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nebivolol ameliorates oxidative
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tenofovir-induced
nephrotoxicity in rats
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Background: Tenofovir disoproxil fumarate (TDF), a widely prescribed

component in antiretroviral regimens, has been associatedwith nephrotoxicity.

Nebivolol is a third generation selective β-1 adrenergic receptor blocker and

may protect renal structure and function through the suppression of oxidative

stress and enhancement of nitric oxide (NO) synthesis. We aimed to investigate

whether nebivolol could be an e�ective therapeutic strategy to mitigate

tenofovir-induced nephrotoxicity.

Methods: We allocated Wistar rats to four groups: control (C), received a

standard diet for 30 days; NBV, received a standard diet for 30 days added with

nebivolol (100 mg/kg food) in the last 15 days; TDF, received a standard diet

added with tenofovir (300 mg/kg food) for 30 days; and TDF+NBV, received a

standard diet added with tenofovir for 30 days and nebivolol in the last 15 days.

Results: Long-term exposure to tenofovir led to impaired renal

function, induced hypertension, endothelial dysfunction and oxidative

stress. Nebivolol treatment partially recovered glomerular filtration

rate, improved renal injury, normalized blood pressure and attenuated

renal vasoconstriction. Administration of nebivolol contributed to

reductions in asymmetric dimethylarginine (ADMA) levels as well as

increases in endothelial nitric oxide sintase (eNOS) accompanied by

renin-angiotensin-aldosterone system downregulation and decreases

in macrophage and T-cells infiltrate. Furthermore, nebivolol was

responsible for the maintenance of the adequate balance of thiobarbituric

acid reactive substances (TBARS) and glutathione (GSH) levels and it

was associated with reductions in NADPH oxidase (NOX) subunits.
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Conclusion: Nebivolol holds multifaceted actions that promote an

advantageous option to slow the progression of kidney injury in

tenofovir-induced nephrotoxicity.

KEYWORDS

tenofovir, nephrotoxicity, nebivolol, hypertension, endothelium dysfunction,

oxidative stress

Introduction

Human immunodeficiency virus (HIV) continues to be a

major global public health issue, having claimed millions of

lives so far (1). The large-scale use of highly active antiretroviral

therapy (HAART) improved the life expectancy of individuals

infected with HIV and lowered the incidence of AIDS-

related diseases (2). Tenofovir disoproxil fumarate (TDF) is

a nucleotide reverse transcriptase inhibitor considered a first-

line antiretroviral drug and it is usually prescribed for the

treatment of HIV and hepatitis B (HBV) based on its efficacy and

tolerability in clinical trials (3–5). However, long-term exposure

to tenofovir has been linked to renal failure, hypertension,

abnormal lipid metabolism and oxidative stress (3). Tenofovir-

induced nephrotoxicity was reported in approximately 15% of

patients treated with this drug for 2–9 years (6). The adverse

effects of tenofovir are mainly attributed to its involvement with

the renin-angiotensin-aldosterone system (RAAS), nitric oxide

(NO) signaling cascade and redox state balance (3, 7).

Nebivolol is a third generation selective β-1 adrenergic

receptor blocker that also displays NO-mediated vasodilatory

actions through β-3 receptor agonism (8). Due to this singular

pharmacological profile, nebivolol exhibits several benefits

that set it apart from other traditional β-blockers such as the

improvement of renovascular parameters, metabolic syndrome,

hemodynamics and oxidative stress (9). Nebivolol is currently

used in the treatment of hypertension and cardiovascular

diseases in the US and Europe, respectively (8). Previous

experimental studies have shown that nebivolol protected

against warm renal ischemia/reperfusion (10) and diabetic

nephropathy (11). In addition, nebivolol presented beneficial

effects in nephrotoxicity models of contrast media (12),

gentamicin (13) and cyclosporine A (14). The mechanisms

by which nebivolol may protect renal structure and function

appears to be directly related to the reduction of oxidative

stress and improvement of endothelial dysfunction, as well

as its anti-inflammatory, anti-fibrotic and anti-apoptotic

properties (10–14).

Considering that nebivolol is effective in a wide

range of kidney illnesses, the aim of this study was

to investigate whether the therapeutic actions of

nebivolol could also be advantageous to mitigate

tenofovir-induced nephrotoxicity.

Materials and methods

Experimental protocol

Male Wistar rats weighing 180–200 g were obtained from

the animal facilities of the University of São Paulo—Institute of

Biomedical Sciences. During the 30-day protocol, we kept our

animals at controlled temperature (23 ± 1◦C) with a light/dark

cycle of 12/12 h. Rats received a standard diet (Nuvilab, PR,

Brazil) added with tenofovir (300 mg/kg food equivalent to

approximately 30 mg/kg BW) and/or nebivolol (100 mg/kg

food equivalent to approximately 10 mg/kg BW) and had free

access to tap water. Rats were allocated to the following groups:

control, received a standard diet for 30 days; NBV, received

a standard diet for 30 days added with nebivolol in the last

15 days; TDF, received a standard diet added with tenofovir

for 30 days; and TDF+NBV, received a standard diet added

with tenofovir for 30 days and nebivolol in the last 15 days.

