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Purpose:To buildmachine learningmodels for predicting the risk of in-hospital

death in patients with sepsis within 48h, using only dynamic changes in the

patient’s vital signs.

Methods: This retrospective observational cohort study enrolled septic

patients from five emergency departments (ED) in Taiwan. We adopted seven

variables, i.e., age, sex, systolic blood pressure, diastolic blood pressure, heart

rate, respiratory rate, and body temperature.

Results: Among all 353,253 visits, after excluding 159,607 visits (45%), the

study group consisted of 193,646 ED visits. With a leading time of 6 h, the

convolutional neural networks (CNNs), long short-term memory (LSTM), and

random forest (RF) had accuracy rates of 0.905, 0.817, and 0.835, respectively,

and the area under the receiver operating characteristic curve (AUC) was 0.840,

0.761, and 0.770, respectively. With a leading time of 48h, the CNN, LSTM, and

RF achieved accuracy rates of 0.828, 0759, and 0.805, respectively, and an AUC

of 0.811, 0.734, and 0.776, respectively.

Conclusion: By analyzing dynamic vital sign data, machine learning models

can predict mortality in septic patients within 6 to 48h of admission. The

performance of the testing models is more accurate if the lead time is closer

to the event.
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Highlights

– By analyzing dynamic vital sign data, machine learning models can predict

mortality in septic patients within 6–48 h of admission.

– The performance of the machine learning models is more accurate if the lead time

is closer to the event.
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Introduction

Sepsis is the presence of an acute infection and new

organ dysfunction. It can be life-threatening if not recognized

and treated promptly (1). Despite advanced care, previous

studies have demonstrated that sepsis remains a significant

burden worldwide and is the most common cause of in-

hospital deaths (2–4). Although outcomes have improved in

recent decades, mortality remains high at approximately 25–

30% (5). Furthermore, septic shock is associated with an

even higher mortality rate of ∼40–50% (6). For patients

at critical risk, increased awareness, aggressive treatment,

and broad-spectrum empiric antibiotics significantly decrease

the mortality risk (7). It is therefore imperative to rapidly

and accurately stratify patients with sepsis and high in-

hospital mortality.

In recent decades, medical artificial intelligence (AI)

has been used to achieve clinical diagnoses and suggest

treatments. A few examples where AI has shown promise

for clinical diagnoses include diabetic retinopathy screening

(8), skin lesion classification (9), and assist in detection

of abdominal free fluid during focused assessment with

sonography (10). In combination with machine learning

algorithms and electronic health records (EHRs), clinical data

sources enable us to rapidly generate prediction models and

predict clinical outcomes. For instance, an AI model has

been used to predict the mortality of patients diagnosed

with COVID-19 (11), outcomes in trauma patients (12), and

neurological outcomes of out-of-hospital patients after a cardiac

arrest (13).

Machine learning methods can predict in-hospital mortality

in sepsis patients in an intensive care unit (ICU) (14). At

the time of sepsis onset, Barton et al. demonstrated that

a machine learning algorithm with gradient-boosted trees

increases the sensitivity and specificity of predicting sepsis

occurrence over the commonly used systemic inflammatory

response syndrome (SIRS), modified early warning score

(MEWS), sequential organ failure assessment (SOFA), and

quick sequential organ failure assessment (qSOFA) scoring

systems (15). In addition, machine learning algorithms

can predict the occurrence of severe sepsis and septic

shock (14, 16). For predicting in-hospital mortality of ED

patients with sepsis, Taylor et al. found that a machine

learning approach outperformed existing clinical decision

rules (17).

However, most previous prediction models for

mortality require a large number of variables, including

the underlying disease, laboratory data, and clinical

parameters. The aim of our study was to build ML models

for predicting the risk of in-hospital death in patients with

sepsis within 48 h, using only dynamic changes in the

vital sign.

Methods

Study population and extraction samples

This is a retrospective observational cohort study conducted

from January 1, 2006 to December 31, 2017. The study was

approved by the IRB Review Board of the Chang Gung

Medical Foundation (IRB number: 201801713B0; approved on

28 January 2019) in accordance with the ethical guidelines

of the 1975 Declaration of Helsinki. Informed consent

was not required owing to the retrospective nature of

the study.

