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Over the past decades, histopathological cancer diagnostics has become

more complex, and the increasing number of biopsies is a challenge for

most pathology laboratories. Thus, development of automatic methods for

evaluation of histopathological cancer sections would be of value. In this

study, we used 624 whole slide images (WSIs) of breast cancer from a

Norwegian cohort. We propose a cascaded convolutional neural network

design, called H2G-Net, for segmentation of breast cancer region from

gigapixel histopathological images. The design involves a detection stage

using a patch-wise method, and a refinement stage using a convolutional

autoencoder. To validate the design, we conducted an ablation study to assess

the impact of selected components in the pipeline on tumor segmentation.

Guiding segmentation, using hierarchical sampling and deep heatmap

refinement, proved to be beneficial when segmenting the histopathological

images. We found a significant improvement when using a refinement network

for post-processing the generated tumor segmentation heatmaps. The overall

best design achieved a Dice similarity coe�cient of 0.933 ± 0.069 on an

independent test set of 90 WSIs. The design outperformed single-resolution

approaches, such as cluster-guided, patch-wise high-resolution classification

using MobileNetV2 (0.872 ± 0.092) and a low-resolution U-Net (0.874 ±

0.128). In addition, the design performed consistently on WSIs across all

histological grades and segmentation on a representative ×400 WSI took ∼

58 s, using only the central processing unit. The findings demonstrate the

potential of utilizing a refinement network to improve patch-wise predictions.

The solution is e�cient and does not require overlapping patch inference

or ensembling. Furthermore, we showed that deep neural networks can be
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trained using a random sampling scheme that balances on multiple di�erent

labels simultaneously, without the need of storing patches on disk. Future

work should involve more e�cient patch generation and sampling, as well as

improved clustering.

KEYWORDS

hybrid guiding, refinement network, deep learning, convolutional neural networks,

digital pathology, hierarchical sampling, clustering, breast cancer

1. Introduction

Cancer is an important cause of death, and of all cancers,

breast cancer has the highest incidence worldwide (1). Cancer

diagnostics is based on clinical examination, medical imaging

and histopathological assessment of the tumor. The latter

includes analysis of specific biomarkers that often guides

treatment of the patients. Most pathology laboratories are

burdened by an increasing number of biopsies and more

complex diagnostics (2). To reduce workload for pathologists,

automatic assessment of tumors and biomarkers would be of

value.

A natural first step in automatic tumor and biomarker

analysis would be to correctly identify the lesion, thus separating

the tumor from surrounding tissue. For automatic biomarker

assessment, it is important to ensure that biomarker status is

obtained exclusively in the invasive epithelial cancer cells. With

the promise of deep learning-based methods in computational

pathology (3), accurate segmentation of the cancer region would

be beneficial for building new classifiers and facilitate other

cancer analysis methods.

Processing histopathologicalWSIs is challenging due to their

large size. WSIs captured at×400 magnification may be as large

as 200k × 100k pixels, and as such, cannot be used directly as

input to convolutional neural networks (CNNs). A solution is to

downsample the image to a size that is manageable for the CNN.

However, this results in loss of information and is therefore

often not useful for tumor segmentation. Another widely used

approach is to divide the image into smaller patches (4), before

each patch is sent to an algorithm to produce an output. The

results are then stitched to form a complete segmentation or

heatmap of the entire WSI. However, the use of such a patch-

wise design based on high-resolution information only, often

results in edge artifacts and poor global segmentation of larger

structures (5).

Traditional segmentation methods such as geodesic active

contour (6) and superpixel (7) have been used for segmentation

of histopathological images. In recent years, deep learning-

based methods have surpassed traditional methods. From the

challenge paper of CAMELYON16 (8), all 32 participating

teams used machine learning-based methods, of which 25

teams used deep learning-based methods. The seven non-

deep learning-based methods performed poorest on both the

semantic segmentation and classification tasks. We therefore

only consider deep learning-based approaches in this study.

Schmitz et al. (9) compared multi-scale convolutional

autoencoder (CAE) designs, applied in a patch-wise fashion

across liver tumors in WSIs. They found that the network

benefited significantly from the added multi-scale information,

compared to the baseline U-Net (10). They also proposed non-

overlapping inference to reduce runtime at the cost of reduced

accuracy along patch edges. For handling these edge artifacts,

Priego Torres et al. (5) proposed a conditional random field-

based, patch-wise, merging scheme.

To improve the patch-wise design, Guo et al. (11)

developed a multi-task network for classification and semantic

segmentation of breast cancer. They used a pretrained

InceptionV3 (12) architecture and fine-tuned it on the

CAMELYON16 data set (8). Such transfer learning has the

benefit of making training more efficient, as the network is not

trained from scratch. Using a more complex backbone, such as

InceptionV3, has the potential benefit of improved performance.