The chosen doses of tenofovir and nebivolol were based on

previous experimental studies (7, 13, 15). We conducted all

the experimental procedures in accordance with the guidelines

outlined and approved by the local Research Ethics Committee

(CEUA-HCFMUSP, protocol number 1287/2019).

Analysis of urine samples

Before the clearance studies, all the rats were placed in

individual metabolic cages. We collected 24-h urine to assess

urinary output and then centrifuged the samples to remove

suspended material. We evaluated urinary protein excretion

(UProtV, mg/day) by colorimetric system using a commercial kit

(Labtest Diagnóstica, MG, Brazil).

Inulin clearance and hemodynamic
studies

On day 30, we anesthetized the animals with sodium

thiopental (50 mg/kg BW) and then we cannulated the trachea

with a PE-240 catheter for spontaneous breathing. The jugular

vein was cannulated with PE-60 catheter for infusion of

inulin and fluids. To monitor mean arterial pressure (MAP,
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mmHg) and collect blood samples, the right femoral artery was

catheterized with a PE-50 catheter. We assessed MAP with a

data acquisition system (MP100; Biopac Systems, CA, USA). To

collect urine samples, we cannulated the bladder with a PE-240

catheter by suprapubic incision. After the surgical procedure, a

loading dose of inulin (100 mg/kg BW diluted in 1mL of 0.9%

saline) was administered through the jugular vein. A constant

infusion of inulin (10 mg/kg BW) was started and continued at

0.04 mL/min throughout the whole experiment. We collected

three urine samples at 30-min intervals. Blood samples were

obtained at the beginning and at the end of the experiment.

Inulin clearance values represent the mean of three periods.

Plasma and urinary inulin were determined by the anthrone

method, and the glomerular filtration rate (GFR) data were

expressed as mL/min/100g BW. To measure renal blood flow

(RBF, mL/min), we made a median incision and dissected the

left renal pedicle for isolating the renal artery. An ultrasonic

flow probe was placed around the exposed renal artery, and RBF

was measured with an ultrasonic flow meter (T402; Transonic

Systems, MD, USA). We divided blood pressure by RBF to

calculate renal vascular resistance (RVR, mmHg/mL/min).

Biochemical parameters

We determined plasma levels of phosphate (PO3−
4 , mg/dL),

total cholesterol (cholesterol, mg/dL) and triglycerides (mg/dL)

by colorimetric assay (Labtest Diagnóstica, MG, Brazil). We

assessed plasma aldosterone (Aldo, pg/mL), angiotensin II

(AngII, pg/mL) and asymmetric dimethylarginine (ADMA,

ng/mL) by enzyme linked immunosorbent assay (ELISA) using

commercial kits: Aldosterone (Enzo Life Sciences, NY, USA),

Rat AngII and ADMA (Elabscience R©, TX, USA). The detection

system and the quantification followed the protocols described

by the manufacturers.

Tissue sample preparation

After blood samples collection, we perfused the kidneys

with a phosphate-buffered solution (PBS, pH 7.4). We froze

the right kidneys in liquid nitrogen and stored at −80◦C for

western blotting and ELISA. The left kidneys were removed and

a fragment of the renal tissue was fixed in methacarn solution

(60% methanol, 30% chloroform and 10% glacial acetic acid)

for 24 h and replaced by 70% alcohol thereafter. The kidney

blocks were embedded in paraffin and cut into 4-µm sections

for histological and immunohistochemical (IHC) studies.

Total protein isolation

Kidney samples were homogenized in ice-cold isolation

solution (200mM mannitol, 80 nM HEPES and 41mM KOH,

pH 7.5) containing a protease inhibitor cocktail (Sigma

Chemical Company, MO, USA) with a homogenizer (Tissue

Master TM125, Omni International, GA, USA). Homogenates

were centrifuged at 4,000× rpm for 30min at 4◦C to

remove nuclei and cell debris. Supernatants were isolated and

protein was quantified by Bradford assay (Bio-Rad Laboratories,

CA, USA).

Western blot assay

For Western blot analysis, 100 µg of total kidney

protein were separated on SDS-polyacrylamide minigels by

electrophoresis (16). After transfer by electroelution to PVDF

membranes (GE Healthcare Limited, Little Chalfont, UK), blots

were blocked for 1 h with 5% non-fat milk in Tris-buffered saline

solution. Blots were then incubated with primary antibodies for

anti-eNOS (BDBioscience, CA, USA); anti-iNOS (MyBiosource,

CA, USA); anti-HO-1 (AssayDesigns, MI, USA); anti-MnSOD

and anti-Nrf2 (Cayman Chemicals, MI, USA); anti-p47phox

and anti-p67phox (Santa Cruz Biotechnology, CA, USA).

