)

injection of resiquimod (R848, Enzo Life Sciences, Farmingdale,

NY, USA) that was diluted in a DMSO-vehicle (1 mg/mL).

Because the administration of DMSO-vehicle alone did not

alter the immunological response (37), it was not used in the

present study. The second cohort of mice was treated with an

i.p. injection of LPS (0.05 mg/kg, E.coli 0111:B6, Sigma-Aldrich,

Gillingham, UK) dissolved in NaCl (21, 22, 36). The choice of

this dose was based on separate control studies showing the

“ceiling” behavioral changes in mice injected with the LPS dose

of 0.1 mg/kg (see Supplementary Figure 2).
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FIGURE 1

Schematic of in vivo tests performed and the outcome from the in vitro assay. In the in vivo experiments, animals were exposed to a daily

administration of herbal drops or vehicle during the 14 days. On the day of the experiment, mice received an intraperitoneal injection (A) with

resiquimod or vehicle and killed 6h post-challenge, (B) with LPS or vehicle and 6h post-challenge completed the novel cage, open field, and

the forced swim test. In the in vitro assay, herbal drops or prednisolone was applied in the human macrophage cell culture that was treated

with LPS. In comparison with the non-stimulated samples, there was a significant increase in the concentrations of (C) IL-1β and (D) TNF in

all LPS-challenged samples. Significant group di�erences: *vs. non-challenged samples, (one-way ANOVA and Tukey’s test). Data presented as

mean ± SEM.

The administration of the IP

The drops of the IP were administered orally (120 µL per

day) for each mouse during the morning hours using a pipette

(26, 36). A composition of a 30% alcohol IP solution can be

found in a Supplementary Table 1.

Behavior

To determine the effect of the IP on the LPS-

induced “sickness” behavior, novel cage, open field,

and forced swim tests were performed (38), see

Supplementary File.
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Tissue collection

Mice were anesthetized with isoflurane (21, 22). Blood (200

µL) was then collected by cardiac puncture, transferred into

an EDTA-coated tube, and immediately analyzed for blood

formula. Animals were then intracardially perfused with cold

saline, liver and spleen were collected and snap-frozen.

Blood analysis

Blood was measured in triplicate on the ABX Pentra 60

(Horiba, Northampton, UK). The number of lymphocytes,

monocytes, neutrophils, basophils, and eosinophils per µL

(cells/µL) and percent of the cells were counted (33).

RNA extraction, CDNA conversion and
QPCR

According to the manufacturer’s instructions, RNA was

extracted from samples of liver and spleen using the Qiagen

RNeasy Mini kit, RNA concentration was measured using

a NanoDrop, and 1,000 ng of RNA was converted to

cDNA with the Applied Biosystems High Capacity cDNA

conversion kit. Real-time qPCR was performed with samples in

duplicate (25 ng/well) using the SYBR green qPCR master mix

(PrimerDesign, Camberley, UK) with the Roche LightCycler

480 (33). Relative expression was determined by the 2-11CT

method, normalized to GAPDH as the housekeeping gene

(PrimerDesign, Camberley, UK); for the list of primers, see

Supplementary Table 2.

High-potency-liquid chromatography
high-resolution-mass-spectrometry

The solution was analyzed using the chromatographic

system Agilent 1,290 Infinity II, quadrupole-time streaming

high precision mass detector Agilent 6,545 Q-TOF LC/MS, and

Zorbax Eclipse Plus C18 RRHD columns (Agilent Technologies,

Santa Clara, CA, USA); for details, see Supplementary File.

Statistical analysis

Statistical analyses were performed with the GraphPad

Prism 7 software. Data sets were tested for normal distribution;

Welch’s test and t-test were used to perform two group

comparisons where appropriate, and one or two-way analysis of

variance (ANOVA) was employed for multiple group analysis,

with Tukey’s post-hoc test. Results were considered significant

at p < 0.05 with 95% confidence intervals. In the study with

resiquimod, data were expressed as percent of challenged groups

from the respective non-challenged groups that either received

the IP or were not treated with the immunomodulatory agent

and were compared to a 100%-level. Data are expressed as mean

± standard error of the mean (SEM).