However, the architecture is computationally expensive, and

might therefore not be suitable for real-time applications, such

as histopathological diagnostics.

Breast cancers are known for their intra- and intertumor

heterogeneity, and thus their morphological appearance

varies both within and between tumors. Due to intratumor

heterogeneity, the patches generated from a single WSI often

contain different tissue types and a varying morphological

appearance. Qaiser et al. (13) studied the effect of smart

patch selection and balancing in preprocessing, to produce

models that performed well on varying types of tissue.

They demonstrated that a deep clustering approach of

patches outperformed the conventional k-means (14)

clustering method.

A similar cluster-guiding strategy was performed by (15)

using multiple instance learning. They used a pretrained

VGG19-encoder (16) for feature extraction. The dimensionality

of the features was reduced using principal component analysis

(PCA) (17), before performing k-means clustering. Samples

were drawn from these clusters and balanced during training.
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The number of clusters was set to four, as they assumed that

there were four main natural tissue types in the data.

For image classification, MobileNetV2 (18) and

InceptionV3 (12) are popular baseline architectures, commonly

used in digital pathology (4, 19, 20). For image segmentation,

the most commonly used CAE is U-Net (10). To make the

U-Net design more efficient, various concepts have been

proposed, such as multi-scale input (21), deep supervision (22),

and attention (23). These three concepts are used in the two

segmentation architectures AGU-Net and DAGU-Net (24).

Performing both detection and semantic segmentation in a

single step is a challenge. The segmentation result is often

suboptimal, and therefore a post-processing method is required.

Refinement networks for the CAE itself have therefore been

proposed, either in multiple steps (25) or end-to-end, e.g.,

DoubleU-Net (26).

We propose a novel cascaded CNN design, H2G-Net, which

efficiently utilizes both high-resolution and global information.

The design is rapid, does not require ensembling, and can be

used on low-end hardware. H2G-Net is a two-stage design.

In the first stage, initial segmentation of the tumor region is

extracted by applying a patch-wise classifier model. To correct

for the fragmentation and pixelation in the generated tumor

heatmap, a refinement network is used in the second stage. The

network utilizes both the tumor heatmap and a low-resolution

version of theWSI to produce the final segmentation. To counter

the heterogeneity of breast cancer, a novel sampling scheme is

proposed, which simplifies training by handling multiple data

imbalance challenges simultaneously and reads patches directly

from the rawWSI format during training.

In this paper, we present the following contributions:

(1) A new, large data set of 624 breast cancer WSIs annotated

by pathologists.

(2) A novel sampling scheme that extracts patches directly from

the WSI, handles hierarchical structured data imbalance

problems, and enables end-to-end cluster-guiding.

(3) A novel approach where a cascaded CNN combines high-

resolution and global information in histopathological

images, producing superior performance over single-

resolution approaches.

(4) The proposed pipeline and trained models are made openly

available for use in FastPathology (27).

2. Materials and methods

2.1. Data set and annotation design

In this study, we used 4 µm thick whole sections

(n = 624) from a cohort of Norwegian breast cancer

patients (28), Breast Cancer Subtypes 1 (BCS-1). All tumors

were previously classified into histological grade, according to

the Nottingham grading system (29). The sections were stained

with hematoxylin-eosin (H&E), scanned at ×400 magnification

using an Olympus scanner BX61VS with VSI120-S5, and stored

in the cellSens VSI format using JPEG2000 compression.

For eachWSI, the tumor area was delineated by pathologists

using QuPath (30). The tumor area included not only invasive

epithelial cells, but also surrounding stromal tissue including

other cells such as fibroblasts and inflammatory cells, and

blood vessels. It is well-known that these components are also

important for cancer development (31–33), and thus including

these in the annotation could be of value in future studies

of cancer progression and prognostication. To speed up and

assist with the annotation work, automatic and semi-automatic

approaches were tested, similarly to the approach used by (34).

We used two different approaches for annotation (AN1 and

AN2). For both annotation designs, predicted annotations were

manually adjusted by the pathologists using the brush tool in

QuPath.

The first 150 WSIs were annotated using the AN1 method,

which involved using the semi-automatic tissue detection

function in QuPath. The following parameters were used for

performing segmentation: simple tissue detection threshold 200,

requested pixel size 20, and minimum area 100,000. In cases

were the algorithm failed, the parameters were adjusted or the

tumor was manually annotated from scratch.

