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Colorectal cancer (CRC) is considered as a global major cause of cancer

death. Surgical resection is the main line of treatment; however, chemo-,

radiotherapy and other adjuvant agents are crucial to achieve good outcomes.

The tumor microenvironment (TME) is a well-recognized key player in CRC

progression, yet the processes linking the cancer cells to its TME are not

fully delineated. Autophagy is one of such processes, with a controversial

role in the pathogenesis of CRC, with its intricate links to many pathological

factors and processes. Autophagy may apparently play conflicting roles in

carcinogenesis, but the precise mechanisms determining the overall direction

of the process seem to depend on the context. Additionally, it has been

established that autophagy has a remarkable effect on the endothelial cells

in the TME, the key substrate for angiogenesis that supports tumor metastasis.

Favorable response to immunotherapy occurs only in a specific subpopulation

of CRC patients, namely the microsatellite instability-high (MSI-H). In view

of such limitations of immunotherapy in CRC, modulation of autophagy

represents a potential adjuvant strategy to enhance the effect of those

relatively safe agents on wider CRC molecular subtypes. In this review, we

discussed the molecular control of autophagy in CRC and how autophagy

affects different processes and mechanisms that shape the TME. We explored

how autophagy contributes to CRC initiation and progression, and how it

interacts with tumor immunity, hypoxia, and oxidative stress. The crosstalk

between autophagy and the TME in CRC was extensively dissected. Finally,

we reported the clinical efforts and challenges in combining autophagy

modulators with various cancer-targeted agents to improve CRC patients’

survival and restrain cancer growth.
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Introduction

Colorectal Cancer (CRC) is counted as one of the most
predominant cancers in both genders with high death rates.
CRC is third in terms of prevalence which accounted for 6.1%
of new cases and second in terms of the cause of death which
accounted for 9.2% of deaths by cancer worldwide (1). There
is a high incidence of colorectal cancer at young age (15–
39 years) which was estimated by 70.2–82.9 thousand cases
in 2019 with a mortality rate of 26.2–30.5 thousand in the
same year (2). By the year 2035, it is estimated that the total
number of deaths will increase by 71.5 and 60% from colon
and rectal cancers, respectively (3). CRC is a heterogeneous
disease with numerous variations in its molecular profiles,
clinical manifestations and prognosis. CRC prognosis depends
on the tumor staging at the time of diagnosis. Currently,
the best therapeutic option for stage I and most of the stage
II CRC patients is the aggressive surgical resection of the
primary tumors which showed high success rates, with/without
adjuvant radio-chemotherapy for high risks patients in stage
II and stage III of CRC. Notably, stage III CRC patients
usually suffer from recurrent disease, which may be associated
with micro-metastasis. Stage IV CRC represents a metastatic
state with a high risk of relapse and with less/no benefit
from surgery. Instead, chemotherapy combinations are usually
used at this stage, such as oxaliplatin/irinotecan and folinic
acid, 5-fluorouracil (5-FU)-based regimens (4, 5). However,
adjuvant treatment is highly accompanied by drug resistance,
and ultimately disease progression in metastatic CRC. Recent
advances in cancer-targeted therapy as second-line treatment of
CRC in combination with chemotherapy, to disrupt signaling
pathways or cellular mechanisms, have led to enhanced overall
survival (OS) and progression-free survival (PFS). Currently,
anti-angiogenic drugs including bevacizumab, regorafenib and
aflibercept, are approved as a treatment of metastatic stage of
CRC, whereas immunotherapy for CRC is still limited to the
MSI-H tumors (6).

Classification system of CRC, based on molecular
structure, was established to categorize both the tumor
and the surrounding tumor microenvironment (TME)
through variations in CRC gene expression (7). TME is a
dynamic ecosystem that plays a crucial role in the support
and progression of tumors. The composition of TME may
significantly affect the tumor response to immunotherapy.
TME includes different types of cells, e.g., tumor-infiltrating
lymphocytes (TILs), tumor-associated macrophages (TAMs),
tumor-associated neutrophils (TANs), cancer-associated
fibroblasts, natural killer (NK) cells, regulatory T cells and
dendritic cells (DCs). There are four main consensus molecular
subtypes: CMS1, CMS2, CMS3, and CMS4 (8). Both CMS1 and
CMS4 subtypes are characterized by increased immune cells
infiltration, while CMS1 tumors, in particular, is identified by
enhanced Th1-cell response as well as inflamed and stimulated

TME. Whereas CMS4 TME is characterized by being inflamed
and highly angiogenic, hence a good target for combination
therapy. CMS2 tumors are caused by β-catenin pathway
activation, with subsequent dendritic and T-cell exhaustion.
Therefore, this subtype of tumors does not elicit anti-tumor
immune response. CMS3 tumors are characterized by several
metabolic pathways dysregulation such as nitrogen, glucose
pentose, fatty acids, etc. (7).

Tumor microenvironment of
colorectal cancer

Tumors are cellular networks characterized as being
different and complex with de-differentiated malignant cell
types, tumor stem cells, fibroblasts and endothelial and immune
cells. TME is a dynamic ecosystem that plays a crucial
role in supporting the progression of tumors. Cytotoxic
CD8+ T-lymphocytes (CTL) are considered the major defense
mechanism against tumor cells, hence T-cell abundance is
a decisive and crucial prognostic factor for immunotherapy
and chemotherapy response, particularly at the early tumor
initiation stage, where an increased activity of T cells has been
reported (9). The PD-L1/PD1 axis is identified as an inhibitor
of CTL activity in several CRC phenotypes including Mismatch
repair deficiency (MMRd)/Microsatellite instability-high (MSI-
H) phenotype in which anti-PD1 monoclonal antibodies are
highly beneficial in fighting the tumor (10, 11). Another essential
type of T-cells highly associated with colorectal tumors is the
Regulatory T-cells (Tregs) (12).

