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Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic

inflammation of the joints and presence of systemic autoantibodies, with

a great clinical and molecular heterogeneity. Rheumatoid Factor (RF) and

anti-citrullinated protein antibodies (ACPA) are routinely used for the diagnosis

of RA. However, additional serological markers are needed to improve the

clinical management of this disease, allowing for better patient stratification

and the desirable application of precision medicine strategies. In the present

study, we investigated those systemic molecular changes that are associated

with the RF and ACPA status of RA patients. To achieve this objective,

we followed a proteomic biomarker pipeline from the discovery phase

to validation. First, we performed an iTRAQ-based quantitative proteomic

experiment on serum samples from the RA cohort of the Hospital of

Santiago de Compostela (CHUS). In this discovery phase, serum samples

from the CHUS cohort were pooled according to their RF/ACPA status.

Shotgun analysis revealed that, in comparison with the double negative

group (RF–/ACPA–), the abundance of 12 proteins was altered in the

RF+/ACPA+ pool, 16 in the RF+/ACPA– pool and 10 in the RF-/ACPA+

pool. Vitamin D binding protein and haptoglobin were the unique proteins

increased in all the comparisons. For the verification phase, 80 samples

from the same cohort were analyzed individually. To this end, we developed

a Multiple Reaction Monitoring (MRM) method that was employed in a

comprehensive targeted analysis with the aim of verifying the results obtained

in the discovery phase. Thirty-one peptides belonging to 12 proteins

associated with RF and/or ACPA status were quantified by MRM. In a
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final validation phase, the serum levels of alpha-1-acid glycoprotein 1 (A1AG1),

haptoglobin (HPT) and retinol-binding protein 4 (RET4) were measured by

immunoassays in the RA cohort of the Hospital of A Coruña (HUAC). The

increase of two of these putative biomarkers in the double seropositive group

was validated in 260 patients from this cohort (p = 0.009 A1AG1; p = 0.003

HPT). The increased level of A1AG1 showed association with RF rather than

ACPA (p = 0.023), whereas HPT showed association with ACPA rather than

RF (p = 0.013). Altogether, this study has allowed a further classification

of the RA seropositive patients into two novel clusters: RF+A1AG+ and

ACPA+HPT+. The determination of A1AG1 and HPT in serum would provide

novel information useful for RA patient stratification, which could facilitate the

e�ective implementation of personalized medicine in routine clinical practice.

KEYWORDS

rheumatoid arthritis, biomarker, haptoglobin, orosomucoid 1, multiple reaction

monitoring

Introduction

Rheumatoid arthritis (RA) is an autoimmune pathology
mainly characterized by chronic inflammation of the
diarthrodial joints and other extra-articular tissues. Effective
treatments currently available are few and present serious side
effects. In the late stages of the disease, the persistent symmetric
and erosive synovitis leads to structural damage and permanent
disability (1). Once the osteochondral lesion appears, the
damage is irreversible, which turns of paramount importance
the early diagnosis of the pathology and the establishment
of an effective treatment as soon as possible. However, RA is
also characterized by heterogeneous clinical manifestations
and a very variable course, which makes it difficult to select
effective strategies. Although it currently exists a plethora of
drugs that have markedly improved the management of RA
and the patient’s quality of life, still around 20–40% of patients
do not respond to treatment and the mechanisms that lead to
this resistance are not yet known (2). Therefore, one of the
most relevant medical needs in the field of RA is related to

Abbreviations: A1AG1, Alpha-1-acid glycoprotein 1; AACT, Alpha-

1-Antichymotrypsin; ACPA, Anti-citrullinated protein antibodies;

AFAM, Afamin; CHUAC, Complejo Hospitalario Universitario de A

Coruña; CHUS, Complejo Hospitalario Universitario de Santiago de

Compostela; CV, Coe�cient of Variation; GO, Gene Ontology; HPT,

Haptoglobin; iTRAQ, Isobaric tag for relative and absolute quantitation;

KNG1, Kininogen-1; LC, Liquid Chromatography; MALDI-TOF, Matrix-

Assisted Laser Desorption/Ionization—Time-Of-Flight; MRM, Multiple

Reaction Monitoring; MS, Mass Spectrometry; PLMN, Plasminogen; RA,

Rheumatoid Arthritis; RET4, Retinol 4 Binding Protein; RF, Rheumatoid

Factor; RT, Retention Time; VDBP, Vitamin D Binding Protein.

the stratification of patients and the establishment of precision
medicine strategies (3, 4).

RA is also characterized by the presence of specific
autoantibodies in the patient’s sera, which are used in the
clinical routine as biomarkers for disease diagnosis. The most
representative is Rheumatoid Factor (RF), which was firstly
described in RA as it is present in around 80% of the patients (5).
RF is an antibody that binds the Fc region of Immunoglobulin G
(IgG), forming immune complexes that contribute to the disease
process. RF is present in other rheumatic diseases, such as
Sjögren’s syndrome, and its elevated levels have been associated
with more persistently active synovitis, more joint damage,
greater eventual disability and arthritis (6). Nevertheless, the
specificity of RF for established RA is quite low (between 60 and
70%) (7) and studies on its association with response to different
treatments have displayed controversial results (8). The second
most characteristic autoantibodies in RA are those originated
against citrullinated proteins, or ACPA. Although they are much
more specific than RF (96%), their diagnostic sensitivity in early
arthritis is 57% (9). Furthermore, up to 30% of RA patients never
develop these autoantibodies (10). These considerations point
out the need to identify novel molecular biomarkers that could
aid in the early diagnosis and stratification of patients with RA.

Interestingly, the major role of biomarkers in RA can be
easily objectified by comparing the diagnostic criteria before and
after 2010. From 1987, and during the next 23 years, the only
ACR criteria biomarker was RF, whereas in the last ACR/EULAR
2010 criteria for the early diagnosis of RA three serological tests
were added (ACPA, ESR and CRP) (11) and this demonstrated
to improve significantly the clinical management of the disease.
However, in the era of personalized medicine, mostly subjective
criteria continue to be the basis of the RA diagnosis, evaluation
and treatment (12). In addition to difficulties for early diagnosis,
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this holds predicting disease course and response to treatment
very imprecise.