The labeling was visualized with a horseradish peroxidase-

conjugated secondary antibody (anti-mouse or anti-rabbit,

Sigma Chemical, MO, USA) and enhanced chemiluminescence

detection (GE Healthcare Limited, Little Chalfont, UK). Kidney

protein levels were further analyzed with a gel documentation

system (Alliance 4.2; Uvitec, Cambridge, UK) and the software

Image J for Windows (Image J-NIH Image). We used

densitometry to quantitatively analyze the protein levels,

normalizing the bands to β-actin expression (anti-β-actin, Sigma

Chemical, MO, USA).

ELISA in renal tissue

We assessed AngII (pg/µg protein), Monocyte Chemotactic

Protein 1 (MCP-1/CCL2, ng/µg protein), Transforming Growth

Factor Beta 1 (TGF-β1, ng/µg protein) and Collagen Type

3 (COL3, pg/µg protein) in renal tissue by ELISA using

commercial kits (Elabscience R©, TX, USA). The detection

system and quantification followed the protocols described by

the manufacturer. The absorbances were obtained using the

Epoch/2 device (Biotek Instruments, VE, USA).

Light microscopy and IHC analysis

Four-micrometer histological sections of kidney tissue were

stained with Hematoxylin-eosin (HE) and examined under

light microscopy. For the evaluation of renal damage, 40–

60 grid fields (×400 magnification) measuring 0.245 mm2

were evaluated by graded scores according to the following

criteria: (0),<5% of the field showing tubular epithelial swelling,
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TABLE 1 Renal function and hemodynamic parameters evaluated after the 30-day protocol.

C (n= 9) NBV (n= 9) TDF (n= 10) TDF+NBV (n= 10)

GFR (mL/min/100g) 0.91± 0.04 0.82± 0.04 0.40± 0.04ad 0.74± 0.03bg

MAP (mmHg) 116± 4 119± 5 146± 3ad 117± 2g

RBF (mL/min) 7.03± 0.10 6.78± 0.13 5.57± 0.06ad 5.89± 0.15adi

RVR (mmHg/mL/min) 16.53± 0.63 17.83± 0.79 26.05± 0.46ad 20.71± 0.87afg

C, control; NBV, Nebivolol; TDF, Tenofovir; GRF, glomerular filtration rate; MAP, mean arterial pressure; RBF, renal blood flow; and RVR, renal vascular resistance.

Values are means± SEM.
ap < 0.001; bp < 0.01 vs. C; dp < 0.001; fp < 0.05 vs. NBV; gp < 0.001 and ip < 0.05 vs. TDF.

vacuolar degeneration, necrosis, and desquamation; (I), 5–

25% of the field presenting renal lesions; (II), involvement

of 25–50% with renal damage; (III), 50–75% of damaged

area; and (IV), more than 75% of the grid field presenting

renal lesions. To minimize bias during the morphometric

examination, the observer was blinded to the treatment groups.

The mean score for each rat and the mean score for each

group were calculated (17, 18). For histomorphometry, the

images obtained by microscopy were captured on a computer

screen via an image analyzer software (ZEN, Carl Zeiss, Munich,

Germany). Immunohistochemistry was performed on 4-µm-

thick paraffinized kidney sections mounted on 2% silane-

coated glass slides. We used the following antibodies: anti-

CD68 (AbD Serotec, Oxford, UK); anti-CD3 (Dako, Glostrup,

Denmark); and anti-aminopeptidase P (JG12, Santa Cruz

Biotechnology, CA, USA). We subjected the kidney tissue

sections to IHC reaction according to the protocol for each

primary antibody. Reaction products were detected by anti-

rabbit or mouse EnVision+ SystemTM and the color reaction

was developed in 3,3-diaminobenzidine (Dako North America,

CA, USA). Counterstaining was with Harris’ hematoxylin. We

analyzed 30–40 renal cortex fields (0.09 mm2) to evaluate

the immunoreactions. The volume ratios of positive areas

of renal tissue (%), determined by the color limit, were

obtained by ZEN image analyzer software (Carl Zeiss, Munich,

Germany) on a computer coupled to a microscope (Carl Zeiss

Axioskop 40) and a digital camera (19, 20). To minimize

bias during the IHC analysis, the observer was blinded to the

treatment groups.

Reactive oxygen metabolites assessment

Plasma (nmol/mL), urinary (µmol/mg creatinine) and

tissue (nmol/mg protein) levels of thiobarbituric acid

reactive substances (TBARS) were assessed using TBARS

Assay Kit (Cayman Chemicals, MI, USA). The detection

system and quantification followed the protocols provided

by the manufacturer. The absorbances were obtained

using the Epoch/2 device (Biotek Instruments, VE, USA).

Glutathione (GSH) was determined in total blood by the

method of Sedlak and Lindsay (21). Whole blood was

processed by addition of four volumes of ice-cold 5%

(W/V) metaphosphoric acid (Sigma Chemical, St. Louis,

MO, USA) and centrifuged at 14,000× g for 10min. This

assay consists of reacting the supernatants of the total

blood with Ellman’s reagent to produce a yellow pigment

measured spectrophotometrically at 412 nm. The GSH

was quantified by mean of standard curve and reported as

µmol/mL (22).