Results

Application of the IP reduces cytokine
release from LPS-induced macrophages

The IL-1β and TNF concentrations in the macrophage cell

culture were significantly different between the groups (F =

145.6 and F = 94.45, respectively, both p < 0.0001, one-

way ANOVA). In the challenged non-treated samples, there

were significant increases in these parameters compared to the

non-treated group, as well as to the LPS-challenged samples

treated with the IP or prednisolone (all p < 0.0001, Tukey’s

test, Figures 1C,D). The IL-1β and TNF levels were significantly

higher in both the IP- and prednisolone-treated preparations

than in the non-treated samples (IL-1β: p = 0.0021 and p

< 0.0001, respectively, TNF: both p < 0.0001), whereas the

latter groups had lower IL-1β concentrations compared with the

IP-treated group (IL-1β: p < 0.0001; TNF: p= 0.0001).

Chronic administration of the IP
diminishes the resiquimod-induced
expression of inflammatory markers in
the liver and spleen

All non-normalized to unchallenged values can be found

in the Supplementary Tables 3, 4. In the liver, a comparison of

the resiquimod-challenged groups showed that the normalized

SAA-2mRNA expression in the IP-treated mice was lower than

in the non-treated mice (p < 0.0001, Welch’s test, Figure 2A);

compared to 100%, both groups had an elevated SAA-2mRNA

expression (p < 0.0001). Both challenged groups demonstrated

an increased normalized SAA-2mRNA expression in the spleen

(p = 0.0137, vs. 100%, Figure 2A). There was a trend of a lower

normalized ACE-2mRNA expression in the IP-treated group

than in the resiquimod-challenged non-treated mice (p= 0.093,

Figure 2B) and a significant decrease in this parameter in the

former but not the latter group as compared to 100% (p= 0.005

and p= 0.594, respectively). No group differences were found in

the normalized spleen ACE-2mRNA expression level (p= 0.874,

Figure 2B). Compared to 100%, no significant difference was

observed in any group (p= 0.877 and p= 0.525, respectively).

The IP-treated group subjected to the resiquimod injection

had a significantly decreased normalized liver CXCL1mRNA

expression compared with the resiquimod-injected animals (p

= 0.0054, Figure 2C), while both groups showed a significant

Frontiers inMedicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2022.952977
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Schapovalova et al. 10.3389/fmed.2022.952977

FIGURE 2

Pro-inflammatory resiquimod-induced gene expression changes in the liver and spleen are ameliorated with the herbal IP treatment. (A)

Resiquimod-challenged groups showed a significant increase in the normalized liver expression of SAA-2mRNA in comparison to a 100%-level.

This measure was lower in the liver of IP–treated animals. No such di�erences were shown for the spleen. (B) As compared to a 100%-level,

there was a significant decrease in the normalized ACE-2mRNA expression in the liver of the IP-treated group but not in the non-treated

resiquimod-challenged mice that was not found for the spleen (C) Both resiquimod-challenged groups showed a significant increase in liver

CXCL1mRNA normalized concentrations as compared to 100%; the IP-treated group subjected to the resiquimod injection had a significantly

decreased normalized liver CXCL1mRNA expression compared with resiquimod-injected animals. In the spleen, compared to 100%, this

(Continued)
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FIGURE 2 (Continued)

measure was decreased in the IP-treated resiquimod-challenged group. (D) We found a significant increase in the normalized CXCL10mRNA

expression in the liver and spleen compared to 100% in both groups, while this measure was lower in the IP-treated group than in

resiquimod-challenged mice without treatment; no group di�erence in this measure was found for the spleen. (E) Elevated normalized

IL-1βmRNA levels compared to 100% in the liver and spleen were shown for both groups; no other di�erences were found. (F) Normalized

mRNA expression of IL-6 was similarly elevated in two groups in the liver and spleen compared to the 100% level. No other di�erences were

found. *vs. 100% level, # vs. the challenged non-treated group (Welch’s test and t-test, see the text). Data presented as mean ± SEM.

increase in this measure as compared to 100% (p = 0.0006

and p = 0.0001, respectively). No group differences in the

normalized CXCL1mRNA expression in the spleen were found

(p= 0.372, Figure 2C). However, compared to 100%, the mRNA

expression level in the IP-treated resiquimod-challenged group

was diminished (p = 0.034) with no difference in mice that

received the resiquimod alone (p= 0.137).