Quantitative proteomics has demonstrated its power for
the identification of novel RA protein markers (13). In this
field, proteomics studies have also contributed to increase
the knowledge of disease etiopathogenesis. One the main
goal of proteomics investigations remains the discovery of
promising biomarkers for patient stratification, which would
undoubtedly have a tremendous impact in improving the
clinical management of RA patients (14, 15). Identifying
specific phenotypes and endotypes can inform both prognosis
and guide therapeutic development for RA disease, with the
potential of positively impacting patient care. Although clinical
phenotypes are the most common method of subgrouping RA,
the importance of identifying endotypes for targeted treatment
has gained much attention particularly from the point of view
of drug discovery, where identifying the right target is key for
success. At the moment, there are few positive examples of RA
endotyping other than RF and ACPA. Dennis et al. described
four potential endotypes related to drug response: (i) lymphoid
(B and plasma cell dominant), (ii) a myeloid (macrophage
dominant), (iii) a fibroid, and (iv) a low inflammatory phenotype
(16). The knowledge of molecular RA endotypes evidenced
with sensitive techniques such as high-throughput proteomics,
could be used to target specific subgroups of patients that could
benefit from a variety of targeted preventive treatment strategies
allowing personalized interventions in RA (17). In the present
work, we aimed to carry out a pipeline based on quantitative
proteomics tools to discover, verify and validate circulating
proteins that are associated with the presence in serum of RF and
ACPA and may therefore have potential for the stratification of
RA patients and the application of precision medicine strategies
based on these molecular signatures.

Materials and methods

Serum samples

The experimental design of this work was structured in
three phases, as illustrated in Figure 1: discovery, verification
and validation. The study employed serum samples from
patients diagnosed with RA according to the criteria of the
American College of Rheumatology (18). The 80 serum samples
analyzed in the discovery and verification phases belong
to a cohort from the Rheumatology Unit of the Complejo
Hospitalario Universitario de Santiago de Compostela (CHUS),
whereas the 260 samples included in the validation phase
correspond to a cohort from the Hospital Universitario de A
Coruña (CHUAC). Age, gender, ACPA and RF status were
recorded for all patients. These samples were divided into
four distinct sub-groups, according to their RF and ACPA

values: RF+/ACPA+, RF+/ACPA–, RF–/ACPA+, and RF–
/ACPA–. In the CHUS cohort, each group was composed by
20 serum samples, whereas the 260 samples of the CHUAC
cohort had the following distribution: 110 FR+/ACPA+
(43.1%); 50 RF+/ACPA– (19.2%); 74 RF–/ACPA– (28.5%)
and 26 RF–/ACPA+ (9.2). The demographic characteristics
of the samples included in this study are detailed in
Table 1.

The work was carried out in accordance with the ethical
principles of the Declaration of Helsinki and good clinical
practice. All patients read and signed the informed consent
in which were objectified the use of data/samples for basic
investigation. The research protocol was revised and approved
by the Local Ethics Committee (Comité de Ética de la
Investigación de A Coruña—Ferrol, Galicia, Spain).

Proteomic biomarker pipeline

In this study, we followed a classical proteomic biomarker
pipeline (Figure 1). We started with a shotgun analysis
by multiplexed isobaric tagging technology for relative
quantitation (iTRAQ) in a reduced number of pooled
samples (80 sera grouped in 4 pools). Then, we moved on
to the verification analysis of altered proteins by targeted
MS-based assays (multiple reaction monitoring analysis,
MRM). In this step, we analysed the same 80 samples
individually in order to confirm the results obtained in
the discovery phase. Finally, we performed the validation
analysis by immunoassays on a second cohort of 260
RA patients.

Shotgun proteomics by iTRAQ labelling
and LC-MS/MS analysis

The shotgun proteomic analysis of the discovery phase
was performed on 80 sera from the CHUS cohort. The
20 samples per group to be compared (RF+/ACPA+,
RF+/ACPA–, RF–/ACPA+ and RF–/ACPA–) were pooled
at equal amounts to reduce interindividual variability.
Then, these four pools were analyzed in duplicate by
8-plex iTRAQ-based quantitative proteomic approach
(Isobaric tags for relative and absolute quantitation,
Sciex). The experimental workflow is illustrated in
Supplementary Figure S1.

First, the pooled samples were depleted from the top-14
most abundant serum proteins by affinity chromatography,
using a MARS Hu-14 column mounted on a 1,200 series
HPLC with UV detector set at 280 nm (Agilent Technologies).
Then, protein concentration was determined by NanoDrop
spectrophotometer (Thermo Scientific) and 50 µg of each pool
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FIGURE 1

Experimental design of this study. Schematic representation of the proteomic biomarker workflow employed in this work for the identification of

RA biomarkers and the results obtained hereof.

TABLE 1 Basic demographic and clinical characteristics of the subjects included in this study.

Group n RF (IU/ml) Anti-CCP (U/ml) Sex (F/M) Age

LC-MS/MS (discovery and verification) RF+/ACPA+ 20 ND ND 15/5 62.6± 11.6

RF+/ACPA– 20 ND ND 16/4 62.5± 15.8

RF–/ACPA+ 20 ND ND 18/2 59.1± 12.4

RF–/ACPA– 20 ND ND 15/5 58.7± 14.8

Immunoassays (validation) RF+/ACPA+ 110 298.89± 504.84 288.77± 357.85 78/32 60.05± 12.91

RF+/ACPA– 50 189.11± 287.36 11.39± 8.15 37/13 53.08± 16.29

RF–/ACPA+ 26 20± 0 220.43± 172.45 22/4 55.65± 13.64

RF–/ACPA– 74 19.99± 0.12 8.14± 7.69 54/20 56.5± 14.7

ND: not detected.