Statistical analysis

All quantitative data were expressed as mean ± SEM.

Differences among groups were analyzed with GraphPad

Prism 5.0 software (GraphPad Software, CA, USA) by

one-way analysis of variance followed by the Student–

Newman–Keuls test. Values of p < 0.05 were considered

statistically significant.

Results

Renal function, hemodynamic analysis
and biochemical studies

Tenofovir-treated rats presented a significantly impaired

renal function compared to C and NBV rats. TDF+NBV group

showed a partial recovery of GFR compared to TDF group

(Table 1). In addition to an impaired renal function, TDF group

exhibited a higher MAP, a diminished RBF and an augmented

RVR compared to C and NBV groups. Treatment with nebivolol

lowered MAP, slightly increased RBF and decreased RVR in

the TDF+NBV rats compared to the TDF rats (Table 1).

Furthermore, TDF group exhibited a lower concentration

of PO3−
4 compared to C and NBV rats. Treatment with

nebivolol reestablished phosphatemia in the TDF+NBV group

compared to the C and NBV groups (Table 2). TDF group

showed higher plasma levels of cholesterol and triglycerides

compared to C group. These parameters were significantly
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TABLE 2 Biochemical measurements and inflammatory/fibrosis markers evaluated after the 30-day protocol.

C (n= 9) NBV (n= 9) TDF (n= 10) TDF+NBV (n= 10)

Plasma

PO3−
4 (mg/dL) 6.72± 0.21 7.09± 0.24 5.04± 0.14ad 6.12± 0.40h

Cholesterol (mg/dL) 39.05± 2.76 46.22± 2.48 51.72± 2.19c 39.16± 3.73i

Triglycerides (mg/dL) 46.07± 9.91 73.98± 14.42 158.40± 19.33ae 111.20± 11.14bi

AngII (pg/mL) 138.8± 12.0 110.1± 6.9 186.8± 14.7ce 147.8± 11.0i

Aldo (pg/mL) 1,128± 141 1,532± 98 2,970± 192ad 1,903± 190bg

ADMA (ng/mL) 57± 3 58± 6 74± 4cf 55± 4i

TBARS (nmol/mL) 2.46± 0.21 2.92± 0.20 3.97± 0.42af 2.47± 0.15g

GSH (µmol/mL) 2.84± 0.36 2.41± 0.44 1.00± 0.26cf 2.19± 0.37i

Urine

UProtV (mg/day) 9.3± 1.4 11.9± 0.8 18.4± 1.1ad 14.8± 0.4afh

TBARS (µmol/mg creatinine) 0.184± 0.004 0.210± 0.009 0.253± 0.010af 0.173± 0.011g

Renal tissue

AngII (pg/µg protein) 3.84± 1.19 4.51± 1.01 8.29± 1.31cf 3.82± 0.74i

TBARS (nmol/µg protein) 13.22± 1.07 15.20± 1.73 19.63± 1.24cf 14.38± 0.94i

MCP-1 (ng/µg protein) 0.36± 0.03 0.38± 0.03 0.52± 0.04cf 0.43± 0.03i

TGF-β1 (ng/µg protein) 0.10± 0.02 0.11± 0.01 0.22± 0.02be 0.10± 0.02h

COL3 (pg/µg protein) 63.9± 9.1 67.9± 5.9 93.3± 9.7cf 63.9± 2.7i

C, control; NBV, Nebivolol; TDF, Tenofovir. PO3−
4 , phosphate; Cholesterol, total cholesterol; AngII, angiontensin II; Aldo, aldosterone; ADMA, asymmetric dimethylarginine; TBARS,

thiobarbituric acid reactive substances; GSH, glutathione; UProtV, urinary protein excretion; MCP-1, monocyte chemotactic protein 1; TGF-β1, transforming growth factor β1; COL3,

collagen type III.

Values are means± SEM.
ap < 0.001; bp < 0.01; cp < 0.05 vs. C; dp < 0.001; ep < 0.01; f p < 0.05 vs. NBV; gp < 0.001; hp < 0.01, and ip < 0.05 vs. TDF.

reduced in the TDF+NBV rats compared to the TDF rats

(Table 2).

E�ects of nebivolol on hypertension,
RAAS and NO signaling pathway in
TDF-induced nephrotoxicity

Hypertension was accompanied by alterations in the RAAS.

Tenofovir-treated rats presented increased plasma level and

renal tissue expression of AngII as well as plasma Aldo

concentration compared to C and NBV rats. Administration

of nebivolol restored both components of the RAAS in the

TDF+NBV rats compared to the C and NBV rats (Table 2).

Following renovascular studies, we observed higher ADMA

plasma levels in the TDF rats compared to the C and NBV

rats. TDF+NBV group showed an improvement in ADMA

plasma concentration compared to TDF group (Table 2).