The remaining WSIs (n = 474) were annotated using the

AN2 method (see Figure 1). A patch-wise CNN, similar to

the Inc-PW method described in Section 3.2, was trained

from a subset of the first 150 annotated WSIs. The model

was trained in Python, and the produced model was then

applied to the remaining WSIs. The resulting heatmaps were

imported in QuPath and converted to annotations. Simple

morphological post-processing was then performed before the

segmentations were adjusted by the pathologists. Finally, to

ensure consistency, all annotations were reviewed by a single

pathologist experienced in breast cancer pathology and minor

adjustments were made.

The pathologists’ annotations were exported from QuPath

as individual PNGs, one for each WSI, with a downsampling

factor of four. The PNGs were then converted to tiled, pyramidal

TIFFs, using the command line tool vips1, with tiles sized 1024×

1024 and a LZW lossless compression. All WSIs were converted

to the single-file, pyramidal tiled, generic TIFF format using the

command line tool vsi2tif2. Lastly, the annotated WSIs were

randomly distributed into the three sets: training (∼70%; n =

438), validation (∼15%; n = 96), and test (∼15%; n = 90) set.

2.2. Preprocessing

The tissue regions of each WSI were automatically

segmented by the following steps: (1) Extract the ×1.25 image

1 https://github.com/libvips/libvips

2 https://github.com/andreped/vsi2tif
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FIGURE 1

Description of the data generation timeline and process. The

624 WSIs were annotated with two di�erent annotation

methods (AN1 and AN2). The data set was then randomly split

into train, validation, and test sets. AN, Annotation; BCS, Breast

Cancer Subtypes; Val, Validation.

plane of the WSI, (2) convert the image to the HSV (Hue,

Saturation, Value) color domain, (3) extract and threshold the

saturation channel image using a fixed threshold of 20, (4)

perform two consecutive applications of morphological closing

using kernel sizes 5× 5 and 3× 3, respectively.

Following annotation, we extracted patches sized 256 ×

256 at ×100 magnification level from the WSIs. Only patches

containing more than 25% tissue were included. Patches with

more than 25% tumor were considered tumor patches, and

only patches with no tumor were considered non-tumor. The

remaining patches in the range (0, 25]% tumor tissue were

discarded. For each WSI, the coordinates of accepted patches

were stored along with the assigned label i.e., non-tumor/tumor.

2.3. Hierarchical sampling scheme

A batch generator was created to sample patches

directly from the raw WSI format. Patches were read using

OpenSlide (35), which enabled multi-threading processing. The

generator was based on the condition that it is important to

balance patches according to the following features: class label,

tissue type, tissue and tumor area, and histological grade.

Patches were sampled in a hierarchical sampling scheme (see

Figure 2), conducted as a tree structure uniformly distributed

at each respective stage. The goal was to make all relevant

outcomes equally probable. The sampling scheme was defined

in the ordered stages: (1) Randomly select a histological grade,

(2) from the grade select a WSI, (3) from the WSI select a class

label, (4) from the class label select a patch.

To include patch-level tissue type label in the balancing

scheme, we used our sampling generator to train a k-means

clustering model, similar to (15). From a set of 100 batches of

size 32, features were extracted using a VGG-16 (16) backbone

pretrained on the ImageNet data set (36). The extracted features

were then standardized using Z-score normalization, before

PCA was performed. The number of principal components

was chosen such that 95% of the variance of the data was

explained. The k-means model was then trained using k = 10

number of clusters, as recommended in a related study (37).

The clustering model was implemented using the Python library

scikit-learn (38).

To utilize the trained clustering model in the patch-wise

CNN, TensorFlow (39) equivalents of the standardization, PCA

and k-means transform methods were implemented, which was

defined as a TensorFlow graph. The scikit-learn trained weights

were then loaded for each corresponding component. Finally,

for training the CNN classifier, each patch was passed through

two different graphs; (I) a frozen pipeline that performed

clustering and (II) a learnable deep neural network that

performed classification. The outputs from both models were

then passed to the loss function.

The MobileNetV2 (18) architecture was used for the patch-

wise CNN classification of breast cancer tumor tissue, as it

is lightweight, efficient, and optimized for low-end processors

and thus suitable for real-time deployment. To further reduce

the number of parameters, we simplified the classifier head.

The updated classifier contained a global average pooling

layer, followed by a dense layer of 100 hidden neurons,

dropout (40) with a 50% drop rate, ReLU activation function,

batch normalization (41), and finally a dense layer with softmax

activation function.