were digested with trypsin following standard protocols. The
resultant peptide mixtures were differentially labeled using the
iTRAQ reagents (Supplementary Figure S1), according to the
manufacturer’s instructions (Sciex) and a protocol previously
described by our group (19). Briefly, aliquots of the iTRAQ-
labeled peptides were combined and cleaned with Pierce C18-
spin columns (Thermo Scientific). The final peptide mixture

was fractionated by reversed phase chromatography at basic
pH using a C18 column (Zorbax Extend C18, 100 × 2.1mm
id, 3.5µm, 300 Å, Agilent) mounted on the same HPLC
system (HP1200, Agilent), at a flow rate of 0.2 ml/min. A
total of 60 fractions were collected from each sample injection.
The fractions were then combined according to their UV
trace, desalted and loaded onto a reversed phase column C18
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(Integrafit C18, Proteopep TM II, 75µm id, 10.2 cm, 5µm, 300
Å, New Objective). This second separation was carry out at acid
pH and at a constant flow rate of 350 nl/min. The microfractions
were automatically spotted onto 1536 MALDI plates using a
SunCollect MALDI Spotter (SunChrom). Finally, four plates
containing 4 LC runs (corresponding to 4 samples) per
plate were analyzed in a 4,800 MALDI-TOF/TOF instrument
(ABSciex) with a Nd:YAG laser and a firing rate of 200Hz. For
MS full-scan acquisition, the instrument parameters were set as
follows: m/z range from 800 to 4,000, fixed laser intensity of
3,500 kV and 1,500 shots/spectrum. For tandem MS acquisition
mode, collision energy was set at 1 kV with CID gas (air)
over a range from 60 to −20 m/z of the precursor mass value.
A first MS/MS acquisition was performed with a fixed laser
intensity of 4,300 kV and 2,000 shots/spectrum recorded. Up
to 12 of the most intense precursors per spot with signal/noise
ratio (S/N) > 80 were selected. An exclusion list was created
to exclude from the analysis common contaminants such as
trypsin autolysis peaks and matrix ion signals. Finally, a second
MS/MS acquisition was performed excluding the precursors
analyzed in the previous one and lowering the S/N threshold
to 50 in order to detect those peptides that had not yet
been fragmented.

Analysis of the shotgun proteomics data

For protein identification and quantification, all the
MS/MS data were analyzed using ProteinPilotTM software
v.4.5 (Sciex). Each MS/MS spectrum was searched against
the publicly available Uniprot/Swissprot database; the release
version 2017_02 with 553,655 sequences, 198,177,566 residues
and Homo sapiens taxonomy restriction was used. Trypsin
cleavage specificity, methyl methanethiosulfate (MMTS)
modified cysteine, biological modification “ID focus” settings
and a protein minimum confidence score of 95% were set
as fixed search parameters. The identity of the proteins was
confirmed when the Detected Protein Threshold was >95%
and the Unused ProtScore was >1.3. In order to relatively
quantify the abundance of the proteins identified in each pool
of samples, the ratios of the peak areas of iTRAQ reporter
ions were calculated after data normalization to avoid loading
error by bias and making the assumption that the labeled
peptides were combined in 1:1 ratio. To remove background
ion signal, peak areas of the iTRAQ reagents were also corrected
by ticking the background correction option. Finally, we
considered statistically significant only those changes with a p

value ≤0.05, a ratio ≥1.3 (or ≤0.776) and an error factor (EF)
<2. For a more accurate data analysis, the Proteomics System
Performance Evaluation Pipeline (PSEP), a tool integrated
into the ProteinPilot software, was used to independently
estimate the false discovery rate (FDR) using an automatic
decoy database search strategy.

Sample preparation for multiple reaction
monitoring analysis with internal
standards

The verification phase of this work was carried out using
a targeted proteomic approach based on multiple reaction
monitoring (MRM) analysis of 80 serum samples from the
CHUS cohort. Firstly, protein concentration of each serum
sample was determined by NanoDrop spectrophotometer
(280 nm) and 10 µg of each sample were in-solution digested
with trypsin following standard protocols. Briefly, proteins
were denatured in 6M Urea/2M Thiourea/25mM ammonium
bicarbonate buffer and then reduced with 10mM Dithiothreitol
(DTT) for 1 h at 37◦C. Then, cysteins were blocked by alkylation
with 50mM iodoacetamide (IA) for 45min in the dark. Samples
were diluted with 25mM ammonium bicarbonate to lower the
final urea concentration to 1M and Promega Grade Trypsin
was added at a 1:30 ratio (enzyme:protein). After 16 h at 37◦C,
the enzymatic digestion was stopped by lowering the pH of
the reaction up to 2 with TFA. Finally, the digested peptides
were cleaned-up by in-house made stage tips (3M Empore
SPE-C18 disk, 47mm, Sigma Aldrich) after the addition of
an experimentally determined amount of a mixture of stable
isotope–labeled peptides (SIS, JPT, Germany). SIS peptides
incorporated a fully atom labeled isotope at the C-terminal
lysine (K) or arginine (R) position of each tryptic peptide,
resulting in a mass shift of +8 for peptides ending in K
(13C6,15N2) or +10 Da for peptides ending in R (13C6,15N4).
Taking into account the different amounts and signals of the
targeted peptides in serum samples, SIS peptides concentrations
were individually determined and then adjusted to the level
of their analogous endogenous peptides. Each sample protein
digest was spiked with a constant amount of a SIS mixture
ranging between 25, 50, 100 and 250 fmol/ul. Finally, samples
were dried in a speed-vac concentrator with a refrigerated
vapor trap.

Liquid chromatography and multiple
reaction monitoring (LC-MRM) analysis

Peptides mixtures composed of endogenous peptides (light
peptides) and SIS peptides (heavy peptides) were analyzed by
LC-MS/MS in a nanoLC system (TEMPO) coupled to a 5500-
QTRAP instrument (Sciex). Peptides were desalted through
a C18 column (5µm particle size, 300Å pore size, 100µm
diameter and 2 cm length, Acclaim PepMap, Thermo Scientific)
during 10min at a flow rate of 3 µl/min and then separated
on a C18 nanocolumn (75µm internal diameter and 15 cm
lenght, Acclaim PepMap 100, Thermo Scientific) at a constant
flow rate of 300 nl/min. For the MRM method, we employed a
chromatographic gradient which started with 5% of 0.1% Formic
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acid in 95% acetonitrile (buffer B). During the first 5min the %
of buffer B was increased up to 15%. Then, from min 5 until
min 45, buffer B% increased up to 35% and, finally, it reached in
one minute the maximum of acetonitrile concentration (95%B).
After 10 mins in these conditions, B% was lowered down up to
5% in 1min and finally the column was equilibrated in the same
condition during 14 mins. Mass spectrometer was interfaced
with a nano-spray source equipped with an uncoated fused silica
emitter tip (20µm inner diameter, 10µm tip; New Objective)
and operated in positive ion mode. The optimized conditions
for the electrospray source were as follows: ion spray voltage,
2,600V; curtain (CUR) gas, 20 psi; ion gas 1 (GS1), 25 psi; ion
source gas 2 (GS2), 0 psi; collision activated dissociation (CAD)
gas, medium and the interface heater temperature (IHT), 150◦C.
For both endogenous and SIS peptides, the optimal declustering
potentials (DP) and collision energies (CE) were predicted
employing the free software Skyline. The other compound
dependent MRM parameters, the entrance potential (EP) and
the cell exit potential (CXP), were experimentally set at 10 and
15, respectively. Q1 and Q3 were set to unit/unit resolution (0.7
Da) and pause between mass ranges set to 3 ms.