We used data provided by the Chang Gung Medical

Center, including five EDs that belonged to a single healthcare

system and were geographically dispersed nationwide in

Taiwan. Sepsis patients were extracted from the electronic

database records of the Chang Gung Medical Center under

the following conditions: (1) The age of the patient was

over 17 years, (2) blood culture was obtained, and (3)

antibiotics were prescribed in medical order. Sepsis patients

were defined according to the Third International Consensus

Definition of Sepsis (Sepsis-3) definition, that was an acute

change in Sequential [Sepsis-related] Organ Failure Assessment

(SOFA) score of 2 points or more consequent to the

infection (1).

We excluded patients who had an out-of-hospital cardiac

arrest because their high mortality rates could falsely affect

the performance of the prediction models. Besides, we

also excluded patients for the following reasons: (1) the

length of the hospital stay was >3 days (2) the patients

recorded less than three times when they stay in hospital,

and (3) patients with incorrect data and format. The

selection process and sample numbers were listed in the

Supplementary Table 1.

The outcome was divided into two results: positive instances

in which patients died in the hospital and negative instances

in which patients survived. After cleaning problematic data

such as those containing less than one record for every

variable, and those having an error in terms of format,

the number of positive instances was 19,434, and the other

negative instances numbered 194,646. Supplementary Table 1

presents the detailed sample selection process. We found that

the number of negative instances was 10-times greater than

the number of positive instances. The number of surviving

patients was 16-times the number of deceased patients. To

resolve the imbalanced sample problems, we used random

sampling in negative instances to balance the number of positive

and negative instances. We use python programs which the

system provides the function random choice(). The function

random choice() can choose the instances from the negative

instances randomly and the amount of the negative instances

we requested.
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Feature selection and data processing

To construct a mortality prediction tool, we adopted five

vital signs: systolic blood pressure (SBP), diastolic blood pressure

(DBP), heart rate (HR), respiratory rate (RR), and body

temperature (BP). Patient age and sex were also included. Vital

signs were selected as objective predictor variables because they

are routinely and frequently collected, regardless of the clinical

situation, and the values are rarely affected by the examiner.

There were two different types of outcomes in this research.

For these two outcomes, we extracted negative instances from

all subjects who survived and positive instances from all subjects

who died in the hospital. The data for up to 6–48 h prior to

death were extracted as a positive instance, and the data for up to

6–48 h prior to survival or discharge were extracted as a negative

instance, as shown in Supplementary Figure 1.

We mainly focused on four different lead times (k = 6,

12, 24, and 48) prior to the results, and we used machine

learning and developed four models to predict the results k

hours in advance.

The subsequent cleaning process ensured that the electronic

data were ready for analysis and did not contain any errors.

First, we removed problematic records. Second, to resolve the

problems of missing data, the measured value of the vital sign

variable was forward-filled following an initial measurement

until the next available measurement. The choice was based

on the clinical insight that measurements are taken more

frequently during times of hemodynamic instability and less

frequently when the patient appears stable. Third, the records

were converted into z-scores using the computed means and

standard deviations. These vital sign variables were normalized

to [0, 1] for comparison. Fourth, the vital sign normalized values

are divided into 255, according to the degree of the divided

results, converted into grayscale, and transformed into an image

for each patient.

Machine learning

To build appropriate models and develop an early warning

system (EWS), we set the training, validation, and testing sets

to a ratio of 6:2:2. The early warning system models developed

using convolutional neural networks (CNN) was labeled as

EWS_C, using long short-term memory (LSTM) was labeled

as EWS_L, and using random forest (RF) was labeled as

EWS_R, respectively.

CNNs are the most mature tools in graphical process in

machine learning. It is a class of deep feed-forward artificial

neural networks, and a CNN architecture is formed by a stack

of distinct layers that transform the input volume into an

output volume through a differentiable function (18). A few

distinct types of layers contain a convolutional layer, a pooling

layer, an activation layer, a fully connected layer, and a loss

layer, the conceptual architecture of which is illustrated in

Supplementary Figure 2 and Supplementary Table 2.