A significant decrease in the normalized CXCL10mRNA

expression in the liver was observed for the IP-treated mice

with induced inflammation compared with mice treated with

resiquimod alone (p = 0.0016, Figure 2D). Compared to 100%,

the mRNA liver expression of this gene was elevated in

both groups (p = 0.0006 and p = 0.0001, respectively). In

the spleen, no group difference in this parameter was found

(p = 0.885, Figure 2D). Both groups revealed an elevated

CXCL10mRNA expression compared to 100% (p = 0.047 and

p= 0.002, respectively).

As for the normalized mRNA concentration of IL-1β in

the liver, there was a trend of a decreasing expression level

in the IP-treated mice with induced inflammation compared

to the resiquimod- challenged group (p = 0.111, Figure 2E).

Elevated IL-1βmRNA levels compared to 100% were shown for

both groups (p < 0.0001). No significant group differences were

shown in this parameter in the spleen (p = 0.473, Figure 2E);

IL-1βmRNA expression was elevated compared to 100% in both

groups (p= 0.014 and p= 0.0079, respectively). The normalized

mRNA expression of IL-6 was similar in two groups in the liver

and spleen (p= 0.553 and p= 0.252, respectively, Figure 2F) and

was elevated compared to 100% in both groups (liver: p= 0.001

and p= 0.0008; spleen: p= 0.028 and p= 0.037, respectively).

The e�ects of the IP on the
resiquimod-induced changes in the
blood formula

All non-normalized to unchallenged values can be found in

the Supplementary Table 5. In the resiquimod-challenged non-

treated animals, there was a trend of elevated counts of blood

neutrophils, monocytes, and eosinophils compared to a 100%-

level (neutrophils: p= 0.165, monocytes: p= 0.151, eosinophils:

p = 0.066, t-test), while the IP-pre-treated challenged mice

showed opposite changes (all p < 0.0001, Figures 3A–C).

The latter group revealed a significant decrease in all counts

compared to the resiquimod-injected animals (neutrophils: p =

0.038; monocytes: p= 0.006; eosinophils: p= 0.019).

Both the non-treated- and IP-treated mice challenged with

resiquimod had similar non-significant increases in basophils

compared with a 100% level (p = 0.094 and p = 0.099,

respectively, Figure 3D). No differences were found between the

challenged groups (p = 0.655). The number of lymphocytes did

not differ between the resiquimod-treated groups and a 100%-

level (p = 0.564 and p = 0.432, respectively, Figure 3E), nor did

it differ between the groups (p= 0.941).

E�ects of the IP on the LPS-induced
“sickness” behavior

In the novel cage test, two-way ANOVA demonstrated a

significant LPS effect on the number of exploratory rearings (F

= 103.0, p < 0.0001). There was a significant treatment effect

and LPS x treatment interaction (F = 4.928, p= 0.0125 and F =

5.093, p= 0.011, respectively). The post-hoc test showed that this

measure was significantly smaller in the Vehicle LPS group and

IP-treated LPS group compared to the corresponding control

groups (p < 0.0001; p < 0.0001 and p = 0.0053, respectively,

Tukey’s test, Figure 4A). The IP-treated group with LPS-induced

inflammation had a significantly higher number of rearings

compared with the non-treated LPS group and Vehicle LPS

group (p= 0.016 and p= 0.048, respectively, Figure 4A).

Both significant LPS and treatment effects were revealed

by two-way ANOVA in the open field test (F = 125.8, p <

0.0001 and F = 6.357, p = 0.004, respectively). The number

of peripheral rearings was lower in the non-treated LPS group,

Vehicle LPS group, and IP-treated LPS group compared to the

corresponding control groups (p < 0.0001; p < 0.0001 and p

= 0.0001, respectively, Figure 4B). The IP-treated group with

LPS-induced inflammation had a significantly higher number

of rearings compared with the Vehicle LPS group (p = 0.028,

Figure 4B).

The two-way ANOVA showed significant LPS and treatment

effects in the number of central rearings in the open field test (F

= 37.31, p < 0.0001 and F = 4.837, p = 0.0134, respectively).

This parameter was lower in the non-treated LPS group and

Vehicle LPS group compared to the corresponding control

groups (both p = 0.002, Figure 4C). The number of central

rearings in the IP-treated group with LPS induced inflammation
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FIGURE 3

Pro-inflammatory e�ects of resiquimod on blood formula are reduced in mice treated with the herbal IP composition. Normalized counts of (A)

neutrophils, (B) monocytes, (C) eosinophils were significantly decreased in IP-treated resiquimod-stimulated mice. (D) An increase in basophil

counts was similar in the two challenged groups. (E) No changes were found in the lymphocyte counts of the resiquimod-injected groups; *vs.