In order to avoid signal interference, we performed a
screening based on the fragment-ion ratios of each transition
taking into account the exported responses from the heavy and
light peptides. To confirm that there was no signal at the same
m/z transition values of the light peptides due to a possible
contamination in the process of synthesis of the SIS peptides, we
first analyzed the SIS mixture standard alone. Then, a digested
pool of 4 RA sera (one serum sample from each group under
study) was used as a background matrix. The pooled serum
sample was analyzed without spiked heavy peptide standards,
to prove that there were no hypothetically signal interferences
at the m/z transition values of the heavy peptides. One ug
of RA serum sample was injected on column. To test system
reproducibility, two replicates were acquired for each sample. In
order to avoid possible carry over in the nanoLC-MRM system,
two blank injections were analyzed between each sample.

To ensure the correct identification of each peptide, we also
performed a MRM Information Dependent Acquisition (IDA)
experiment. When an individual MRM signal exceeded 1,000
counts, the mass spectrometer automatically switched from
MRM to EPI scanning mode. Each precursor was fragmented a
maximum of twice before and then excluded for 10 s; the masses
were scanned from 250 to 1,000 Da. The rolling collision energy
(CE) option was employed to automatically ramp up the CE
value in the collision cell as the m/z values increased.

Analysis of the MRM data

Skyline 1.3 software (MacCoss, Seattle, WA, USA) was
used for MRM method refinement and optimization, peak

integration and quantitative analysis of MS data generated
from targeted experiments. The selection of peptides for the
verification analysis was based on the intensity order of
transitions, the relative retention times (RT) across runs, and
the co-elution of endogenous light peptide (L) with the stable
isotope-labeled standard (SIS) reference heavy peptide (H)
spiked in the sample. Once the raw data files were loaded
into Skyline, they were manually inspected to ensure correct
peak detection and accurate integration. The Savitzky-Golay
filter were applied for the purpose of smoothing the data.
Peak area ratios between light and heavy peptide were used
to calculate the relative peak area ratio of each peptide object
of the study. Finally, customized data reports were generated
and exported to Excel for further analysis. Mean, standard
deviation and coefficient of variation (% CV) of the mean peak
ratio area and retention time (RT) were calculated for all RA
sample replicates.

ELISA set up and analysis

ELISA development kits were purchased from Bio-Techne
(Minneapolis, USA, DuoSets DY3694 and DY8465). The full-
matching of the immunogen sequence of the antibodies with
the peptide fragments analyzed by MRM was a requirement
for kit selection. Additionally, TMB Substrate Solution was
acquired from ThermoFisher (Massachusetts, USA). H2SO4

1N was used as Stop Solution. Optical density measurements
were assessed at 450 nm, using the Infinite M200 Nanoquant
plate reader (Tecan, Switzerland). Wavelength correction for
optical imperfections in the plate was set at 550 nm, as
readings made directly at 450 nm without correction may
be higher and less accurate. Sample dilution tests were
performed as detailed in each specific ELISA kit, using samples
from each condition. Sample concentrations were calculated
based on each plate’s calibration curve with the GraphPad
Prism software.

Sandwich immunoassay on suspension
bead arrays

RET4 levels were measured by a bead-based sandwich
immunoassay (Duo set, R&D Systems, Minneapolis, MN, USA)
that was previously developed and analytically validated in
our group as part of a multiplex panel (20). Antibodies and
recombinant protein were prepared following manufacture
instructions and the suspension bead array was created as
previously described (21). In short, the capture antibody for
RET4 was coupled to carboxylated color-coded magnetic
beads using 10 mg/ml of ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC) (03449, Sigma-Aldrich) and 10 mg/ml
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TABLE 2 Results from the iTRAQ-LC-MS/MS analysis of the discovery phase.