LSTM is effective for capturing the underlying temporal

structures in time-series data. It consists of the following

three gates: forget, input, and output gates. These three gates

interact to control the flow of information. LSTM builds

memory by feeding the previous hidden state as additional

input in the subsequent step. This makes the model particularly

suitable for modeling dynamics in vital sign data, which has

a strong statistical dependency between medical events over

the time intervals. LSTM enables the network to maintain the

previous information of the hidden states as internal memory

(19). The network architecture of the LSTMs are listed in

Supplementary Table 3. Parameters of Random Forest model.

RF is an efficient, multi-class approach that is able to

handle large attribute spaces, and has been widely used

in several domains including real-time face recognition and

bioinformatics (20). RF is an ensemble method used to construct

many decision trees that are applied in the classification of a new

instance based on a majority vote. Each decision tree node uses

a subset of attributes that are randomly selected from the entire

original set of attributes. The RF model parameters are listed in

Supplementary Table 4.

The flow of the applied research method is described in the

previous section. Supplementary Figure 3 presents the overall

research flow diagram.

For the reliability and stability of our models in this

research, our research adopted two validation methods. The first

validation, we use k-fold cross-validation methods considered

our sample sizes, we adopted k-fold = 5 for model tuning and

yield a satisfying generalization performance. In k-fold cross-

validation, we randomly spilt the training dataset in k folds

without replacement, where k-1 folds are used for the models

training and one folds is used for testing. This procedure is

repeated k times and we obtain k models and performance

estimates. Then, we calculate the average and 95% confidence

interval performance of the models based on the different,

independent folds to obtain a performance estimate that is less

sensitive to the sub-partitioning of the training data. We listed

the cross-validation results of EWS_C, EWS_L, and EWS_R in

the Supplementary Tables 8–10, respectively.

The second validation part was reserved the data of 2017 as

extra validation part. The EWS_C, EWS_L, and EWR_R were

validated the data of 2017, and the results were listed in the

validation part in the Supplementary Tables 5–7, respectively.

From the 1-year clinical validation, our research results were

more reliable and stability.

Statistical analysis

To accurately build the early warning system model, we

compared it with other standard machine learning algorithms,
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i.e., CNN, LSTM, and RF.We call thesemodels EWS_C, EWS_L,

and EWS_R, respectively. The model performance was assessed

based on discrimination using the precision, recall, accuracy,

receiver operating characteristic (ROC) curve, and derived area

under the ROC curve (AUC).

Results

Dataset statistics

The symbols in this research included 28,530 positive

instances and 194,646 negative instances. We also excluded

(1) records from <72 h after admission to the ED, (2) cases

with fewer than three records, and (3) incorrect data or an

improper format. To summarize, k = 6, 12, 24, and 48 h in

the numbers of excluded and included samples are listed in

Supplementary Table 1.

We extracted the vital signs of the patients in k (where

k = 6, 12, 24, and 48 h) prior to the time of death as a positive

instance. By contrast, we extracted the vital signs of the patient

k (h) prior to the time of survival as a negative instance. The

smaller the lead time before the result is, the larger the number

of patient cases. For example, when k = 6 h, there are 19,434

positive instances and 194,646 negative instances; in other cases,

when k = 48 h, there are 17,123 positive instances and 125,102

negative instances.

Mortality prediction performance

We compared the models among these three methods:

CNNs, LSTMs, and RF. To distinguish which model is more

accurate and reliable and help doctors make decisions, we also

compared four different lead time models, i.e., 6, 12, 24, and 48

h models.

In the first part, we used the CNN-based algorithm under

different lead-time models for EWS_C. With EWS_C, the

precision, sensitivity, and accuracy values of the training and

validation models are summarized in Supplementary Table 5.

In the validation model, we also provide AUC_COV and the

confidence interval (CI) under different lead-time models. In

addition, we provide the ROC curve of EWS_C in Figure 1A.