Other cell types in the TME include TAMs involved in
regulating metastatic phenotype of cancer and modulating
growth and invasion of cancer cells (13, 14). Two sub-
populations of TAMs have been identified, the pro-tumorigenic
(M2) and the anti-tumorigenic (M1) phenotypes, which are
characterized by high plasticity (15). TAMs and myeloid-derived
suppressor cells (MDSCs) are the most abundant cells in solid
tumors including CRC. Moreover, other immune cell types have
been identified in the CRC microenvironment, such as NK cells,
TANs, eosinophils and mast cells, with variable roles in CRC
progression (16, 17). CRC stroma is well-known for its ability
to promote tumor-associated blood vessels. Immune cells and
fibroblasts supply tumor cells with VEGF (18). Moreover, matrix
metalloproteinase and associated proteases, expressed by CAFs,
are abundant in TME.

Autophagy and colorectal cancer

Autophagy signaling in cancer

Autophagy has a diverse and dynamic impact on cancer cells
that can affect both tumor initiation, progression and cancer
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response to therapy. Recently, vast published data indicate a
crosstalk between autophagy-related genes (ATG’s) associated
pathways with oncogenes and/or tumor suppressor genes.
Indeed, the precise role of autophagy in modulating cancer
tumorigenicity is highly complicated and is dependent on the
context (19). Several autophagy genes might be involved in
switching normal cells to CRC under particular conditions. The
first autophagy marker indicated to be involved in colorectal
carcinogenesis is LC3 (20). One of the LC3 isoforms, named
LC3-II, is overexpressed in CRC cells particularly in advanced
stages, compared to normal colon cells (21). Notably, low LC3
level has been interrelated to good CRC prognosis, particularly
in advanced stages (22). Moreover, ATG5 and ATG10 showed a
major role in CRC progression and chemotherapy resistance in
several studies. ATG5 was found to be down-regulated in 95%
of CRC cases, and its high expression level indicates lympho-
vascular invasion (23). In contrast, ATG10 was upregulated in
CRC tissues and increased protein expression of ATG10 was
accompanied by tumor lymph node metastasis and invasion
(24). Another essential protein implicated in autophagy is the
activating molecule in Beclin-1-regulated autophagy (Ambra1)
protein encoded by the AMBRA1 gene. Mutated AMBRA1
gene was found in a subset of colorectal neoplasms (25).
Additionally, Beclin-1 gene, UVRAG gene and Bif-1 gene were
highly correlated with CRC carcinogenesis which is explained in
the following sections.

Role of autophagy in colorectal cancer
initiation

Autophagy is an equilibrating mechanism that promotes
anti-malignant mechanism by clearance of unhealthy damaged
proteins, DNA abnormalities and reactive oxygen species
(ROS). A proper autophagic mechanism is crucial for the
mutagen’s elimination and appropriate genomic stability as
it avoids the genetic defects accumulation that proceeds to
malignant transformation. Thereby, autophagy might act as a
tumor-suppressor in the early stages of the tumor. Evidence
demonstrates that the tumor-suppressive effect is derived
from some ATG-proteins such as Beclin-1, which shows anti-
oncogenic properties. Tumor suppressor role of Beclin-1 is
validated genetically in breast, ovarian and prostate tumors,
as mono-allele deletion of Beclin-1 occurs (26, 27). However,
Beclin-1 has a debatable role in CRC in that it promotes
tumorigenesis, but may paradoxically inhibit CRC cell growth.
Increased Beclin-1 expression was associated with better OS in
patients with locally advanced colon carcinomas who received
postoperative 5-FU chemotherapy for 6 months (28). Beclin-1
Overexpression in cases with resected stage II and stage III colon
carcinomas, who received 5-FU-based therapy was associated
with worse OS, denoting a potential effect of autophagy in drug
resistance (29).

Moreover, allelic loss of UVRAG, an autophagy component,
and attenuation of Bif-1 expression that both interact with

Beclin-1 directly, might be correlated to CRC initiation and
development (30). UVRAG protein is needed to form a complex
with Beclin-1 to induce autophagy; therefore, the loss of this
protein results in impaired autophagy machinery. Similarly,
Bif-1 serves to induce autophagy via interacting with Beclin-
1 and UVRAG.

Autophagy displays an important defense mechanism
against pathogens and therefore plays an anticarcinogenic role
in combatting viral and bacterial infections. For example,
autophagic machinery was shown to effectively eliminate
digestive cancer-associated pathogens such as Streptococcus
bovis (S. bovis) that may cause CRC (31). In the same
study, using autophagy-deficient ATG5-/- cells showed S. bovis
pathogen survival and enhanced multiplication within the cells
(31). The presence of infectious endocarditis of S. bovis may be
followed by colonic neoplasia in an estimated incidence of 18–
62% of cases, even after years of its presentation in the host (32,
33). Similarly, 25 to 80% of S. bovis bacteremia cases induce
colorectal tumors (34). Despite this, the relationship between
CRC and S. bovis bacteremia has been underestimated for a long
time and is under the controversy of whether this association is
a result of gastro-intestinal tumor or the S. bovis itself could be
the etiology of CRC (35).