2.4. Cluster-guided loss function

To balance on tissue type and thus ensure similar model

performance on all predicted clusters, we included the cluster-

information in the loss computation. By doing so, we enabled

end-to-end cluster-guiding andmade the clustering designmore

scalable, as the cluster heatmap does not need to be generated

in a separate step or stored on disk. For a given batch, we

calculated the cross-entropy loss for each cluster independently,

and then calculated the macro average across each cluster. We

named this loss function cluster-weighted categorical cross-

entropy (CWCE) loss. The loss can be mathematically described

as:

LCWCE = −
1

Kb

Kb∑

k=1

C∑

c=1

B∑

i=1

1(qi,k = k)yi,clog(pi,c) (1)

where i ∈ {1, ...,B} represents sample i in a batch of size

B, k ∈ {1, ...,Kb} cluster in a mini-batch b of size B of Kb

represented clusters, c ∈ {1, ...,C} class, p class prediction, q

cluster prediction, and ground truth tumor class. Note that the

number of clusters Kb may vary between mini-batches.
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FIGURE 2

Illustration of the hierarchical sampling scheme, demonstrating how patches were sampled from the N whole slide images (WSIs) for training

the patch-wise model. Sampling was conducted as a uniform tree diagram. Thus, pi represents probability at step i ∈ {1, 2, 3}. A potential path for

patch selection is marked red. Each patch was assigned a class label c (tumor or non-tumor) and a cluster k (10 di�erent clusters). Each output is

marked in green.

2.5. Heatmap generation and refinement
stage

The tumor heatmaps were generated by: (1) extracting the

tissue region as described in Section 2.2 and generating image

patches from the tissue region (see Figure 3A), (2) applying the

trained patch-wise model in a sliding window fashion across the

WSI, and (3) and stitching the tumor class softmax prediction of

each patch to form a tumor heatmap (see Figure 3B). Heatmaps

were generated for all WSIs in the training and validation sets,

as these were relevant for the second stage. Alternatively, if only

a patch-wise model was used, these heatmaps were thresholded

by 0.5 to produce segmentations of the tumor region. The

latter represents the segmentation designs (III)-(V) mentioned

in Section 3.2).

To improve the result from the patch-wise detection,

we combined the heatmap with the low-resolution WSI (see

Figure 3C). This was done in an additional stage using a

Refinement CNN. A suitable magnification level was chosen

(≥ 1024 × 1024 pixels), and a low-resolution version of

the original WSI was extracted from the image pyramid. The

image was then normalized to [0, 1], before both the resulting

image and the heatmap were resized to 1024 × 1024 using

bilinear interpolation. A separate fully-convolutional neural

network was then used to refine the resulting heatmaps from

the detection stage. We used the U-Net (10) architecture, which

took the concatenated low-resolution three-channel WSI and

predicted heatmap as input.

2.6. From development to deployment

After training the patch-wise and refinement models, the

models are ready to be used for inference. The inference pipeline

is illustrated in Figure 3. The trained TensorFlow models were

converted to the ONNX (42) standard format, to enable efficient

inference on both graphics processing unit (GPU) and central

processing unit (CPU) with different frameworks. The models

were then integrated into the FastPathology (27) platform by

writing a FAST (43) text pipeline, containing information about

the inference pipeline and how the models should be handled

(e.g., input shape, node names, and inference type). Thus, the

proposed pipeline can be used through a graphical user interface

(GUI) without programming. Binary release of FastPathology,

trained models, test data, and source code can be accessed on

GitHub3.

3. Validation study

3.1. Experiments

We conducted an ablation study to evaluate our design. The

experiments conducted were:

(1) To assess the importance of architecture complexity in

breast cancer tumor detection in WSIs, we compared

CNN classifiers using the two backbone architectures

InceptionV3 and MobileNetV2.

(2) To evaluate the cluster-guiding approach, we conducted

experiments with and without k-means using the

MobileNetV2 backbone.

(3) To assess the effect of post-processing on the predicted

heatmap, we compared state-of-the-art CAEs against simple

baseline methods.

(4) To evaluate the importance of having a GPU for inference,

runtime measurements of the best performing method

3 https://github.com/AICAN-Research/FAST-Pathology
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FIGURE 3

Illustration of the inference pipeline, from the whole slide image (WSI) to the final tumor segmentation (prediction). (A) Apply tissue detection

before patch selection. (B) Stream accepted patches through a trained patch convolutional neural network (CNN) classifier and stitch the output

to form a patch-wise heatmap (PWH). (C) Merge the low-resolution (LR) WSI with the resulting tumor tissue (TT) PWH and send it through the

trained refinement CNN, using a probability threshold of 0.5, to produce the final prediction.

were performed with and without using the GPU, using

TensorRT (44) and OpenVINO (45) for GPU and CPU

inference, respectively.