Accession Symbol Name Peptides Group RF+ACPA+ RF+ACPA– RF-ACPA+

Mean ratio SD Mean ratio SD Mean ratio SD

P43652 AFAM Afamin 36 +– 1.30 0.03

P02763 A1AG1 Alpha-1-acid glycoprotein 1 18 ++/+– 11.2 1.89 4.27 0.60

P19652 A1AG2 Alpha-1-acid glycoprotein 2 11 ++ 6.34 0.71

P01011 AACT Alpha-1-antichymotrypsin 50 ++/–+ 1.74 0.17 1.81 0.24

P01009 A1AT Alpha-1-antitrypsin 11 +-/–+ 1.71 0.16 0.33 0.07

P02765 FETUA Alpha-2-HS-glycoprotein 44 +– 1.56 0.16

P02647 APOA1 Apolipoprotein A-I 6 +– 2.45 0.38

P02652 APOA2 Apolipoprotein A-II 5 –+ 0.49 0.04

P04114 APOB Apolipoprotein B-100 180 ++/–+ 0.18 0.02 1.45 0.14

P02649 APOE Apolipoprotein E 11 +– 1.92 0.07

P02749 APOH Beta-2-glycoprotein 1 45 +– 1.86 0.16

P00450 CERU Ceruloplasmin 88 ++ 1.41 0.08

P01024 CO3 Complement C3 51 +–/–+ 0.29 0.07 0.58 0.04

P00738 HPT Haptoglobin 15 ++/+–/–+ 2.79 0.20 0.74 0.08 0.38 0.03

P19827 ITIH1 Inter-alpha-trypsin inhibitor heavy chain H1 39 –+ 1.41 0.07

P19823 ITIH2 Inter-alpha-trypsin inhibitor heavy chain H2 39 +– 0.74 0.03

P01042 KNG1 Kininogen-1 39 +– 1.40 0.06

P05155 IC1 Plasma protease C1 inhibitor 26 ++/–+ 1.56 0.21 1.59 0.24

P00747 PLMN Plasminogen 18 ++/–+ 1.66 0.04 0.66 0.03

P00734 THRB Prothrombin 72 +– 1.57 0.05

P02753 RET4 Retinol-binding protein 4 25 ++ 1.69 0.04

P02766 TTHY Transthyretin 4 ++/+– 0.23 0.04 2.00 0.20

P02774 VTDB Vitamin D-binding protein 112 ++/+–/–+ 1.54 0.26 3.05 0.47 2.15 0.29

P04004 VTNC Vitronectin 31 +– 1.61 0.16

P25311 ZA2G Zinc-alpha-2-glycoprotein 42 +– 1.82 0.30

++: RF+ACPA+;+–: RF+ACPA–; and –+: RF–ACPA+. Ratios were calculated in comparison to the double negative (RF–ACPA–). Only proteins with p < 0.05 in the comparisons are
included. Details on the data obtained from the independent pools are shown in Supplementary Table S2.

of sulfo-N-hydroxysulfosuccinimide (Sulfo-NHS) (24510,
Thermo-Fisher Scientific) in phosphate buffer. Serum samples
were diluted 1/10,000 in PBS-T 0.05%. A seven-point standard
curve covering a range of 80–0.10µg/ml was prepared by using
three-fold serial dilutions in assay buffer (1% BSA in PBST
0.05%). Assay buffer was used as a background sample. For
assay performance, 25 ul of the diluted samples, standards, and
background sample were added to appropriate wells containing
1,000 coupled beads and incubated at room temperature for
2 h with gentle agitation. After incubation, the beads were
washed three times with PBS-T 0.05%. Subsequently, 25 µl
of biotinylated detection antibody was added at 1µg/ml in
PBS-T 0.05% and incubated for 1 h at room temperature with
shaking. The beads were then washed again before incubation
with 25 µl of a 1/500 streptavidin-phycoerytherin (SAPE)
(Thermo) for 20min at room temperature in shaking. The
beads were finally washed, suspended in 100 µl of PBS-T
0.05% and analyzed on a MagPix instrument (Luminex
corp.). GraphPad Prism software was used to generate a

five-parameter logistic (5-PL) curve-fit and interpolate the
RET4 concentration contained in the sample. The final sample
concentration was obtained taking into account the dilution
factor employed.

Statistical analysis

For the analysis of shotgun proteomics data, the statistical
package from ProteinPilot were employed. The results obtained
after applying the proper normalization tools were exported
to Microsoft Excel for further analyses. Where appropriate,
results were expressed as the mean ± standard error (Tables 1–
3). GraphPad Prism 7 was used for the statistical analyses
of the data from verification (MRM) and validation (ELISA)
phases. Kruskal–Wallis test multiple comparison with post-

hoc correction was applied to compare means among the
four different groups of patients. A p < 0.05 was considered
statistically significant.
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TABLE 3 Peptides showing di�erential abundance between groups in the MRM quantitative targeted analysis of the verification phase.