100% level, #vs. the challenged non-treated group (Welch’s test and t-test, see the text). Data presented as mean ± SEM.

was significantly higher compared to the Vehicle LPS group (p

= 0.028, Figure 4C).

The two-way ANOVA revealed the LPS effect in the latency

of immobility in the forced swim test (F = 23.84, p < 0.0001).

This measure was higher in the control Vehicle group compared

to the Vehicle group with LPS-induced inflammation (p= 0.007,

Figure 4D). The two-way ANOVA showed a significant LPS

effect in the total time of immobility in this test (F = 27.25, p

< 0.0001). The total time of immobility was higher in the non-

treated LPS group compared to the corresponding control group

(p= 0.002, Figure 4E). No other significant effects were found.

Thus, chronic IP administration can attenuate some but

not all signs of “sickness” behavior caused by the LPS-induced

systemic inflammation, whereas the alcohol-containing vehicle

does not generate these effects.

HPLC-HRMS

HPLC-HRMS revealed bioactive constituents of the IP:

choline, γ-Glutamyl-(S)-allyl-cysteine, N-Fructosyl or glucosyl

isoleucine, L-glutamyl–L-phenylalanine (Glu-Phe), chlorogenic

acid, phenylalanine, tryptophan, isoleucine, syringin, and

isoquercitin (see Supplementary Table 6). The following

meta-analysis showed that these components were previously

reported to modulate the immune response and inflammation,

as well as oxidative and nitrosative stress, and thus, are

likely to underlie the reported immunomodulatory properties

of the investigated herbal IP (see Supplementary Table 7).

The outcome from the meta-analysis study and the

main effects of these eleven elements are reviewed in the

Supplementary File.
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FIGURE 4

LPS induces a sickness behavior phenotype, which is partly normalized by the herbal IP. In comparison to non-treated challenged animals,

IP-treated LPS-challenged mice displayed (A) a normalized number of exploratory rears, (B) a number of peripheral and (C) central crossings in

the open field (two-way ANOVA and Tukey’s test). There were no such di�erences (D) in the latency to float and (E) duration of the floating in

the forced swim test; *vs. the challenged non-treated group. Data presented as mean ± SEM.
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Discussion

Here, we have shown that the administration of the IP herbal
composition containing an extract of blackberry, chamomile,

garlic, cloves, and elderberry can reduce pro-inflammatory

changes that are reminiscent to a “cytokine storm,” a key

feature of SARS-CoV2 infection. These in vitro and in vivo

effects were demonstrated in the established models of systemic

inflammation that are based on triggering of TLR7/8 and

TLR4, the key mediators of this pathological condition. While
the effects on molecular and behavioral markers of response

to inflammatory challenges were suppressed partially, this

herbal composition can be efficient in diminishing deleterious

manifestations of the “cytokine storm” caused by the SARS-

CoV2 virus, at least, in a preventive manner.

The anti-inflammatory effect of the IP was first evaluated

by measuring in vitro the release of IL-1β and TNF by LPS-

challenged macrophages and compared to that of prednisolone.

For both cytokines, their release was suppressed by the IP,

though the effect of prednisolone was much greater. IL-1β and

TNF are inflammatory mediators that have long been associated

with the “cytokine storm” caused by SARS-CoV-2 (7, 39, 40).

TLRs are strongly expressed in macrophages (41), and it is

seems probable that the IP counteracts their activation caused

by LPS (42).

The present study revealed the suppressive effect of the

IP administration on TLR7/8-mediated inflammation caused

by resiquimod. The IP decreased the counts of neutrophils,

monocytes, and eosinophils that were elevated by the injection

of resiquimod, though the number of basophils was increased

regardless of the pre-treatment with the IP. Increases in these

blood cell counts in response to the resiquimod administration

are considered characteristic signs of excessive immune

activation (43–45). A suppression of these responses by the IP

administration demonstrates its anti-inflammatory properties,

which were shown in this model for the anti-inflammatory

treatment with nafamostat (33). These former experiments

have validated the applied here model as pharmacologically

sensitive to anti-inflammatory interventions. As such, the

reported here effects of IP on blood formula can be interpreted

to be similar to that of pharmacological anti-inflammatory

reference. Previous studies also revealed resiquimod-induced

lymphopenia in CD-1 mice, more specifically, a decrease in

the counts of circulating lymphocytes recapitulating clinical

and experimental observations of acute viral infection (46–

48), including after TLR7 stimulation (49) that was also

found in SARS-CoV-2 patients (22, 50). In the present

study, a decrease in lymphocytes did not reach a level

of significance.