Role of autophagy in colorectal cancer cell
survival and metastasis

In previous studies, autophagy seems to support tumor
progression. Autophagy helps tumor cells overcome induced
metabolic stress resulting from high proliferative rate, hypoxia
and nutrient deprivation due to insufficient blood supply needed
by these tumors for proliferation and progression (36, 37).
Cancer cells consume more energy and metabolites than normal
cells due to their rapid proliferative rate. Both energy and
metabolites can be provided to cancer cells by increasing
autophagy (38). Autophagy is considered a survival mechanism
for cancer cells under hypoxic and metabolic stress conditions
to provide them with the energy required for their survival and
proliferation (39). In this regard, down-regulation of crucial
autophagy proteins level led to restraining cancer growth and
reduced oxygen consumption along with the accumulation
of abnormal mitochondria, and specifically, autophagy was
demonstrated to be essential to promote the growth of Ras-
driven tumors, including CRC (40). Several in vitro studies
indicated that gaining autophagy activity in Ras-driven cancer
cells shows a significant increase in the survival and progression
of those cancer cells in several settings of metabolic stress (41).

Besides its critical role in regulating protein turnover
and cancer immunogenicity, autophagy has been involved in
epithelial-to-mesenchymal transition (EMT), a crucial multistep
mechanism needed by tumor cells to metastasize (42, 43). The
commonly identified EMT inducer TGFβ is known to induce
EMT through the stimulation of SMAD, MAPK, Rho-GTPases
and PI3K/AKT (44). During tumor progression, cells that
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undergo EMT need to stimulate autophagy machinery for their
survival and metastases. In this regard, it has been demonstrated
that autophagy is essential for EMT activation and cancer cell
metastasis in hepatoblastoma cells (45). Similarly, autophagy is
needed in TGFβ1-mediated EMT in non-small-cell lung cancer
cells (46). In CRC cells and upon using rapamycin, a specific
mTOR inhibitor and an autophagy inducer, starvation-mediated
autophagy was demonstrated to induce invasion and migration
and increase EMT marker expression; and interestingly, this was
reverted by Beclin-1 knockdown (47).

Effect of autophagy on cancer stem cells
Cancer stem cells (CSCs) are recognized to promote

tumor initiation, progression and contribute to therapy
resistance. CSCs drive tumor heterogeneity via EMT and
inflammatory signaling activation (48). Autophagy is identified
to promote the survival and control the pluripotency of CSCs
in the TME. IL-17B/IL-17RB signaling induces autophagy,
and subsequently, autophagy controls and maintains CSCs
homeostasis. Interestingly, TRAF6 is recruited in the cytoplasm
by IL-17B, which would induce autophagosome formation
through Beclin-1 ubiquitination, thus promoting self-renewal
and sphere-forming potential in gastric carcinoma (49).
Likewise, IGF-2/insulin receptor signaling controls CSCs
stemness and pluripotency through autophagy regulation. In
CRC, loss of imprinted gene expression of IGF-2 indicated
increased autophagy, leading to higher sphere-forming
potential, and increased CD133 expression, which is a marker
of stemness (50).

Increased autophagic flux is highly maintained and required
by CSCs to promote therapy resistance. In CRC, SOX2
transcriptional factor increases the expression of EMT and
ABCC2 genes and promotes chemotherapy resistance through
translocation and activation of β-catenin. Interestingly, SOX2
tends to increase Beclin-1 expression to induce autophagy
and promote chemoresistance. Thus, SOX2-β-catenin/Beclin-
1/autophagy pathway is involved in tumor progression and
chemotherapy resistance (51). A graphical illustration of the
autophagy signaling pathway and its dual role in CRC initiation
and progression is displayed in Figure 1.

Autophagy signaling modulates tumor
microenvironment

Autophagy is actively involved in remodeling TME via
unconventional secretion of several peptides, proteins and
hormones that are typically operated and secreted through the
conventional secretory system controlled by the endoplasmic
reticulum–Golgi pathway (53). Knockdown of autophagy in
both stromal cells and cancer cells is associated with a reduction
of several cytokines and chemokines release including IL-
1β, IL-2, IL-6, IL-8, IL-18, CCL2, CCL20, TNFα, and LIF.

Herein, autophagy is capable of modulating tumor growth,
metastasis and angiogenesis as well as immune evasion and
stemness maintenance, through autophagy-dependent secretion
of pro-inflammatory and pro-invasive factors (54–57). Another
tumor secretome released in an autophagy-dependent manner
includes growth factors (TGF-β1, b-FGF), extracellular matrix
proteins (MMP2, MMP9) and the angiogenesis stimulant
(VEGFA) (Table 1) (55, 58, 59). Additionally, autophagy
deficiency impedes the release and secretion of crucial cytokines
and chemokines involved in T cells and DC recruitment,
including IFN-γ, CXCL9, CXCL10, and CXCL11, thus immune
surveillance escape occurred (Table 1) (60).

In contrast, autophagy stimulates the release of specific
proteins known as DAMPs (damage-associated molecular
patterns) that enhance an immunomodulatory effect by
triggering immune cells. Therefore, it enhances the anti-tumor
immunity and restricts tumor progression (61, 62).