Corroborating this data, tenofovir-treated rats exhibited a

downregulated and an upregulated renal protein expression

of eNOS and iNOS, respectively, compared to C and NBV

rats. TDF+NBV group presented a restoration of eNOS and

iNOS renal expression compared to C and NBV groups

(Figure 1). In addition, JG12 staining per glomerular tuft area

was significantly decreased in the TDF rats compared to

the C and NBV rats. TDF+NBV group exhibited a slightly

tendency for upregulation of JG12 expression compared to TDF

group (Figure 2).

Treatment with nebivolol ameliorated
kidney damage, renal fibrosis formation
and inflammation

TDF rats showed mild morphological alterations including

tubular cell necrosis, areas of denuded basement membrane,

flattening of proximal tubular cells with brush border loss

and tubular atrophy or dilatation. TDF+NBV group exhibited

a significantly decrease in tubular injury score compared

to TDF group (Figure 3). Moreover, tenofovir-treated rats

showed a greater loss of urinary protein compared to C

and NBV rats. Administration of nebivolol reduced UprotV

in the TDF+NBV rats compared to the TDF rats (Table 2).

TDF group showed a higher renal concentration of TGF-β1
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FIGURE 1

Semiquantitative immunoblotting for eNOS and iNOS expression in rat kidney tissue. (A) eNOS densitometric analysis of samples from C (n = 7),

NBV (n = 7), TDF (n = 8) and TDF+NBV (n = 8) rats. (B) iNOS densitometric analysis of samples from C (n = 7), NBV (n = 7), TDF (n = 8) and

TDF+NBV (n = 8) rats. (C) Representative immunoblots which reacted with anti-eNOS and anti-iNOS revealing bands of 140 and 130kDa,

respectively. Values are means ± SEM. ap < 0.001, cp < 0.05 vs. C; dp < 0.001, fp < 0.05 vs. NBV; hp < 0.01 vs. TDF. C, control; NBV, Nebivolol;

TDF, Tenofovir.

compared to C and NBV groups. Treatment with nebivolol

lowered this parameter in the TDF+NBV group compared to

the TDF group since tubular injury score was also restored

(Table 2). TDF rats presented an increase in renal expression

of COL3 compared to C and NBV rats. Administration of

nebivolol led to a reduction in COL3 renal expression in

the TDF+NBV group compared to the TDF rats (Table 2).

Tenofovir-treated rats showed a higher amount of MCP-1

compared to C and NBV rats. TDF+NBV group exhibited

a remarkable reduction in this parameter compared to TDF

rats (Table 2). In accordance with our data regarding MCP-1,

we observed a higher renal expression of CD68+ and CD3+

cells in the TDF rats compared to the C and NBV rats.

TDF+NBV group presented a significant reduction in both

renal expressions of CD68+ and CD3+ cells compared to TDF

group (Figures 4, 5).

Modulatory e�ect of nebivolol on
oxidative stress: Role of NOX (NADPH
oxidase) and Nrf2/HO-1 signaling
pathways

Tenofovir-treated rats exhibited higher plasma, urinary and

renal tissue TBARS levels compared to C and NBV rats.

TDF+NBV group showed a restoration of all the TBARS

parameters compared to C and NBV groups (Table 2). TDF

rats showed a diminished plasma GSH concentration compared

to C and NBV rats. TDF+NBV group presented a remarkable

increase in plasma GSH levels compared to TDF group

(Table 2). In addition, we found higher renal protein expressions

of p47phox and p67phox in the TDF group compared to

the C and NBV groups. Treatment with nebivolol notably

reduced the renal expression of those enzymes necessary

for NOX activity in the TDF+NBV rats compared to the

TDF rats (Figure 6). Tenofovir-treated rats exhibited a higher

MnSOD renal protein abundance compared to C and NBV

groups. Strikingly, treatment with nebivolol reduced the renal

expression of MnSOD in the TDF+NBV group compared to

the TDF group (Figure 7). Similarly, we observed higher renal

protein expressions of Nrf2 and HO-1 in the TDF group

compared to the C and NBV groups. TDF+NBV rats presented

a significant decrease in the expression of both Nrf2 and HO-1

compared to the TDF rats (Figure 8).

Discussion

The number of HIV-infected individuals has been increasing

in recent years, affecting mainly underdeveloped countries
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FIGURE 2

Immunohistochemical analysis for aminopeptidase P (JG12) expression by glomerular tuft area in rat kidney tissue. (A) Bar graph of JG12

expression values. (B) Representative photomicrographs of immunostaining for JG12 from a C (n = 7), NBV (n = 7), TDF (n = 8) and TDF+NBV (n

= 8) rat (×400). Values are means ± SEM. ap < 0.001, bp < 0.01 vs. C; fp < 0.05 vs. NBV. C, control; NBV, Nebivolol; TDF, Tenofovir.

(1). Long-term exposure to tenofovir is associated with

nephrotoxicity, leading to acute kidney injury (AKI) or chronic

kidney disease (CKD) (4). Supporting previous data (3, 7), our

current study demonstrated that tenofovir-treated rats presented

impaired renal function, hypophosphatemia, hypertension,

dyslipidemia, endothelial dysfunction and oxidative stress.