The magnitude of the systemic inflammatory response

was evaluated by measuring the relative expression of pro-

inflammatory genes in the liver and spleen (22, 51, 52). In

both organs, the resiquimod challenge induced a significant

increase in SAA-2, ACE-2, CXCL1, and CXCL10. These

inflammatory mediators were established to accompany viral

infection and underlie sickness behavior (40), and were shown

to be significantly up-regulated in our previous study with

resiquimod (33). TLR7 is strongly expressed in macrophages,

and it seems probable that it is the resident tissue macrophages

that are responsible for producing these cytokines (42), which

would also account for the differential expression levels between

the organs, as there is a greater density of macrophages in

the liver than the spleen. Here, we were also able to show

that the herbal IP had a peripheral anti-inflammatory effect;

hepatic SAA-2, CXCL1, and CXCL10 expression induced by

resiquimod was significantly ameliorated by the IP treatment,

as well as ACE-2, to a lesser extent. As for IL-1β and IL-6,

there was just an optical trend for the normalizing effects of the

IP. A suppression of these changes in gene expression by the

IP administration evidences its anti-inflammatory properties,

which were demonstrated in this model for nafamostat (33).

Because the SARS-CoV2 virus needs to bind to the host ACE2

receptor via its spike protein to infect cells, its suppression by

the IP shown in our work let to speculate it can be considered a

potential prevention remedy.

In our study, locomotion, anxiety-like, and exploratory

behavior in mice were significantly affected by the injection of

a low dose of LPS, which is consistent with other inflammatory

models such as those employing the classical LPS-CD14-TLR4

challenge (21, 34). Analysis of central crossings in the open

field revealed that the LPS-treated animals chose to spend

less time in the center of the open field, which suggests that

LPS had an anxiogenic effect. Increased anxiety has been

reported in LPS models (22, 35) and is associated with the

central expression of pro-inflammatory cytokines. In a view

of previously reported inter-relation between behavioral and

molecular effects of LPS in models of systemic inflammation

in mice (21, 22), reported here behavioral effects of the

administration of IP can be interpreted as a manifestation of its

anti-inflammatory action.

Of note, the behavioral effects of the IP on LPS-

challenged mice were partial, as it did not reach a statistical

significance in the measures of helplessness during the

forced swimming. However, forced swimming in rodents is

not often associated with the “sickness” behavior; previous

studies with an LPS challenge were unable to demonstrate

consistent changes in this test (53). Collectively, for the

IP, the behavioral changes observed are indicative of a

“sickness” behavior phenotype and were overly reduced by

chronic administration.

Importantly, the present study showed that the IP herbal

composition has ameliorated the LPS-induced in vitro cytokine

release and “sickness behavior” that was not altered by alcohol

vehicle alone, while alcohol might have subtle anti-inflammatory

effects (54, 55). As the inhibition of cytokine signaling in the

periphery can attenuate “sickness behaviors” induced by the
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injection of IL-1β (56, 57), the suppression of the inflammatory

response in liver and spleen in IP-treated animals that is reported

here can explain the beneficial behavioral effects of chronic

pre-treatment with the employed herbal composition.

Our work has used CD-1 mice as a mouse strain that is

highly susceptible to inflammatory challenges in comparison

with other mouse lines, as some studies suggest (58). While

strain differences were shown to affect the response to a systemic

inflammation (58, 59), overly similar molecular and behavioral

changes that were reported in C57Bl6 mice, Balb/c and CD-

1 mice following pro-inflammatory challenges (58–60) suggest

that reported here findings are unlikely to be strain-specific.