3.2. Baseline segmentation methods

Using our pipeline, any architecture or component can be

removed, added, or substituted. It is therefore valuable to assess

the importance of each component in the pipeline. To evaluate

the pipeline, we used existing, well-documented, state-of-the-

art architectures. For patch-wise classification we used the

MobileNetV2 (∼ 2.39M params.) and InceptionV3 (∼ 22.00M

params.) backbones pretrained on the ImageNet data set, and

used the same simplified classifier head for both architectures, as

described in Section 2.3.

For image segmentation refinement, we compared the CAE

architectures U-Net (∼ 11.58M params.), AGU-Net (∼ 7.68M

params.), DAGU-Net (∼ 9.99M params.), and DoubleU-Net

(16.04M params.). In addition, we included a traditional, widely

used tissue segmentation method (46), to serve as a minimal

baseline measure. This method simply segments all tissue, and

thus all tuned methods should outperform it. For this method,

the image was resized to 1024 × 1024, before being converted

to the HSV color domain. Then, the saturation image was

thresholded using Otsu’s method (47).

The autoencoders were slightly modified to work better

for our use case and data set. To make comparison fair, all

autoencoders had similar depth and filter arrangement. Our U-

Net architecture consisted of nine encoder and decoder blocks,

with the following filters (from top to bottom): {8, 16, 32, 64,

128, 128, 256, 256, 512}. The encoder block used the following
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operations (Convolution-BatchNormalization-ReLU)×2-

MaxPooling. The AGU-Net, DAGU-Net, and DoubleU-Net

architectures used the same filter arrangement as U-Net, but

based on eight levels without the last 512 filter due to memory

constraints. Furthermore, DoubleU-Net used 42 atrous spatial

pyramid pooling filters. All autoencoders were symmetric,

trained from scratch, modified to support two inputs (image

and heatmap), and used softmax activation function in the last

layer. Implementations of all architectures used in this study are

openly available in our GitHub repository4.

In summary, the following segmentation designs were

compared:

(I) Otsu: Intensity-based thresholding for tissue

segmentation.

(II) UNet-LR: Segmentation of low-resolution WSI using a

U-Net architecture.

(III) Inc-PW: Patch-wise classification using an InceptionV3

architecture.

(IV) Mob-PW: Patch-wise classification using a MobileNetV2

architecture.

(V) Mob-KM-PW: Same as (IV), with k-means guiding.

(VI) Mob-PW-UNet: Same as (IV), with a U-Net refinement

network, without k-means guiding.

(VII) Mob-PW-AGUNet: Same as (IV), with an AGU-Net

refinement network.

(VIII) Mob-PW-DAGUNet: Same as (IV), with a DAGU-Net

refinement network.

(IX) Mob-PW-DoubleUNet: Same as (IV), with a DoubleU-

Net refinement network.

3.3. Statistical evaluation

All patch-wise and refinement models were trained using the

same training set, and the best models were selected based on

the performance on the validation set. The test set was used as a

hold-out sample for an unbiased, final evaluation.

As our use case is on breast cancer segmentation, we only

consider binary segmentation in this study. However, H2G-

Net supports multiclass semantic segmentation. A threshold of

0.5 was used to distinguish between the tumor and non-tumor

classes. Metrics were reported WSI-wise, and only on the test

set. For each respective metric, macro average and standard

deviation were reported. The specific metrics used to assess

performance were pixel-wise recall, precision, and the Dice

similarity coefficient (DSC). To further assess the robustness of

the design, we also reported DSC for each histological grade. We

performed multiple pairwise Tukey’s range tests, comparing the

DSC measures for all deep learning-based designs. The p-values

were estimated for the test set (see Supplementary Table 1).

4 https://github.com/andreped/H2G-Net

3.4. Training parameters

For training the classification models, we fine-tuned the

respective pretrained backbones using the Adam optimizer (48)

with an initial learning rate of 1e-4. For batch generation,

500 and 200 batches of size 64 for training and validation,

respectively, were sampled randomly for each epoch. The

models were trained for 100 epochs. Batches were generated

in parallel using eight workers with a maximum queue size

of 20. Models were trained using the following online data

augmentation scheme of which all had a 50% chance of being

used: random horizontal/vertical flip, 90◦ lossless rotations,

HSV color augmentation with a random shift of range [−20, 20],

and multiplicative brightness augmentation of range [0.8, 1.2].

All segmentation models were trained from scratch using

the Adam optimizer with an initial learning rate of 1e-

3. Accumulated gradients using a batch size of four with

six accumulation steps were performed. For online data

augmentation, simple horizontal/vertical flip, 90◦ rotations,

random zoom of range [0.8, 1.2], and Macenko (49) stain

augmentation5 using σ1 = σ2 = 0.1, with a chance of 50% of

being used, were conducted. The models were trained for 1,000

epochs, or until the early stopping criterion with a patience of

100 epochs was achieved.