Our results revealed that nebivolol improved renal function,

normalized MAP, increased RBF and decreased RVR in the

TDF+NBV rats. In addition, administration of nebivolol

ameliorated renal injury and inflammation, suppressed RAAS

activity, and normalized the parameters involved in NO

signaling pathway and redox state.

Nebivolol attenuated renal injury in several experimental

models regardless of its classic antihypertensive action (11, 12,

14). Our data showed that treatment with nebivolol increased

GFR and reduced proteinuria in the TDF+NBV rats. This

action is probably related to the specific pharmacological

effect of nebivolol on the ability to induce NO bioavailability,

improve antioxidant defenses, and reduce renal fibrosis (11,

23). Moreover, Wang et al. reported that Zucker diabetic fatty

(ZDF) rats treated with nebivolol exhibited a decrease in tubular

damage and glomerular basement membrane thickening and

a restoration of podocytes, resulting in increased creatinine

clearance and reduced proteinuria (24).

Proteinuria usually occurs along with hypertension in CKD

patients. Hypertension is a well-known risk factor related to

cardiovascular impairment and kidney disease progression (25).

Experimental (11, 24, 26) and clinical trials (27) demonstrated
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FIGURE 3

Tubular injury score in the renal cortex evaluated at the end of the protocol. (A) Bar graph of tubular injury score values. (B) Representative

photomicrographs of renal histological changes from a C (n = 7), NBV (n = 7), TDF (n = 8) and TDF+NBV (n = 8) rat (×400). Arrowheads:

morphological alterations including tubular cell necrosis, areas of denuded basement membrane, flattening of proximal tubular cells with brush

border loss and tubular atrophy or dilatation. Values are means ± SEM. ap < 0.001 vs. C; dp < 0.001 vs. NBV; gp < 0.001 vs. TDF. C, control; NBV,

Nebivolol; TDF, Tenofovir.

that administration of nebivolol lowered MAP and reversed

endothelial dysfunction. Our findings are in agreement with

these observations and underscore the importance of nebivolol

therapy in the maintenance of MAP. TDF+NBV group

presented a normalization of MAP, which was accompanied by a

decrease in both plasma and tissue concentrations of AngII and

plasma Aldo levels. AngII, one of the main components of the

RAAS, is a potent systemic vasoconstrictor responsible for Aldo

secretion and the arising of hypertension, promoting renal mass

loss and worsening of CKD (28–30). Blumenfeld et al. stated

that β-adrenergic receptor blockers are frequently neglected as

potent suppressors of renin secretion and, consequently, AngII

formation. Corroborating our data, those authors demonstrated

that plasma renin activity and AngII/Aldo plasma levels were

remarkably reduced in hypertensive patients under regular

treatment with β-blockers (31).

In addition to MAP restoration, TDF+NBV rats showed

a significant increase in RBF and an important decrease in

RVR. It is acknowledged that reduced NO production or

availability is related to endothelial dysfunction, hypertension

and progression of CKD (32, 33). Renal NO is synthesized

primarily by eNOS and nNOS. Endothelial nitric oxide synthase

is responsible for maintaining GFR and RBF while nNOS

preserves glomerular hemodynamics. However, NO produced
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FIGURE 4

Immunohistochemical analysis for CD68+ cells expression in rat kidney tissue. (A) Bar graph of CD68 positive cells expression values. (B)

Representative photomicrographs of immunostaining for CD68 positive cells in the renal cortex from a C (n = 7), NBV (n = 7), TDF (n = 8) and

TDF+NBV (n = 8) rat (×400). Values are means ± SEM. ap < 0.001 vs. C; dp < 0.001 vs. NBV; gp < 0.001 vs. TDF. C, control; NBV, Nebivolol; TDF,

Tenofovir.

by iNOS can lead to apoptosis and lipid peroxidation (26).

Thus, it is plausible to assume that the regulation of NOS

isoforms by nebivolol contributes to its protective effects on the

kidney. Our study demonstrated that the improvement in renal

hemodynamic was possibly associated with an upregulation

of eNOS and a downregulation of iNOS, indicating that the

treatment with nebivolol induced vasodilation through the

modulation of these enzymes in endothelial cells. Another

mechanism involved with endothelial dysfunction includes

the increase in plasma ADMA, an endogenous competitive

inhibitor of NOS isoforms. Higher plasma ADMA levels are

also linked to oxidative stress (32, 34). Corroborating previous

data (24, 26), our results showed that tenofovir-treated animals

exhibited augmented plasma ADMA concentration which was

reversed with the administration of nebivolol. These findings

suggest that ADMA is an important marker of endothelial

dysfunction and its lower levels were probably responsible for

the normalization of eNOS and iNOS renal protein expression

in the TDF+NBV group. Another specific marker for vascular

endothelium damage is JG12. TDF rats showed a significant

decrease in JG12 expression in the glomerular capillaries.