Cross-talk of autophagy and anti-tumor
immunity

In the age of immunotherapy success to fight cancer, there
is an increasing demand to know how autophagy modulation
affects the response to anti-cancer medications. Evidence
suggested a decline in autophagy levels in aging T lymphocytes,
indicating that autophagy inhibition might contribute to
hematopoiesis and/or systemic immunity impairment (64).
Furthermore, the survival of hematopoietic stem cells and
memory T cells are dependent on autophagy (65, 66).
In the myeloid compartment, autophagy supports B1 cell
self-renewal and provides free fatty acids needed by the
differentiating cells (67, 68). Additionally, autophagy has a
major influence on the tumor-specific CD8+ T cells (69) and
memory T-cells (70). Autophagy has been shown to dictate the
degradation of cytolytic granules secreted by cytotoxic CD8+
T cells and NK cells (71, 72). Intriguingly, autophagy has
a crucial role in protein degradation, thus allowing antigen-
presenting cells (APCs), like DCs, to utilize such proteins as
antigens on major histocompatibility complex (MHC)-I and
II. The process occurs through three main pathways; namely,
exogenous, cross-presentation, and endogenous pathways
(Figure 2). Such role was previously reviewed by Koustas
et al. (73).

Furthermore, immune suppressor cells have variable
responses to autophagy inhibition. For instance, the
immunosuppressive effect of Tregs is highly autophagy-
dependent (12). Interestingly, it has been indicated that
ATG5 or ATG7 deletion in T cells produces severe tumor
implant rejection in the syngeneic mouse tumor model (74).
Another published work demonstrated that inhibition of
Beclin-1 gene expression enhances T cells infiltration into the
TME (75).

In the developed TME, TAMs, M2 phenotype, are vital
in the growth and metastasis of cancer cells, as well as
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FIGURE 1

Multiple steps are involved in autophagy machinery: induction, initiation, vesicular expansion, lysosomal fusion, and degradation. Autophagy has
contradictory roles in tumorigenesis by either promoting or suppressing depending on the stage of cancer. The figure was modified from
Burada et al. (52).

angiogenesis (76). On the other hand, several studies
proposed that M1 macrophages inhibit tumor progression
(77). Autophagy has been shown to participate in the
production and polarization of macrophages. Toll-like
receptor-2 (TLR2) deficiency is associated with autophagy
inhibition and subsequently results in the biosynthesis
of M2-type macrophages, which in turn supports tumor

progression (78). In addition, autophagy initiation in TAMs
promotes apoptotic cell death, restrains proliferation, and
enhances radiosensitivity of CRC (79). Altogether indicated that
autophagy in TAM plays an essential role in suppressing cancer
(Figure 2).

Furthermore, other native immune cells critically participate
in CRC tumorigeneses, such as tumor-associated neutrophils
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TABLE 1 Summarized list of the crucial autophagy-dependent
secretome and inflammatory mediator in TME.

Substances/
Secretome

Definition and function

TGF-β1 Transforming growth factor β-1 (TGF-β1) is an
important pleiotropic cytokine in wound healing,
immunoregulation, angiogenesis and cancer.
TGF-β1 isoform is produced by immune cells that
exert powerful anti-inflammatory functions.

β-FGF Beta- Fibroblast Growth Factors (β-FGF) are
involved in cell proliferation, differentiation,
normal development, wound repair, and
angiogenesis. β-FGF is mostly produced by stromal
cells in bone marrow, leukemic cells, and T cells.
β-FGF is an important regulator in the self-renewal
and differentiation of multipotent hematopoietic
progenitor cells.

MMP2 Matrix metalloproteinase-2 (gelatinase a); is a type
IV collagenase that plays a role in vasculature
remodeling, angiogenesis, tissue repair, tumor
invasion, inflammation, and atherosclerotic plaque
rupture. Also, MMP2 functions as degrading
extracellular matrix proteins.

MMP9 Matrix metalloproteinase-9; potentially involved in
local proteolysis of the extracellular matrix,
leukocyte migration and bone osteoclastic
resorption. Also, it cleaves type IV and type V
collagen and fibronectin degradation.

VEGFA Vascular endothelial growth factor-A is involved in
angiogenesis, vasculogenesis and endothelial cell
growth. As well as it Induces endothelial cell
proliferation, promotes cell migration, inhibits
apoptosis and induces permeabilization of blood
vessels.

IFN-γ Interferon γ; Produced mostly by lymphocytes, has
antiviral activity, and an important
immunoregulatory functions. It acts as an activator
of macrophages and has anti-proliferative effects
on transformed cells. IFN-γ can potentiate the
antitumor effects of the type I interferons.

CXCL9 C-X-C motif chemokine 9; is a cytokine that
impacts the growth, movement, or involved in the
immune and inflammatory response. It acts as a
chemotactic for activated T-cells.

CXCL10 C-X-C motif chemokine 10; Chemotactic for
monocytes and T-lymphocytes. Binds to CXCR3;
Belongs to the intercrine alpha (chemokine CxC)
family.

CXCL11 C-X-C motif chemokine 11 is an important
chemotactic for interleukin-activated T-cells,
neutrophils, or monocytes. CXCL11 induces
calcium release in activated T-cells. Also, it is
participating in CNS diseases that involve T-cell
recruitment.

(TANs) and NK cells (Figure 2). For instance, promoting
autophagy in TANs enhances the migration and metastasis
of cancer cells (80). Analogous outcomes have been reported
in other cancer types such as melanoma and renal cell
carcinoma (81).