Implementation was done in Python 3.6, and CNN

architectures were implemented in TensorFlow (v1.13.1).

Experiments were performed using an Intel Xeon Silver 3110

CPU, with 32 cores and 2.10 GHz, and an NVIDIA Quadro

P5000 dedicated GPU.

4. Results

For the test set, all deep learning-based methods

outperformed the tissue segmentation method, Otsu, in

terms of DSC (see Table 1). Comparing the patch-wise

classifiers, Inc-PW and Mob-PW, no significant difference

in DSC was found between the architectures (p ≈ 0.9, see

Supplementary Table 1). Adding cluster-guiding to Mob-PW,

Mob-PW-KM, slightly reduced performance, however, not

significantly (p ≈ 0.9). Among the best single-resolution

designs (i.e., UNet-LR, Inc-PW, and Mob-PW), the patch-wise

approaches performed slightly better in terms of DSC, but not

significantly (p ≈ 0.9). The low-resolution approach (UNet-LR)

achieved better recall, but with the cost of poorer precision.

Introducing a U-Net-inspired refinement network (using

both the low-resolution WSI and the resulting heatmap from

Mob-PW) resulted in significant improvement compared to

the best single-resolution approach (Mob-PW-UNet vs. Inc-

PW, p ≈ 0.012). All methods using a refinement network

significantly outperformed the single-resolution approaches.

5 https://github.com/Peter554/StainTools
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TABLE 1 Test set segmentation performance for the di�erent designs.

Designs Recall Precision Dice similarity

coefficient

(I) Otsu 0.990± 0.027 0.534± 0.200 0.669± 0.179

(II) UNet-LR 0.931± 0.113 0.851± 0.165 0.874± 0.128

(III) Inc-PW 0.881± 0.118 0.909± 0.099 0.887± 0.089

(IV) Mob-PW 0.879± 0.123 0.907± 0.100 0.885± 0.094

(V) Mob-KM-PW 0.853± 0.124 0.909± 0.097 0.872± 0.092

(VI) Mob-PW-UNet 0.944± 0.074 0.929 ± 0.088 0.933 ± 0.069

(VII) Mob-PW-AGUNet 0.954 ± 0.066 0.909± 0.097 0.927± 0.072

(VIII) Mob-PW-DAGUNet 0.942± 0.075 0.922± 0.091 0.928± 0.072

(IX) Mob-PW-DoubleUNet 0.949± 0.073 0.919± 0.093 0.929± 0.074

DSC, Dice Similarity Coefficient; Inc, InceptionV3; Mob, MobileNetV2; PW, Patch-wise;

KM, k-means; LR, Low-resolution. Results are reported as mean± standard deviation.

Comparing the refinement architectures, the best performance

in terms of precision and DSC was found from the U-Net

design, Mob-PW-UNet, but the difference was not statistically

significant (p ≈ 0.9 for all comparisons). No benefit of using

more advanced CAE architectures was found.

When each histological grade was analyzed separately, Mob-

PW-DoubleUNet was the best performing method for grade I

and Mob-PW-UNet performed best on grade II and III (see

Table 2). All designs guided by the hierarchical sampling scheme

(designs (II)-(IX)) performed similarly across all histological

grades, indicating that performance was somewhat invariant to

histological grade.

The best performing method, Mob-PW-UNet, took

approximately ∼ 58 s to run on a representative ×400 WSI

using the CPU (see Table 3). Using the GPU, runtime was

reduced to 40.26 s. The patch-wise method dominated the

overall runtime, with ∼ 1% of the total runtime being used on

the refinement stage.

5. Discussion

In this paper, a novel approach for breast cancer

segmentation in WSIs was proposed. The method, called

H2G-Net, includes a cascaded CNN architecture combining

high-resolution and global information with negligible increase

in runtime. A random sampling scheme was also proposed,

which extracts patches directly from the raw WSI format,

handling multiple data imbalance challenges simultaneously.

We made the pipeline and trained models openly available in

FastPathology (27), enabling the use of the method without

programming. To conduct our experiments, we developed a

novel data set comprising 624 breast cancer WSIs annotated by

pathologists. We have presented each component in the pipeline

and assessed the impact of each component in an ablation

study. Using multiple guiding components, we significantly

improved segmentation performance, while reducing disk

storage requirements compared to conventional training

pipelines.

The best performing architectures utilized both low and

high-resolution information from the WSI. A similar approach

is used by pathologists when separating the tumor from

surrounding tissue. The low-resolution image provides a coarse

outline of the tumor, whereas higher resolution is often

necessary for accurate delineation.