Accession Symbol Peptide RF–/ACPA– RF+/ACPA+ RF+/ACPA– RF–/ACPA+

Mean L/H ratio SD Mean L/H ratio SD Mean L/H ratio SD Mean L/H ratio SD

P04114 APOB ATFQTPDFIVPLTDLR 0.45 0.28 0.47 0.21 0.40 0.12 0.49 0.26

P04114 APOB IPSVQINFK 1.37 0.66 1.65 0.67 1.59 0.53 1.63 0.81

P04114 APOB TSSFALNLPTLPEVK 0.35 0.26 0.32 0.10 0.34 0.09 0.33 0.11

P05155 IC1 GVTSVSQIFHSPDLAIR 0.56 0.32 0.65 0.18 0.57 0.19 0.57 0.31

P05155 IC1 LEDMEQALSPSVFK 0.35 0.17 0.43 0.13 0.42 0.20 0.42 0.37

P00747 PLMN WELCDIPR 0.75 0.19 0.81 0.18 1.20 0.31 1.24 0.47

P00747 PLMN VIPACLPSPNYVVADR 0.15 0.05 0.16 0.03 0.18 0.04 0.17 0.05

P00747 PLMN EAQLPVIENK 0.32 0.08 0.33 0.07 0.36 0.07 0.39 0.12

P02753 RET4 YWGVASFLQK 0.39 0.23 0.41 0.14 0.45 0.12 0.42 0.15

P02753 RET4 LLNLDGTCADSYSFVFSR 1.81 1.60 1.68 0.86 0.96 0.28 1.00 0.42

P02774 VTDB YTFELSR 0.68 0.21 0.77 0.19 0.80 0.21 0.82 0.30

P02774 VTDB HLSLLTTLSNR 0.67 0.22 0.75 0.20 0.76 0.18 0.83 0.22

P02774 VTDB VLEPTLK 0.61 0.14 0.67 0.17 0.68 0.16 0.77 0.25

P02763 A1AG1 YVGGQEHFAHLLILR 0.99 0.41 1.44 0.55 1.21 0.50 1.20 0.49

P02763 A1AG1 EQLGEFYEALDCLR 1.21 0.72 1.58 0.73 1.13 0.49 1.13 0.66

P02763 A1AG1 SDVVYTDWK 2.00 0.81 3.01 1.14 3.24 1.33 3.64 2.82

P19652 A1AG2 EHVAHLLFLR 0.52 0.14 0.60 0.19 0.58 0.16 0.65 0.23

P19652 A1AG2 EQLGEFYEALDCLCIPR 8.91 6.76 10.71 6.00 7.02 2.35 6.63 2.80

P19652 A1AG2 SDVMYTDWK 1.02 0.34 1.19 0.65 1.20 0.44 1.41 0.68

P01011 AACT EIGELYLPK 0.21 0.07 0.30 0.12 0.28 0.13 0.30 0.15

P01011 AACT AVLDVFEEGTEASAATAVK 5.15 2.42 6.82 3.36 6.19 2.82 5.93 2.66

P00738 HPT VGYVSGWGR 1.86 0.74 2.50 0.75 2.30 1.11 2.27 1.19

P00738 HPT VTSIQDWVQK 2.01 0.88 2.74 0.91 2.32 1.06 2.30 1.19

P43652 AFM ESLLNHFLYEVAR 0.29 0.24 0.25 0.10 0.22 0.05 0.23 0.06

P43652 AFM DADPDTFFAK 0.44 0.12 0.45 0.13 0.52 0.12 0.64 0.19

P43652 AFM FTFEYSR 0.63 0.27 0.65 0.22 0.68 0.14 0.75 0.17

P02765 AHSG EHAVEGDCDFQLLK 1.86 0.53 1.91 0.45 2.06 0.57 1.85 0.44

P02765 AHSG FSVVYAK 0.43 0.13 0.44 0.12 0.48 0.13 0.48 0.13

P01042 KNG1 YNSQNQSNNQFVLYR 4.22 1.39 4.64 1.20 5.01 1.05 5.34 1.80

P01042 KNG1 TVGSDTFYSFK 0.49 0.15 0.52 0.08 0.56 0.12 0.61 0.20

P01042 KNG1 YFIDFVAR 0.65 0.36 0.67 0.19 0.73 0.15 0.69 0.17

Data are expressed as the mean L/H ratios calculated by MRM analysis. Quantification data from each individual sample (n= 80, by duplicate) are shown in Supplementary Table S4. SD,
standard deviation.

Results

Discovery phase screening by
iTRAQ-LC-MS/MS analysis

For the initial screening, 80 sera from the CHUS cohort
were grouped into 4 pools (20 patients/pool) according to their
ACPA/RF status and then analyzed by nanoLC-MALDI/MS.
Overall the number of proteins identified with at least 1 peptide
was 153 and they are listed in Supplementary Table S1. Using
an iTRAQ-8plex technology-based quantitative proteomic
approach, we were able to quantify all of them except one.
In order to ensure maximum robustness of the quantitative

results we only considered those proteins identified with two or
more peptides. From the 126 proteins that met this criterion,
25 showed a statistically significant modulation in at least one
group compared with the double negative group (Table 2). The
overlapping of this significant alteration between groups is
shown in Figure 2A. A functional pathway analysis revealed that
the modulated proteins were related mainly to inflammatory
processes (acute phase reactants) and lipid metabolism
(Figure 2B). As shown in Figure 2C, heatmap clustering
analysis showed the differentially expressed proteins in the
four groups. Finally, an unsupervised Principal component
analysis (PCA) was performed using the quantification data
of each pool. As shown in Figure 2D, RA patients were
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FIGURE 2

Results from the discovery phase. (A) Overlapping of the 25 di�erential proteins observed between the four groups under study (+/+, +/–, –/+

and –/–). (B) Pathway analysis obtained with STRING software, showing the involvement of most di�erential proteins in inflammatory (red) and

lipid metabolism (blue) processes. Grey dots represent involvement in other not significantly enriched pathways. (C) Hierarchical clustering

showing the di�erential protein profiles observed in the sera from the four groups. (D) Principal component analysis illustrates the perfect

separation of the groups based on their proteomic profiles.

perfectly classified into the four groups according to their
serological status. The quantitative results obtained in this
shotgun analysis are detailed in the Supplementary Table S2.
Among all quantified proteins, the abundance of 11 was altered
in the sera from RF+/ACPA+ patients, 16 in RF+/ACPA–
patients and 10 in RF–/ACPA+ patients compared to RF–
/ACPA– ones. Three proteins were exclusively modulated
between double seropositive and double seronegative group
(AIAG2, CERU and RET4), being all of them increased in
double seropositive patients. Ten proteins were found uniquely

altered in the RF+/ACPA– group (AFAM, FETUA, APOA1,
APOE, APOH, ITIH2, KNG1, THRB, VTNC, ZA2G) whereas
APOA2 and ITIH1 were found altered only in the RF–/ACPA+
condition. Finally, haptoglobin (HPT) and vitamin D binding
protein (VTDB) were the unique proteins modulated in
the sera of patients belonging to all the seropositive groups
(RF+ACPA+, RF–ACPA+ and RF+ACPA–), when compared
to the double seronegative one. All these proteins were selected
for further verification in individual samples by targeted mass
spectrometry (MRM).
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FIGURE 3

Results from the verification phase. Peptides showing di�erential abundance between groups, as observed by MRM analysis on individual

samples from the cohort of Santiago de Compostela. Data are expressed as heavy/light mean peak ratios (L/H). * p < 0.05; ** p < 0.01; *** p <

0.005 and **** p < 0.001.

Verification phase by targeted MRM
quantification

A multiplex MRM assay was then developed to verify
the differential abundance of the set of biomarker candidates
identified in the shotgun screening. After an optimization
process, we were able to detect and quantify simultaneously 12
of the 25 protein biomarker candidates that could be associated
with RF and/or ACPA. Thirty-one peptides belonging to these
12 target proteins were selected and analyzed using the Skyline
software. The Supplementary Table S3 shows the list of the
final transitions (n = 180) and the settings employed for
their analysis. For this biomarker verification phase, all the
samples from the CHUS cohort were analyzed individually (n
= 80) and measured in duplicate (n = 160). All the data
collected in this analysis are detailed in Supplementary Table S4,
including the retention times (RT), mean RT, peak areas ratios,
mean peak area ratios and CVs obtained for each peptide
in each sample. The results from the relative quantitation of
the proteins between the different groups that were compared
(RF+/ACPA+, RF+/ACPA–, RF–/ACPA+, RF–/ACPA–) are
presented as average values of the peak areas out of all transitions
and peptides per protein, after an intensity normalization
step with their corresponding heavy isotope–labeled standard
references (L/H mean peak ratio).