Autophagy as a regulator of
immune-checkpoints

Additionally, autophagy has an impact on immune
tolerance in response to immunotherapy, since immunologic
molecules such as indoleamine 2,3-dioxygenase (IDO),
Programmed cell death protein 1 (PD-1), and T-lymphocyte-
associated protein 4 (CTLA-4) are regulated by autophagy
pathways. IDO can inhibit tumor immunity through its
inhibitory effects on cytotoxic T-cell responses, DC maturation,
and Treg proliferation, thus promoting immune tolerance
and tumor development. However, autophagy can inhibit
the production of IDO in tumor sites (82, 83). Tumor
cell PD-1 interacts with T-cells PD-L1 and serves as an
inhibitory checkpoint molecule, preventing tumor cells
from being recognized, thus suppressing the antitumor
immunity. It has been reported that PD1 inhibits the
availability of nutrients to nearby T-cells by interacting
with its ligand, inducing autophagy (84). Results from
experiments with murine melanoma cells and human
ovarian cancer cells suggest that PD-L1-overexpressing
cells are more responsive to autophagy inhibitors than cells
with weak PD-L1 expression. This finding suggests that
autophagy inhibitors may become an important therapeutic
tool in PD-L1-overexpressing cancer cells (85). However,
further experiments are warranted to explore how PD-L1
signaling and autophagy operate in different cell types,
including CRC. This will assist in determining whether
anti-PD-L1 therapy combined with autophagy inhibitors
will enhance antitumor responses. The CTLA-4 protein is
another immune tolerance checkpoint that can be targeted to
treat tumors. A cancer-antigen called MAGE-A is associated
with CTLA-4 inhibitor resistance and is known to suppress
autophagy, suggesting that autophagy induction may be used
therapeutically as a way to improve the efficacy of CTLA-4
inhibitors in human melanomas (86). Further experiments
are needed to explore cross-talk of autophagy and immune
checkpoints in CRC as well. Immune checkpoint therapy
for CRC, as a whole, remains unsatisfactory at present.
However, there has been renewed interest in examining
additional immune checkpoint molecules. New immune
checkpoint targets have been identified like the T cell
immunoglobulin and mucin domain containing-3 (TIM-
3), the V-domain Ig suppressor of T cell activation (VISTA),
the T cell immunoglobulin and ITIM domain (TIGIT), and
the lymphocyte activation gene-3 (LAG-3) (87–89). Despite
an exponential growth in clinical trials for emerging immune
modulators, such as anti-LAG-3 antibodies and anti-TIM-
3 antibodies, registered on ClinicalTrials.gov, no drugs
have yet been approved for clinical use. Despite promising
monotherapy results, more effort needs to be integrated toward
developing rational combinations of immune-therapy to inhibit
cancer growth through non-redundant pathways that work
synergistically.
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FIGURE 2

Autophagy roles in immune responses as a tumor-suppressive and tumor protective mechanism in the tumor microenvironment. This figure
was modified from Zada et al. (63).

Cross-talk of autophagy and endothelial cells
The innermost layer of blood vessels is lined by endothelial

cells. In addition to being essential for normal tissue
function, new blood vessels also play an important role
in cancer pathology. For tumor cells to grow and spread,
neovascularization is necessary. Tumor endothelial cells have a
multifaceted functional role since they are not only responsible
for enhancing angiogenesis, but are also important in immune
regulation in the TME (90). Regulatory mechanisms profoundly
influence peripheral immune cell recruitment into the TME by
acting as significant gatekeepers during cellular transmigration
(91–93). Furthermore, tumor endothelial cells act as antigen-
presenting cells (APCs), which are associated with T cell
activation, proliferation, and priming (92). Furthermore, tumor
endothelial cells are required for the development of “tertiary
lymphoid structures,” which are associated with the response
to checkpoint antibody therapy (94). Other qualities that
distinguish tumor endothelial cells from normal endothelial
cells are their high proliferation potential and markedly
changed gene expression profile (i.e., an increase in pro-
angiogenic, extracellular matrix remodeling, and stemness
genes), leading to increased secretion of immunomodulatory

cytokines and altered cell-surface receptors, e.g., MHC and
immune checkpoints (90, 95). It is possible that the tumor
endothelial cells phenotype is rooted in an aggressive tumor
micro-milieu driven by hypoxia and ROS (96, 97). In clinical
practice, chemotherapy combined with angiogenesis inhibitor
results in marked enhancement of anti-cancer effects in patients
with metastatic CRC (98).

Increasing evidence suggests that autophagy impacts
endothelial cell survival, proliferation, migration and
angiogenesis. However, whether autophagy regulates
angiogenesis positively or negatively is still debated. For
instance, according to Du et al., overexpressing ATG5 induced
autophagy in bovine endothelial cells resulting in enhanced
formation and migration in those endothelial cells while
3-methyladenine (3-MA) or siRNA targeting ATG5 reduced
angiogenesis (99). A study by Goyal et al. discovered that
decorin-induced autophagy provided protection against tumor
neovascularization and epithelial death (100). Autocrine VEGF
released from endothelial cells and gastrin-releasing peptide
(GRP) secreted by tumors promote angiogenesis, endothelial
survival, and proliferation of endothelial cells by inhibiting
autophagy (101). Moreover, a study carried out by Seon-Jin Lee
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et al. established that genetically disrupting Beclin1 can increase
tumor growth and angiogenesis in hypoxic environments (102).
A broader view suggests that autophagy can influence the
angiogenesis process, which is important to tumor growth, by
affecting the function and survival of endothelial cells, which
has a pro- or anti-tumor effect on CRC.