Because the pathophysiology of SARS-CoV2 comprises the

mechanisms of viral invasion and replication that are SARS-

CoV2-specific, as well as excessive, uncontrolled inflammation,

which can be a common element of any severe infection, the

IP can be regarded as a useful non-specific preventive remedy

of this infection. Notably, while the present study was not

designed to address the question whether or not, similarly

to other herbal medicine, the administration of IP can exert

disease-specific therapeutic action (4, 5), its significant effects

on highly up-regulated inflammatory markers and expression

of ACE-2 mediating the viral binding in the host may suggest

such possibility. Further experiments are required to test

this hypothesis.

HPLC-HRMS analysis has revealed the main constituents

of the IP that likely underlie its beneficial immunomodulatory

effects: choline, γ-Glutamyl-(S)-allyl-cysteine, N-Fructosyl or

glucosyl isoleucine, L-glutamyl–L-phenylalanine (Glu-Phe),

chlorogenic acid, phenylalanine, tryptophan, isoleucine,

syringin, and isoquercitin. Choline is a well-established

important macronutrient that regulates synaptic plasticity,

e.g., via several genes, G9a, Prmt1, Ahcy, Dnmt1, Mat2a

(61, 62), implicated in neurotrophic processes (63), potentially

via insulin-like-growth-factor-2 (IGF2) and insulin receptor-

mediated mechanisms (64, 65). Of note, the activation of insulin

receptor mediated signaling triggers anti-inflammatory cascades

(66). Among other activities, γ-Glutamyl-(S)-allyl-cysteine was

shown to stabilize radical-scavenging and metal-chelating

processes that are important in immune responses and

contribute to the immunological regulation of the IP (67).

The ability of N-Fructosyl or glucosyl-isoleucine to regulate

the mechanisms of stress response has been documented

(68). Another IP component, L-glutamyl–L-phenylalanine,

was found to diminish liver inflammation via reducing

lipid accumulation and presumably acting on metabolic

processes of the cell (69). Tryptophan, a molecule with the

greatest anti-oxidative capacity among amino acids (70) and

a precursor of the neurotransmitter serotonin that is known

to exert anti-inflammatory action (71), was shown to act via

calcium-dependent mechanisms of receptor activation (72).

Moreover, the IP contains chlorogenic acid whose anti-

inflammatory effects are well-documented in a model of

transient forebrain ischemia and associated with a reduction in

the levels of pro-inflammatory factors: SOD2, IL-2, TNF and

an increase in the expression of anti-inflammatory cytokines:

IL-4, IL-13 (73), resulting in anti-oxidative action also via the

activation of antioxidant enzymes and neuroprotective effects.

This spectrum of activities was further demonstrated in rat

models of ischemia/re-perfusion of the kidney and liver (74–

76). Another IP constituent with documented anti-oxidative

stress effects is phenylalanine (77, 78), which was shown to

decrease the production of reactive oxygen species (78, 79).

Similarly, isoleucine counteracts the mechanisms of oxidative

stress, as shown in a model of H2O2-stimulated intestinal

epithelial cells (80), ameliorates NO-mediated pathways during

wound healing (81), and exerts an immunomodulatory action

regulating the key molecules of the mammalian innate

immunity, β-defensin (82). Finally, isoquercitin is one of

the most powerful well-studied natural anti-inflammatory

and anti-oxidant agents that acts directly on the scavenging

of reactive oxygen/nitrogen species (83), inhibits production

of pro-inflammatory cytokines, pro-oxidant enzymes, and

prostaglandins (83, 84), and induces antioxidant enzymes

(85–87).

Conclusion

Critically, the over-expression of inflammatory markers,

blood cell inflammatory response, and “sickness behavior”

under conditions of strong pro-inflammatory stimuli were

ameliorated by the treatment with the herbal composition IP.

Given that the magnitude of these responses was associated

with disease severity (39, 87) and anti-inflammatory treatment

(88), our findings suggest that the IP preventive treatment

may reduce the severity of SARS-CoV2 infection. Since our

results were achieved in the absence of viral entry, we propose

that the IP may have generally useful anti-inflammatory

effects, which may be advantageous in the treatment of

various viral infections, including SARS-CoV2. The effect of

the new immunomodulatory phytotherapeutic herbal extract

is required further evaluation on patients with SARS-CoV-2

infection. Therefore, it is advocated to recommend a future

clinical randomized controlled trial study that implement the

conventional treatment with herbal extracts. As highlighted

previously, the availability of low-cost herbal medicine for

economically disadvantageous communities is of particular

importance to curb SARS-CoV2 pandemic and enhancing

preparedness for future pandemics.
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