A significant modulation of 13 peptides belonging to 8
different proteins was observed (Figure 3). All of them were

decreased in the double seronegative group (our reference
group) except one peptide belonging to RET4. Five peptides
(two from A1AG1, two from HPT and one from AACT) were
increased in the double seropositive group, being three of them
specific of this condition. Five peptides (two from RET4 and
one from A1AG1, AFAM, and PLMN) were found altered
in RF+/ACPA– group, being one of RET4 decreased in this
condition. Finally, 8 peptides belonging to 7 proteins (4 were the
same as the RF+/ACPA– group plus AACT, KNG1 and VTDB)
were found altered in RF–/ACPA+, always in comparison
with the RF–/ACPA– reference group (Table 3). Three acute
phase reactants (A1AG1, HPT and AACT) displayed the
same modulation in both screening and verification phases,
thus confirming their association with the double positivity
status. Two of them were selected for the next validation
step along with RET4. The rationale for selecting RET4 was
based on the increment observed for one of its peptides
(LLNLDGTCADSYSFVFSR) in the double seronegative patients
compared to the RF+/ACPA– group.

Validation phase by immunoassays

Taking into account the results obtained in the verification
phase, we performed an orthogonal validation by immunoassays
in the whole cohort from CHUAC (n = 260). Serum levels
of A1AG1 and HPT were measured by conventional ELISA

Frontiers inMedicine 10 frontiersin.org

https://doi.org/10.3389/fmed.2022.963540
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ruiz-Romero et al. 10.3389/fmed.2022.963540

FIGURE 4

Results from the validation phase. Di�erent levels of HPT [at the

(top)] were found between the double positive group and the

FR–/ACPA+ group compared to the double seronegative. In the

case of A1AG1 (bottom) the di�erence was found between the

two groups with FR+ compared to the double seronegative. * p

value ≤ 0.05.

immunoassays, whereas RET4 was quantified in the same cohort
using suspension beads arrays. The quantitative data obtained in
this validation step are reported in the Supplementary Table S5.
As shown in Figure 4, the results from this analysis confirmed
the elevated values of A1AG1 and HPT in the double
seropositive patients (p = 0.009 A1AG1; p = 0.003 HPT). The
increased level of A1AG1 was found associated with the RF
rather than the ACPA status (p = 0.023 RF+/ACPA–), whereas
HPT was associated with ACPA rather than RF (p = 0.013 RF–
/ACPA+). On the other hand, data obtained for RET4 did not
confirm the MRM results, as no significant differences were
detected among the four studied groups.

Discussion

Autoantibody-negative and autoantibody-positive RA
are considered two entities with different underlying
pathophysiological mechanisms, long-term outcomes and
disease presentations (22). However, the effect of the presence
of RF and ACPA autoantibodies on clinical phenotypes
remains unclear. Despite their routine use in clinical practice
as biomarkers for the diagnosis of RA, their specificity

and sensitivity are quite low (especially in the case of RF).
Furthermore, these autoantibodies are often discordant with
each other and up to 30% of RA patients never develop them.
Our goal in this work has been to describe the molecular
endotypes associated with the serological phenotype of the RA
patients in order to improve diagnostic tools currently available.
Identifying specific RA phenotypes and endotypes can inform
about disease prognosis and guide therapeutic development with
the potential of increasing personalized strategies and positively
impacting patient care. Currently, the most common method
for subgrouping RA patients is based primarily on clinical
phenotypes. However, the need to identify patient endotypes
to targeted treatments has gained increasing importance,
particularly from the point of view of new drug discovery, for
which identifying the correct target is key to success (17).

In this study, a classical biomarker pipeline based on
quantitative proteomics has been followed for the discovery,
verification and validation of putative serum protein biomarkers
that could improve the characterization of RA endotypes
(23). As stated previously (24), this pipeline is based on a
reverse interrelationship among the number of samples used
for the analysis and the number of proteins that arise as
possible biomarkers. In most previous proteomics studies, blood
samples were pooled for MS analysis (25). This strategy has
been extensively reported as a valid and valuable procedure
when applied to the biomarkers discovery phase (26), although
consideration should we taken when interpreting the results
since it may lead to loss of information. Therefore, we decided
to follow this pooling approach in the discovery phase but then
move to individual targeted MS analysis for the verification
phase. The principal bottleneck of the biomarker pipeline is
the lack of verification step as a bridge between discovery and
validation phases (27). In order to overcome these limitations,
we present a stepwise workflow to identify RA biomarkers
and verify them by targeted MS-based analysis before their
validation by immunoassays. In this work, the importance of
a robust verification phase to fill this gap clearly emerges and
the benefits of targeted mass spectrometry for this purpose are
also highlighted. We chose LC/MRM-MS as the ideal technique
for the protein quantification of our clinical samples mainly due
to its multiplexing potential (31 peptides from 12 proteins, in
our case), high specificity (each target peptide is unique and
does not interfere with other peptides), high sensitivity (limit of
quantification in the range of pg/ml), small amount of sample
(2 ul crude serum) and no need for antibodies or other means
of sample depletion or enrichment (25). These characteristics
have turned MRM-MS the reference method for the accurate
quantification of peptides in biological matrices (28). In this
study, the development of a robust MRM method allowed us to
classify RA patients according to their serology.

The conventional methods for distinguishing between
clinical phenotypes and identifying specific therapeutic targets
might not be sufficient in complex diseases such as RA. Novel
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approaches are therefore of great interest. The knowledge
on molecular endotypes can be unraveled with sensitive
techniques such as high-throughput proteomics. This approach
may be used to stratify specific subgroups of RA patients
that could benefit from a variety of targeted preventive and
treatment strategies that ultimately facilitate the development
of personalized medicine strategies. In the proteomic field,
technological advances born under the Human Proteome
Project have been extremely valuable (29). Thousands of
proteins can be analyzed in plasma or serum by mass
spectrometry-based proteomics technologies. However, despite
these important accomplishments, the proteome complexity
of serum samples still exceeds the technical capability of
the MS instruments. For this reason, we carried out an
immunodepletion step in the discovery phase, in order to
enrich the RA serum samples of low abundant proteins by
reducing their dynamic range and thus achieving greater
sensitivity. The LC-MS workflow employed gave us a robust
tool to dig deeper into the complex biology of the RA cellular
machinery and the potential to discover low-level, biologically
significant proteins, and validate them in our translational
and clinical proteomics research. Pathway enrichment analysis
highlighted the top enriched pathways in RA (see Figure 2):
inflammation and lipid metabolism. These two major pathways
are strictly interconnected, as lipids are involved in several
biological processes. Apart of being the main component of cell
membranes, they regulate cell migration, immune cell plasticity
and inflammation. Our results are in agreement with those
from Luan et al. (30), supporting their role in perpetuating the
inflammatory state characteristic of RA patients.