Autophagy and colorectal cancer metabolism
Autophagy is a conserved catabolic process by which

various proteins, cytoplasmic constituents and organelles
can re-enter the different metabolic processes. Cancer cells
altered their metabolism, thus promoting their proliferation,
progression, and long-term survival. Cancer cells enhance
glucose uptake and metabolize glucose to lactate even when
completely functioning mitochondria support the oxidative
phosphorylation mechanism, altogether is known as Warburg
effect (103). In the normal process, pyruvate kinase (PKM2),
the enzyme catalyzing the last step in the glycolytic process,
takes control of the glycolytic flux, preventing the excessive
accumulation of glycolytic metabolites (104, 105). However,
pyruvate kinase (PKM2) enzyme breakdown is enhanced in
cancer cells via chaperon-mediated autophagy, thus associated
with increased accumulation of glycolytic metabolites (106).
Also, hexokinase 2 (HK2), rate-limiting enzyme of the glycolytic
pathway, is selectively damaged by autophagy in liver carcinoma
(107, 108). Therefore, autophagy plays a vital role in cancer
metabolism via controlling glycolysis at different stages and
levels. Warburg effect elevates lactate level in the TME
that disturbs the extracellular environmental pH, resulting in
autophagy activation (109). For instance, acute acidification of
breast cancer cells results in increased expression of LC3, ATG5,
and BNIP3 (110). Therefore, autophagy destructive effect on
vital metabolic enzymes may critically influence many features
of central metabolism in cancer. Hence, autophagy contributes
to malignancy progression and transformation by providing
cancer cells with the efficient ability to re-distribute metabolites
allowing metabolic rewiring.

Moreover, as a result of starvation, infections, and
cancer, glutamine homeostasis is disturbed and the need for
exogenous glutamine to promote cell survival and growth
is increasing (111). Due to the Warburg effect, glutamine
is excessively required to sustain oxidative phosphorylation
through its role as a key intermediate in the tricarboxylic
acid (TCA) cycle. Furthermore, it is the main nitrogen
source for many aminotransferase enzymes involved in the
synthesis of nucleotides and non-essential amino acids (112).
Glutamine participates in redox homeostasis by contributing
to NADH/NADPH synthesis and glutamate synthesis, which is
critical for glutathione synthesis (112). Therefore, with such a
wide range of glutamine functions, it is critical for some cancers
including CRC to ensure an adequate glutamine supply (113).
Targeting glutamine transport and metabolism has therefore
been a promising approach for treating CRC (113). As soon

as glutamine is deficient or lacking, the cells show differential
manifestations, including a pronounced decline in ATP and
NADH, as well as a significant accumulation of ROS (114, 115).
Herein, Autophagy plays an important role in this adaptive
response by suppressing glutamine-consuming processes and
elevating glutamine content in the body. Macro-pinocytosis
is one of the mechanisms by which activated autophagy
restores glutamine levels via recycling intracellular proteins
and extracellular compartments (116). Meanwhile, some reports
claim that autophagy plays a crucial role in cancers that
escape death with high success rates (117). Upon limitation
of exogenous glutamine, inhibition of autophagy in SW620
and SW480 colorectal cell lines resulted in increased apoptotic
activity (118). In the same way, chronic activation of mTORC1
may result in severe mTORC1-dependent cell death (later
termed glutamoptosis), ultimately inhibiting autophagy (119).
In nutrient starvation, autophagy activation is often associated
with cell survival. However, over-activating autophagy in
specific contexts has shown anti-tumor potential.

Role of autophagy in the regulation of hypoxia
and oxidative stress in tumor
microenvironment

Autophagy plays a pivotal role in helping cancer cells
adapt and survive under hypoxic TME. Intriguingly, autophagy
promotes the survival of cancer cells through its main effector,
hypoxia-inducible factor-1α (HIF-1α), which is mostly the case
in solid tumors, specially CRC (120). Tumor cells can endure
hypoxia through Beclin1-mediated cytoprotective autophagy by
upregulating the transcription of BNIP3 and BNIP3L (121).
Moreover, BNIP3L/NIX functions as a selective receptor for
autophagy that is highly expressed in tumor cells, which is
crucial to promote mitophagy under hypoxic TME through
NFE2L2/NRF2 transactivation. In addition, cells overexpressing
NIX, are more susceptible to acquire glioma stem cell-like
properties via mTOR/AKT/HIF pathway (122). Under hypoxic
conditions, a crucial adaptor protein, FUNDC1, is triggered
to eliminate dysfunctional mitochondria. FUNDC1 protein
functions critically in autophagy via engaging with LC3 protein
through LC3 interacting region (LIR) of FUNDC1 (123).
Additional form of autophagy regulation under hypoxia occurs
via HMGB1 signaling through upregulating YAP expression in
tumor cells. Similarly, ATG5 and ATG12 are stimulated by PAK1
acetylation and PTBP3, respectively, resulting in promoting
pro-survival autophagy. Furthermore, an important kinase,
PRKCA/PKCα, that regulates hypoxia-mediated autophagy via
ATG5 and Beclin1, stimulates tumor-initiating cell renewal
in CRC (124). Likewise, YTHDF1 gene is activated by HIF-
1α to promote autophagy protective effect through ATG2A
and ATG14. Of note, protein phosphatase 2 (PP2A) along
with mTOR downstream kinase signaling pathways control
the prolyl hydroxylase domain-containing protein 2 (PHD2)
phosphorylation to govern and promote HIF-1α mediated

Frontiers in Medicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2022.959348
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-959348 September 5, 2022 Time: 10:22 # 9

Mahgoub et al. 10.3389/fmed.2022.959348

autophagy in CRC cells survival (125). Also, ANKRD37 gene is
demonstrated to induce HIF-1α mediated autophagy in hypoxic
colon cancer once it translocates to the nucleus (126).