TDF+NBV rats presented an upward tendency regarding JG12

expression in glomerular vascular endothelium, which possibly

contributed to the improvement of renal function in these

rats. The combination of the beneficial effects of nebivolol

on the RAAS and NO cascade results in renal protection
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FIGURE 5

Immunohistochemical analysis for CD3+ cells expression in rat kidney tissue. (A) Bar graph of CD3 positive cells expression values. (B)

Representative photomicrographs of immunostaining for CD3 positive cells in the renal cortex from a C (n = 7), NBV (n = 7), TDF (n = 8) and

TDF+NBV (n = 8) rat (×400). Values are means ± SEM. ap < 0.001 vs. C; dp < 0.001 vs. NBV; gp < 0.001 vs. TDF. C, control; NBV, Nebivolol; TDF,

Tenofovir.

and justifies its efficiency in reducing MAP and improving

hemodynamic parameters.

Vascular endothelial damage triggers several pathological

alterations displayed in the kidney disease progression (35).

Treatment with nebivolol was also able to reverse kidney injury

caused by long-term use of tenofovir, at least in part, due to

its actions on pro-fibrotic molecules and inflammatory markers.

Toblli et al. reported that ZDF rats exhibited large expressions

of TGF-β1, collagen types I and III, MCP-1 and CD68+

cells and these alterations were attenuated after administration

of nebivolol (11). In support of these findings, our study

demonstrated that TDF+NBV rats presented lower TGF-β1

and COL3 renal expression. Likewise, treatment with nebivolol

reestablished MCP-1 amounts, CD68+ and CD3+ cells

expression in the renal tissue of TDF+NBV rats compared to

C and NBV rats. Of note, suppression of TGF-β1 may be due to

an increase in NO, which corroborates data previously described

regarding the involvement of nebivolol in the NO cascade (36).

Therefore, our results show a protective role of NBV in the

modulation of both ECM components and inflammatory cells

expression in tenofovir-induced nephrotoxicity.

Metabolic syndrome is characterized by hypertension,

impaired glucose tolerance and dyslipidemia, and increases

the risk of cardiovascular diseases and CKD (11). Previous

studies have shown that regular exposure to tenofovir leads

to higher levels of cholesterol and triglycerides (3, 37, 38).
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FIGURE 6

Semiquantitative immunoblotting for p47phox and p67phox expression in rat kidney tissue. (A) p47phox densitometric analysis of samples from C (n

= 7), NBV (n = 7), TDF (n = 8) and TDF+NBV (n = 8) rats. (B) p67phox densitometric analysis of samples from C (n = 7), NBV (n = 7), TDF (n = 8)

and TDF+NBV (n = 8) rats. (C) Representative immunoblots which reacted with anti-p47phox and anti-p67phox revealing bands of 47 and 67kDa,

respectively. Values are means ± SEM. ap < 0.001, cp < 0.05 vs. C; dp < 0.001, fp < 0.05 vs. NBV; gp < 0.001, ip < 0.05 vs. TDF. C, control; NBV,

Nebivolol; TDF, Tenofovir.

Similarly, our results demonstrated that tenofovir-treated rats

presented dyslipidemia and treatment with nebivolol promoted

a favorable effect on the lipid profile. Corroborating our data,

experimental and clinical trials revealed that new generation β-

blockers with NO-mediating vasodilating properties efficiently

diminished MAP and had similar beneficial impact on glucose

and insulin levels as well as on triglycerides and cholesterol

concentration (11, 39). A possible explanation for this action of

nebivolol on lipid metabolism could be associated with oxidative

stress modulation (40).

Oxidant elements play an important role in the pathogenesis

of tenofovir-induced nephrotoxicity (3) with NOX emerging as

the crucial cytosolic source of reactive oxygen species (ROS)

generation (41). Reactive oxygen species are highly reactive

molecules responsible for the renal damage induced by RAAS

upregulation and the oxidation of lipids and proteins, leading

to glomerular and tubular injury and the onset of proteinuria.

Reactive oxygen species also promote the uncoupling of eNOS,

suppressing the activity of this enzyme and causing a reduction

in the bioavailability of NO (42). Moreover, an imbalance

between ROS production and antioxidant defense systems

causes oxidative stress (43). Our findings showed that tenofovir

administration led to an increase in lipid peroxidation and a

decrease in the main intracellular antioxidant, as evidenced

by higher plasma/urinary/tissue TBARS concentration and

lower plasma GSH levels. These results suggest the influence

of oxidative stress in the development of kidney injury

and the onset of hypertension. In agreement with our data

aforementioned, TDF animals exhibited a significant increase in

both p47phox and p67phox NOX subunits protein expression.

It is well-known that NOX is the predominant source for

renal oxidative stress (23) and p47phox is the most important

subunit for the modulation of its activity (44). Treatment with

nebivolol restored the parameters related to oxidative stress in

TDF+NBV rats compared to C and NBV rats. These findings

suggest that nebivolol contributed to maintain redox state

balance with subsequent improvements in renal function and

hemodynamics in this experimental model. Corroborating our

results, Whaley-Connell et al. reported that the administration

of nebivolol normalized endothelial function, reduced the

activity of NOX and its subunits (Rac1, p47phox and p67phox),

decreased NOX-dependent superoxide formation and increased

the bioavailability of NO (23).