According to the validation models for EWS_C, the records

show that the precision among these four different lead time

models is above 0.85. The sensitivity was above 0.75 for

EWS_C6 and EWS_C12, and the sensitivities for EWS_C24

and EWS_C48 were above 0.7. In addition, the accuracy for

EWS_C was >0.8. In Figure 1A, we found that the AUC in

the EWS_C training model at 6 h was the largest, reaching

0.92. We also found that the other lead times (12, 24, and

48 h) and their AUC were all above 0.8. In the testing of the

EWS_C model for all lead times, the ROC curves are all above

0.8 (Figure 1B). In Supplementary Table 6 and Figure 1C, we

summarize the training and validation results. We found that

the precision, sensitivity, and accuracy are ∼0.8, 0.7, and 0.75.

As shown in Figure 1D, the ROC curve for EWS_L testing

was approximately 0.75. Supplementary Table 7 summarizes the

results of the training and validation of EWS_R. We found that

the validation of EWS_R had a precision of approximately 0.8,

a sensitivity of ∼0.7, and an AUC of nearly 0.77. According to

Figure 1E, for the ROC curve of EWS_R in the training model,

the area of all lead times was over 0.8. In the testing model, the

area of all lead times was over 0.7 (Figure 1F).

Figure 2 show the ROC curves of the three testingmodels for

lead times of 6, 12, 24, and 48 h. Regardless of the lead time, we

found that the AUC of EWS_C was the largest. For a 48-h lead

time, the AUC was still over 0.8.

Discussion

In our study, machine learning models were used to predict

the mortality in septic patients 48 h prior to death. The AUC of

the testing models for a 48-h lead time is 0.83, 0.74, and 0.77

with the EWS_C, EWS_L, and EWS_R models, respectively. In

general, the performance of the testing models is more accurate

if the lead time is closer to the event. The AUC of the testing

models under a 6-h lead time could achieve values of 0.84, 0.75,

and 0.78 for EWS_C, EWS_L, and EWS_R, respectively. For all

lead times, we found that the AUC of EWS_C had the best model

performance among the ML models, with an AUC within the

range of 0.82–0.85.

A wide array of rule-based scoring systems was developed

to assess the severity of illness and risk stratification. Examples

frequently used as severity assessment tools in the ICU are

the simplified acute physiology score (SAPS) II (21), acute

physiology and chronic health evaluation (APACHE) III and IV

scores (22, 23), and the SOFA score (24). As a major limitation

of the above systems applied in the ED, they require information

that is often not readily available during a patient’s time in

the ED. Therefore, EWSs were developed to detect patients at

risk of deterioration and predict catastrophic events in an ED.

For the general ED population and patients with respiratory

distress, the NEWS achieves the highest accuracy in mortality

prediction (25). For patients with infection or sepsis, the MEDS

and MEWS were the most utilized methods of assessment.

In general, the MEDS (AUC of 0.73–0.871) achieves a better

accuracy than MEWS (AUC of 0.596–0.73) in predicting in-

hospital mortality (26–30). Other prognostic scores frequently

used in an ED include a rapid emergency medicine score and

the qSOFA, with an AUC range of 0.62–0.80 and 0.58–0.76,

respectively (31, 32).

These EWSs were created mostly based on physiological

measurements and clinical observations, including vital signs,

level of consciousness, laboratory data, and other metrics,
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FIGURE 1

(A) training performances of ROC curve in EWS_C, (B) testing performances of ROC curve in EWS_C, (C) training performances of ROC curve in

EWS_L, (D) testing performances of ROC curve in EWS_L, (E) training performances of ROC curve in EWS_R, (F) training performances of ROC

curve in EWS_R.

depending on the selected modification tool. Thus, most of

these scores are complex or disease-specific, leading to a poor

early recognition of septic patients at risk of deterioration.

Moreover, the differences between the observed and expected

mortality may also be caused by inadequate diagnostic data,

unreliable Glasgow coma scale (GCS) score assessment, regional

differences, and changes in the effectiveness of therapy over time

(33, 34).