Hypoxia-mediated HIF-1α induction is reported to promote
autophagy, thus controlling glycolytic processes to maintain
energy supply and cell progression. In this regard and under
hypoxic conditions, proline gets metabolized into pyrroline-
5-carboxylate (P5C) with the help of proline oxidase (POX)
enzyme, which elicits ROS production that promotes protective
autophagy mechanism, which is necessary for the survival of
HT29 cells (127). Proline oxidase (POX) enzyme role is AMPK-
dependent; however, it is controlled in HIF-1α and HIF-2α

independent manner (127).
Interestingly, autophagy was demonstrated to restrain

oxidative stress-dependent inflammation and promote tumor-
suppressor mechanisms. For instance, the transcription
activator “BRG1” stimulates autophagosome biogenesis by
regulating the transcription of ATG7, AMBRA1, and Wipi2,
thus attenuating colonic inflammation and CRC development
in an oxidative stress-mediated autophagy manner (128).

Autophagy targeted therapy in
colorectal cancer

Recent and ongoing clinical trials

Despite the controversial and contextual relationship
between cancer and autophagy, it is still considered a
promising target for treatment, as many shared regulatory
pathways of carcinogenesis and autophagy are involved. Some
studies demonstrated that autophagy induction is highly
correlated to the resistance of cancer cells to chemotherapy,
immunotherapy, and radiotherapy via directly modulating
cancer cell metabolism or diminishing cell death pathway
(72, 129–131). Thus, various preclinical and clinical studies
have been conducted to develop pharmacological autophagy
inhibitors (132). The most recent development of autophagy
inhibitors can be known by tracing the clinical trials (Table 2).
The most effective targeted therapies recognized in CRC
treatment, so far, are anti-angiogenesis such as cabozantinib,
apatinib and bevacizumab, and the inhibitors of epidermal
growth factor receptor (anti-EGFR) such as cetuximab (133).

For decades, chloroquine has been approved in malaria
and arthritis treatment and is currently an inhibitor of
autophagy via inhibiting the fusion of autophagosomes with
lysosomes in the last step of autophagy machinery. Hence,
many clinical trials are investigating chloroquine or chloroquine
derivatives either alone or in chemotherapy or radiotherapy
combinations in patients suffering from different forms of
cancers. One trial named CHOICES (Chloroquine and Imatinib
Combination to Eliminate Stem cells), a phase II trial,
is investigating and comparing the effect of imatinib and

hydroxychloroquine combination versus imatinib alone in
patients with chronic myeloid leukemia, establishing evidence
of autophagy inhibitors concept (134). Apatinib, a tyrosine
kinase inhibitor of VEGFR2, has been indicated to stimulate
autophagy via AKT- mTOR signaling pathway in colon cancer
cells (135). Additionally, Cabozantinib is an inhibitor of
various kinases responsible for angiogenesis, cell growth and
metabolism that showed a major autophagy induction in
HCT116 and HT29 CRC cell lines. Notably, cabozantinib in
combination with autophagy inhibitors promotes apoptosis
in HT29 and HCT116 cells (136). In a study using CRC
cell lines, bevacizumab stimulates autophagy as evidenced
by punctate patterns of LC3, autophagic vacuoles presence
and Beclin-1 accumulation. Autophagy inhibition by targeting
ATG5 and Beclin-1, via RNA interference or chloroquine,
enhances the ability of bevacizumab to induce apoptosis and
prevent proliferation, verifying the protective role of autophagy.
Similarly, in vivo studies using small interfering RNA or
chloroquine and bevacizumab combination showed significant
inhibition in tumor growth when compared to bevacizumab
monotherapy (137).

Of note, a combination of temozolomide and
hydroxychloroquine is indicated to be safe and tolerable
as well as exerted beneficial anti-tumor effect in phase I trial in
patients with solid tumors, including CRC, and in advanced
melanoma (138). Similarly, another phase I trial documented
the significant efficacy of hydroxychloroquine in combination
with mTOR inhibitor temsirolimus in tumor suppression
(139). On the other hand, a recent phase I study showed that
hydroxychloroquine treatment with AKT inhibitor MK-2206 is
tolerable but with minimal anti-tumor activity in solid tumors
including CRC (140). As evidenced by multiple instances
previously reported, autophagy inhibitors as monotherapy
might not be a good treatment choice for cancer therapy (141).
Treatment combination of hydroxychloroquine with HDAC
inhibitor vorinostat in an ongoing phase I study for patients
with advanced renal and colorectal cancers shows no significant
clinical improvement in the safety profile and in the patient
PFS, indicating a limited benefit of adding hydroxychloroquine
(Table 2) (142).

In a study on CRC cell lines, autophagy inhibition by 3-
MA showed significant 5-FU-induced apoptosis, thus autophagy
might have a crucial role in enhancing response of colon cancer
cells treated with 5-FU (143). Likewise, another study using
chloroquine, an autophagy inhibitor, in combination with 5-
FU showed an enhanced anti-proliferative effect of 5-FU in
CRC cells (144). More, inhibiting late-stage autophagy has been
demonstrated to enhance the apoptotic cell death activity of
the pyrrolo-1,5-benzoxazepines (PBOXs) in human CRC cells
(145). Moreover, UAMC-2526 displays inhibitory effects on
ATG4. This compound abolishes autophagy in mice bearing
colorectal tumors and promotes chemotherapy-induced cell
death (146). Recent in vitro assays and in silico screening has
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TABLE 2 Previous and current clinical trials involving hydroxychloroquine (HCQ) in combination with a variety of anti-cancer
targeted agents in CRC.

Treatment Target of the
treatment

Phase Patients number Status Outcome Trial reference number at
ClinicalTrials.gov/References

Vorinostat +
HCQ

Histone deacetylase
(HDAC) inhibitor.

I 72 Active not
recruiting

No significant clinical
improvement in the safety

profile and the
progression-free survival.