5.1. Cascaded design and related work

For segmentation, using low-resolution as the first step

could reduce total runtime by filtering patches during

preprocessing. However, UNet-LR, a U-Net using only low-

resolution information, results in low sensitivity and should

therefore not be the first step for breast cancer segmentation.

In this work, we used a patch-wise, high-resolution method

as a first step to optimize detection. A U-Net could then be

trained at a later stage to refine the produced heatmap, using

both the heatmap and the low-resolution WSI as input. Using

the heatmap generated from the patch-wise method alone, some

areas of the tumor, such as areas with abundant stromal or fatty

tissue, may not be recognized, thus resulting in a fragmented

heatmap (see Figure 4). We show that the network benefits from

having the low-resolution image, together with the heatmap.

Using this approach, the segmentation become more similar to

the ground truth (the pathologists’ annotations).

Tang et al. (50) used a two-step procedure to perform

instance segmentation of objects in the Cityscapes data set (51).

These images have an initial resolution of 1024 × 2048 pixels,

but the classes of interest can easily be distinguished at lower

resolution. In contrast to our design, they first performed

semantic segmentation on the low-resolution, before refining

the initial segmentation using a patch-wise design. They

also used overlapping predictions along the border of the

initial segmentation. Their approach might be an interesting

refinement method to further improve the segmentation

performance of our resulting low-resolution segmentation.

A similar refinement approach to (50) was used by (52)

for cervical intraepithelial neoplasia segmentation of H&E

stained WSIs. However, introducing a new network for border

refinement will make the overall runtime longer and introduce

more complexity to the final pipeline. Isensee et al. (53)

conducted a similar two-step procedure for medical volumetric

data. They first used a CAE applied on the downsampled version

of the full 3D volume (CT/MRI). They then applied a 3D patch-

wise refinement model, using both the local volumetric data

(CT/MRI) and predicted heatmap as input.

Another similar architecture design to ours, was proposed

by (54) for WSI classification of breast cancer. They also

used a patch-wise model in the first step, before feeding the
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TABLE 2 Test set segmentation performance for the di�erent designs in histological grades I-III.

Designs
Dice similarity coefficient (n = 90)

Grade I (11) Grade II (48) Grade III (31)

(I) Otsu 0.732± 0.151 0.659± 0.186 0.664± 0.174

(II) UNet-LR 0.880± 0.127 0.862± 0.142 0.890± 0.099

(III) Inc-PW 0.901± 0.072 0.882± 0.088 0.890± 0.095

(IV) Mob-PW 0.887± 0.089 0.882± 0.092 0.890± 0.100

(V) Mob-KM-PW 0.851± 0.111 0.872± 0.089 0.880± 0.088

(VI) Mob-PW-UNet 0.936± 0.073 0.931 ± 0.058 0.935 ± 0.083

(VII) Mob-PW-AGUNet 0.933± 0.082 0.926± 0.060 0.927± 0.083

(VIII) Mob-PW-DAGUNet 0.935± 0.075 0.926± 0.058 0.929± 0.088

(IX) Mob-PW-DoubleUNet 0.942± 0.070 0.924± 0.066 0.934± 0.085

DSC, Dice Similarity Coefficient; Inc, InceptionV3; Mob, MobileNetV2; PW, Patch-wise; KM, k-means; LR, Low-resolution. Results are reported as mean± standard deviation.

TABLE 3 Runtime measurements of the proposed method,

Mob-PW-UNet.

Patch-wise Refinement Total

OpenVINO 57.32± 0.20 0.75± 0.01 58.07± 0.20

TensorRT 39.88± 0.62 0.38± 0.00 40.26± 0.62

Experiments were repeated ten times and respective average and standard deviation are

reported in seconds. OpenVINO and TensorRT were used as inference engines for CPU

and GPU inference, respectively.

resulting heatmap to a second CNN that performed WSI-

level classification. In addition, they used skip connections to

propagate learned features from the patch-wise CNN to the

latter CNN. Thus, our method could be seen as an adaption to

their design applied to image segmentation. This style of skip

connection is similar to the DoubleU-Net approach by (26).

In this study, we did not explore skipping features from the

classifier to the refinement network. This could be explored in

future work. Our design is also similar to the work of (55), where

a similar two-stage, cascaded CNN design was deployed, but for

image registration of WSIs.