With the progress and development of big data techniques,

machine learning methods have attracted research attention

in the past decade. Zhang et al. found that the least absolute

shrinkage and selection operator technique achieves a good

discrimination and calibration for mortality prediction in

patients with severe sepsis (35). Using over 500 clinical

variables, Taylor et al. demonstrated that the machine learning

approach outperformed existing clinical decision rules, with
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FIGURE 2

ROC curves of EWS_C, EWS_L, and EWS_R: (A) 6 (B) 12, (C) 24, and (D) 48h lead times.

the RF model performing better than the LR model in terms

of discrimination (17). Considering a total of 587 features,

including demographics, vital signs, and laboratory results,

Giannini et al. showed that an RF classifier can predict the

impending occurrence of severe sepsis and septic shock with a

low sensitivity of 26% and high specificity of 98% (16). Misra

et al. indicated that using clinical and administrative data,

machine learning models can be applied to predict septic shock

within the first 6 h of admission, with a sensitivity of 83.9% and

a specificity of 88.1% based on RF (36). Utilizing nine features

combined with vital signs, chief compliances, and the emergency

severity index, Klug et al. concluded that the gradient boosting

model shows a high predictive ability for screening patients at

risk of early mortality using data available at the time of triage in

the ED (37). However, most of the previous machine learning

methods for predicting the prognosis of patients with sepsis

required numerous variables, including laboratory results, GCS,

and clinical parameters.

Several studies highlight the value of dynamic vital sign

changes for building predictive models. A pilot study used

physiomarkers to generate 52 highly ranked features and build

an eXtreme Gradient Boost classifier that could predict post-

liver transplant patients 12 h before developing sepsis (38).

Another observational cohort study yielded a total of 60 features

from physiomarkers, and revealed predict severe sepsis 8 h

prior to the event in critically ill children (39). Van Wyk

et al. found that using continuous physiological data alone

to generate a total of 132 features, random forest classifier

could discriminate sepsis 5 h before the onset (40). Using

five physiological data streams including HR, RR, and BP

(systolic, diastolic, and mean), Mohammed et al. developed a

support vector machine (SVM) classifier for predict sepsis up

to interval of 17.4 h before sepsis onset, with an average test

accuracy, sensitivity, specificity, and area under the receiver

operating characteristics curve of 0.83, 0.757, 0.902, and 0.781,

respectively (41).

However, using only physiological data, previous studies

mostly focused on predict sepsis event. By contrast, our study

focused on predict mortality. We included only seven input

parameters in our study, including age, sex, and vital signs (BT,

SBP, DBP, HR, and RR), available from the moment of triage

to any time during hospitalization. Using data available in the
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ED in real time, artificial intelligence can accurately predict

mortality in septic patients 6–48 h prior to clinical recognition.

The proposed method has several advantages. First, vital

signs had clear-cut values and were obtained through machine

measurements, which reduced the expert judgment and limited

variations in the healthcare providers. In addition, models that

require hundreds of variables may lead to difficulty in encoding

the databases and may have more missing values or data errors.

Instead, we attempted to develop an uncomplicated model that

requires simple input parameters that are routinely collected

during daily practice. A simplified tool would be more easily

implemented in resource-limited ED settings. Furthermore,

the data used in our model were widely available in clinical

practice. Lukaszewski et al. reported that neural networks can

correctly predict patient outcomes of overt sepsis prior to clinical

diagnosis with high sensitivity and selectivity (91.43 and 80.20%,

respectively) (42). Because cytokines are not routinelymeasured,

this tool is impractical in clinical practice. Instead, our study

attempted to develop a simplified model with feasible and

reliable input parameters that can be efficiently collected in place

with limited medical resources.

Our study has several limitations. First, this was a

retrospective study conducted in Taiwan. The sample was

homogeneous and may have been subject to local practices,

limiting its generalizability to other ethnicities. Second,

we did not compare all available ML models and scoring

systems, or their variations. There are hundreds of different

ML models and variations; therefore, a comprehensive

study is unfeasible. Application of the developed ML

model to other datasets or populations requires a further

clinical evaluation.

Conclusion

This study contributes to clinical areas using machine

learning in-hospital mortality prediction models for sepsis

patients in the ED. By analyzing dynamic vital sign data,

machine learning models can predict mortality in septic patients

within 6–48 h of admission. The CNN achieves the best model

performance in comparison to the LSTM and RF approaches. In

general, the performance of the testing models is more accurate

if the lead time is closer to the event.
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