The Nrf2-mediated regulation of cellular antioxidant

mechanisms plays an essential role in defense against oxidative

stress due to its coordinated induction of genes encoding

several antioxidants and detoxifying enzymes such as catalase,

superoxide dismutase (SOD) and HO-1 (45). Our study revealed
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FIGURE 7

Semiquantitative immunoblotting for MnSOD expression in rat kidney tissue. (A) MnSOD densitometric analysis of samples from C (n = 7), NBV

(n = 7), TDF (n = 8) and TDF+NBV (n = 8) rats. (B) Representative immunoblots which reacted with anti-MnSOD revealing a band of 25kDa.

Values are means ± SEM. bp < 0.01 vs. C; ep < 0.01 vs. NBV; ip < 0.05 vs. TDF. C, control; NBV, Nebivolol; TDF, Tenofovir.

FIGURE 8

Semiquantitative immunoblotting for Nrf2 and HO-1 expression in rat kidney tissue. (A) Nrf2 densitometric analysis of samples from C (n = 7),

NBV (n = 7), TDF (n = 8) and TDF+NBV (n = 8) rats. (B) HO-1 densitometric analysis of samples from C (n = 7), NBV (n = 7), TDF (n = 8) and

TDF+NBV (n = 8) rats. (C) Representative immunoblots which reacted with anti-Nrf2 and anti-HO-1 revealing bands of 90 and 32kDa,

respectively. Values are means ± SEM. ap < 0.001, bp < 0.01 vs. C; dp < 0.001, ep < 0.01, fp < 0.05 vs. NBV; gp < 0.001 vs. TDF. C, control; NBV,

Nebivolol; TDF, Tenofovir.
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that tenofovir-treated rats showed an increase in the renal

expression of Nrf2 and HO-1 probably due to the development

of oxidative stress in this group. Administration of nebivolol

normalized the expression of these parameters, since this

drug reestablished the levels of TBARS and GSH in the

TDF+NBV rats compared to C and NBV rats. It is important

to highlight that constitutive Nrf2 activity is essential in the

maintenance of redox balance under basal condition and its

induction occurs in response to oxidative stress. Therefore,

with the appearance of cell injury, Nrf2 is translocated to the

nucleus and stimulates the production of cytoprotective genes

(46–48). According to our findings, nebivolol may mitigate
oxidative stress-mediated kidney injury in tenofovir-induced

nephrotoxicity by modulating Nfr2/HO1 pathway.
In addition to the participation of the Nrf2/HO-1 signaling

pathway, mitochondrial oxidative stress may be straightly

associated with mechanisms underlying the arising and

progression of both AKI and CKD (49). Mitochondria hold

ROS scavenging systems through the conversion of O2 into

H2O2 by the actions of SOD, such as Cu/Zn-SOD and MnSOD.

We demonstrated that tenofovir-treated rats presented an

increase in MnSOD renal expression, probably in response

to a higher oxidative stress. Nebivolol treatment restored

this enzyme expression in the TDF+NBV rats compared to

the C and NBV rats. Tenofovir-induced nephrotoxicity has

been related to structural mitochondria abnormalities including

wide alterations in size and shape, resulting in disruption

on mitochondrial DNA and development of oxidative stress

(4, 50). In agreement with our study, Mustafi et al. reported

that increased metabolic rates and mitochondrial dysfunction

contributed to the elevation of ROS concentration, which was

suppressed by the increase of endogenous MnSOD levels in

cancerous cells (51).

Altogether, our findings demonstrated that tenofovir-treated

rats showed an increase in the antioxidant elements (Nrf2,

HO-1 and MnSOD) possibly in response to an imbalance

between TBARS and GSH levels, suggesting that oxidative stress

activated both mitochondrial enzymatic system and Nrf2/HO-

1 signaling pathway. Nevertheless, experimental studies have

shown that despite the presence of intense oxidative stress,

both Nrf2 and its cytoprotective gene HO-1 activities were

downregulated, indicating that the injured kidney paradoxically

compromised the Nrf2/HO-1 signaling pathway activation (45,

48, 52). Although Nrf2, HO-1 and MnSOD are considered

protective molecules, TDF+NBV rats showed a decrease in the

renal expression of these elements. This observation could be

explained by both the potent antioxidant action of nebivolol and

the moderate kidney injury found in this group, since HO-1 is a

heat shock protein responsive to tissue damage (53).

In summary, nebivolol was capable of attenuating tenofovir-

induced nephrotoxicity through its involvement in the NO

cascade modulation and RAAS activity maintenance. Moreover,

nebivolol had an outstanding systemic and renal antioxidant

effect, as well as notable anti-inflammatory and anti-fibrotic

properties. Hence, our study indicates that administration of

nebivolol may be a beneficial therapeutic strategy to slow the

progression of renal disease in patients undergoing tenofovir

treatment and may offer a better prognosis and an improvement

in quality of life of individuals living with HIV/HBV.
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