Furthermore, the protein biomarkers detected in our
study through serum protein profiling embody other
physiological changes in RA apart from those in expected
pathways such as inflammation and immunity. Functional
analysis of the results from the discovery phase (shotgun
proteomics) revealed that GO processes with the lowest p-values
were platelet degranulation, acute inflammatory response,
transport, acute-phase response and negative regulation of
blood (Supplementary Table S6). Cholesterol metabolism
and complement and coagulation cascades were the two
KEGG pathways significantly associated with the 25 proteins
differentially expressed among the four groups. Seven of the
altered proteins are inflammatory markers also known as
acute phase reactants (APRs). APRs are key regulators of the
immune response. They function as mediators and/or inhibitors
of inflammation and act as carrier proteins for the products
generated during the inflammatory process. In addition, they
can also play an active role in tissue repair and remodeling.
Interestingly, these proteins have been extensively defined
as acute phase and/or disease activity markers in several
inflammatory conditions including RA (31, 32), although they
have not yet been established as a multi-biomarker panel for
clinical utility. In fact, the only multi-biomarker disease activity

test for RA (33) commercially available does not include any of
these proteins.

Analysis of individual serum samples in the verification
phase revealed differentially expressed proteins in the four
groups, among which A1AG1, RET4, AFAM, PLMN, KNG1,
HPT, AACT and VDBP emerged as novel stratification
biomarkers by MRM quantification. Considering the data
from this targeted analysis, the GO term 0051180 (vitamin
transport) appeared among the most significant processes
in the network function analysis along with the previous
ones (Supplementary Figure S2), thus confirming the alterations
observed in the discovery phase. RET4, AFAM and VDBP
belong to this functional group. RET4 is involved in the vitamin
A transport regulation through blood plasma from the deposit
located into the liver to peripheral tissues. This vitamin is
essential for different cellular processes such as cell growth,
cell differentiation and bone development, thus its deregulation
could influence bone regeneration in patients suffering from
erosion due to RA (34). Recent studies suggested that elevated
serum levels of RET4 were associated with increased risk
of insulin resistance in newly diagnosed and untreated RA
patients (35). In addition, blood coagulation disease was
significantly associated with proteins found altered in the
targeted analysis. Our results are in accordance with previous
publications demonstrating the role of blood coagulation in the
pathophysiology of RA (25, 36, 37). Likewise, in a previous
study, abnormally activated coagulation was reported due
to the altered expression of coagulation-related factors in
patients with RA and aggravated RA (38). Overexpression of
serum fibrinogen, increased platelets and plasmin activity were
associated with RA. In that study, functional analysis showed
that serum proteins from RA patients were maximally associated
with blood coagulation. Furthermore, in both pathway maps
and network functional analyses, the complement system was
activated in RA patients compared to the control group.
Complement activation is triggered by three major pathways
(lectin-induced, classical and alternative) that are mediated
by differentially expressed serum proteins and membrane-
associated proteins (39, 40). In our work, we confirmed that the
differential proteins identified in RA patients were involved in all
of them. Our results are in line with others that had previously
shown that the complement pathway is clearly activated in RA
patients (41, 42).

Finally, in the validation phase, we confirmed by
immunoassays the MRM results for two of these proteins:
HPT and A1AG1. As reported in results section, MRM
findings indicate that two specific C-terminal HPT fragments
(VGYVSGWGR and VTSIQDWVQK) and two specific A1AG1
fragments (YVGGQEHFAHLLILR and SDVVYTDWK) might
be applied as novel biomarkers for the diagnosis and prognosis
of RA. The individual differences in their expression, dependent
on the serological status of RA patients, were confirmed in our
validation cohort of 260 RA patients. In the CHUAC cohort,
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we found that individuals with the seropositive phenotype
had relatively higher levels of HPT and A1AG1 in circulation
compared with those with the seronegative phenotype. The
HPT increase seems to be specifically associated to the ACPA
positive status, whereas the A1AG1 increase seems to be
specifically associated to the RF positive status more than to
the ACPA positive status (Supplementary Figure S3). Therefore,
our work provides novel information for the classification of
the seropositive phenotype in RA, with the characterization
of two new clusters of patients: one ACPA+HPT+ and
the other RF+A1AG+. This is the first time these proteins
emerge as directly related with the serological phenotype of
RA patients. Altogether, their measurement could aid RA
classification and provide a novel molecular portrait of the
patient, thus representing an additional tool for precision
medicine strategies. A further exploration of the associations of
these endophenotypes with other previously studied, such as
erosiveness or response to methotrexate, would add valuable
information to advance in this area.

Study limitations

The impossibility of better characterizing the population
object of this study (CHUS and CHUAC cohorts) limits
the interpretation of the results that have been obtained. In
particular, we have not been able to gather information about
the treatment of the patient, the duration of the disease
at presentation, disease activity or possible extra-articular
manifestations at the time of sample extraction. Nevertheless,
although this lack of information has hindered the development
of more extensive statistical analyses and models for RA
endophenotyping, the characterization of the two novel clusters
of patients that we describe in this study undoubtedly mean a
progress in the classification of this disease at themolecular level.
Further studies on well-characterized cohorts are needed to
confirm this aspect, and also to move forward in the application
of the results obtained herein into precision medicine tools.

Conclusions

Taking into account the results obtained in the different
phases of the study (Figure 1), from the discovery to the
validation phase, we show that HPT and A1AG1 may be
complementary to RF and ACPA to improve their sensitivity
and/or specificity. The clinical utility of the protein profiles
reported herein remains to be tested. Further efforts should be
invested to facilitate progress in the development of biomarkers
for RA diagnosis and stratification. Identification of subgroups
of arthritis patients would present a significant advance in
selecting the most effective treatment for an individual patient
(43). The personalized treatment, informed by biomarkers,
is only feasible by increasing knowledge on the molecular

profiles underlying the phenotypes: disease signatures and
patient endotyping. The characterization of specific endotypes
associated with the serological status of the patients, carried out
in this study, provides additional information that may be useful
to move forward in precision medicine strategies.
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