NCT01023737 (142)

Temsirolimus +
HCQ

mTOR inhibitor. I 40 completed Safe and tolerable, Significant
tumor suppression effect.

NCT00909831 (139)

Temozolomide +
HCQ

DNA alkylating
agent/induce cell cycle

arrest at G2/M.

I 38 completed Safe and tolerable, beneficial
anti-tumor effect.

NCT00714181 (138)

Protein kinase B
Akt inhibitor
(MK-
2206) + HCQ

Akt inhibitor. I 62 Active not
recruiting

Tolerable, minimal
anti-tumor activity.

NCT01480154 (140)

HCQ, FOLFOX
and
bevacizumab.

FOLFOX: chemotherapy
that inhibits DNA

synthesis.
Bevacizumab:

VEGF/VEGF receptor
inhibitor.

II 38 completed Increases in autophagy
marker LC3 with a complete

response rate of 11% but
without improved OS in the

28 evaluable patients.

NCT01006369 (98)

identified a new, important ATG4B inhibitor (S130) that has
the ability to interfere with ATG4 proteolytic activity but not
with other proteases. Also, S130 is well distributed in tissues
in vivo, enhances cell death in CRC and reduces the tumor
size (147). These findings identify ATG4B as a potential anti-
cancer target.

Challenges and potential solutions of
the autophagy targeted treatment

Based on studies and clinical trials described above, it
seems that autophagy inhibitors have a different clinical
response in cancer therapy. Identification of good biomarkers
with suitable pharmaco-dynamic properties that can estimate
any change in autophagy, is of the major difficulties facing
scientists (148). It remains to be explored whether the
limited clinical efficacy of chloroquine is correlated with
its lack of specificity in inhibiting autophagy. In fact, both
chloroquine and hydroxychloroquine are non-selective
autophagy inhibitors which are evident by their role in the
reduction of nutrient scavenging (149). This diminished
targeted delivery results in plummeting the bioavailability of
the drugs. However, hydroxychloroquine is characterized by
higher bioavailability compared to chloroquine. Moreover,
both drugs have been identified to modify the pH of
tumors, hence resulting in bioavailability modulation
of different cytotoxic drugs when used in combination
(150). Furthermore, frequent use of chloroquine has been
identified for a long time to elicit renal failure (151).
Noteworthy, both hydroxychloroquine and chloroquine

could affect pacemaker channels and voltage-gated Na+,
Ca2+, and K+ ion channels in the heart, leading to
serious dysrhythmias.

In this regard, there is an urgent need for novel
safe autophagy inhibitors with selective targets and a good
bioavailability; properties that many proposed drugs failed to
reach. One of the major advancements in the field is the
discovery of Lys05, a dimeric form of chloroquine, which shows
higher accumulation capabilities in the lysosome. Also, Lys05
has been identified to exert potent monotherapy anti-tumor
activity in both in vitro and preclinical mouse models with
limited toxicity in the treated mice. Of note, Lys05 potent
characteristic in autophagy inhibition is dependent on C7-
Chlorine, bivalent aminoquinoline rings and a short tri-amine
linker (152).

Recently, new druggable autophagy target proteins
have been established, including Vps34 (or class III
PI3K) and Beclin-1. Notably, both proteins are involved
in the early autophagy initiation process. A kinase
inhibitor, SAR405, inhibits both Vps34 and Vps18,
thus diminishing the lysosomal function via disturbing
the vesicle trafficking between the lysosome and the
late endosome. Further, SAR405 has been found to
prevent mTOR- and starvation-dependent stimulation of
autophagy (153).

Another druggable protein for autophagy modulation which
has been recently proposed is the serine/threonine kinase
ULK1/ATG1. Identification of small-molecule SBI-0206965, a
potent ULK1 inhibitor, was happened through cell-based screen.
This inhibitor was found to be high in vitro selective for ULK1
kinase as well as suppressed phosphorylation events mediated
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by ULK1 kinases. Markedly, SBI-0206965 anti-tumor effect has
been evidenced in vivo as it showed potent tumor inhibition
when combined with mTOR inhibitors, hence allowing it for use
in the clinic (154). However, a major limitation of this molecule
is that it could affect the activity of other kinases including JAK3,
FLT3, FAK, and Src.

Conclusion and perspectives

A large number of proteins involved in the complex process
of autophagy, which appears to play a significant role in all stages
of carcinogenesis as it impacts tumor progression, initiation
and metastatic capacity. Although the role of autophagy is
not fully understood in cancer, it is thought to play both a
promoting and inhibiting role depending on the context. Thus,
it is imperative to identify how these apparently paradoxical
roles of autophagy are regulated in CRC, and to constitute an
overall view of the mechanisms that enable autophagy to play
one role, not the other.

Autophagy modulates the effect of hypoxia and oxidative
stress, regulates metabolism, promotes cancer stem cells and
constrains the surveillance of immune cells to support cancer
progression. The development of several therapeutic agents
that modulate autophagy in CRC has led to promising results,
supporting their use to enhance the action of other medications.
Currently, autophagy inhibitors used in cancer therapy are
limited to hydroxychloroquine and chloroquine that require
close monitoring, when used for a prolonged period, for hepatic
and renal adverse effects. Therefore, there is an urgent need
for more translational and basic research to clarify the intricate
role of autophagy, and to resolve unanswered questions about
the enhanced efficacy of autophagy-targeted cancer therapy.
Notably, there is an increased interest in personalized cancer
treatment by joining the TME modulation status with advanced

technology to explore the alteration in cancer progression. This
will hopefully propose a major success in cancer therapy.
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