5.2. State-of-the-art comparison

An alternative approach, commonly used in the literature

for other segmentation tasks (3), is to perform segmentation on

patch-level.We argue that this approach is too slow andmemory

intensive for routine usage on low-end devices. As tumor

segmentation is often the first step in any automatic cancer

assessment pipeline, the method must be rapid. Furthermore,

the annotations we used for training marked the outline of

the tumor, thus including components like stromal tissue,

inflammatory cells, and blood vessels, in addition to invasive

epithelial cells. Within the tumor area, the different patches

will have a varying morphological appearance. Therefore,

using a patch-wise classifier alone, some patches may not

contain sufficient information to make a qualified decision.

This is even more challenging for semantic segmentation.

Therefore, comparing our design to a high-resolution patch-

wise segmentation models was not explored. The natural

alternative state-of-the-art method could be to apply a patch-

wise CNN classifier, which was the best performingmethod used

for tumor detection and classification in the BACH challenge (4).

We therefore performed an ablation study to make our design

more easily comparable to current state-of-the-art approaches.

Comparison to state-of-the-art methods is challenging, as

the data others have used are often not publicly available, may

consist of other organs and cancer types, or have been annotated

in a different manner. The BACH challenge data set includes

100 image patches from only ten annotated WSIs of invasive

carcinomas. Another public data set is the CAMELYON17 (56)

challenge data set comprising 1,399 annotated lymph node

metastasis sections, where the task and tissue type are not

comparable to our data. Lastly, the PAIP 2019 (57) challenge

data set includes annotations made for the whole tumor area,

using annotations similar to ours. The best performing team in

the PAIP 2019 challenge used a patch-wise CAE and reached a

Jaccard index of 0.7890, which translates to a DSC of 0.8821. This

performance is comparable to the single-resolution approaches

we tested (see Table 1). However, the sections they used were

from liver cancer tissue. The training data set included only 50

annotated WSIs, in contrast to our data set, including 624 WSIs.

Hence, a fair comparison cannot be made.

Cruz-Roa et al. (58) used a local data set of ∼ 500

annotated WSIs from breast cancer for training and validating

a patch-wise CNN classifier for detecting invasive breast cancer.

They also proposed a sampling scheme based on Quasi-Monte

Carlo sampling similar to ours, however, a heatmap refinement

method was not explored. On their local validation set they

achieved a DSC of 0.670, and on an independent test set of
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FIGURE 4

Qualitative segmentation results of five test set whole slide images (WSIs) comparing predictions of our method, H2G-Net, against a baseline

method, PW-Mob, and the ground truth (pathologists’ annotations). DSC, Dice Similarity Coe�cient; PW, Patch-wise; Mob, MobileNetV2.

195 WSIs from the The Cancer Genome Atlas (TCGA), they

achieved a DSC of 0.759. Le et al. (59) used a local data set of

109 annotated WSIs from breast cancer to train and validate a

patch-wise CNN classifier. They also used the same TCGA data

set as (58) for evaluation, but used a ResNet-34 CNN backbone

and a patch aggregation refinement method based on a sliding

window pooling technique. They reported a DSC of 0.820.

As our best performing method is integrated into an open

software (FastPathology), it is possible for researchers to make

comparisons of their methods to ours, by running our pipeline

on their own data. However, it is challenging to compare

machine learning methods if they have not been trained on the

same data, as machine learning models are a consequence of

the training data. A large, public benchmark data set for breast

cancer segmentation is therefore needed.

5.3. Architecture depth, patch
generation, and clustering

An interesting observation in this study is that using the

deepest and most complex network for tumor segmentation

is not necessarily better. From Table 1, we found no statistical

significant difference between using InceptionV3 and

MobileNetV2 for detection of breast cancer tissue. A similar

trend could be seen from the refinement network. Choosing

more complex CAEs did not significantly improve segmentation

performance. This could be due to data that did not cover all

possible variations. The quality of the heatmap provided from

the detection stage varied in some cases, making it challenging

for the refinement network to improve the initial segmentation.

‘ Reading patches from the raw WSI format is time

consuming. It is therefore common to preprocess data before

training. In this study, we sampled patches directly from the raw

WSI format during training. This idea was recently proposed

by (60). We further extended on their idea to make it more

generic. The approach by (60) cannot handle larger batch

sizes, as the cost of batch generation is not scalable. Thus,

we used accumulated gradients to speed up batch generation,

while simultaneously reducing GPU memory usage. We further

introduced the concept of hierarchical sampling, which added

direct support for balancing on multiple categories and labels.

This design also added support for performing cluster-balancing

end-to-end during training. The clustering method can also

easily be substituted.

No benefit from using cluster-guiding to detect breast cancer

tissue was observed, comparing Mob-KM-PW and Mob-PW by

qualitative visual inspection. This was also observed in a study
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by (13) on a similar task. We hypothesize that the core reason

why cluster-guiding did not improve performance in our use

case may be that the fundamental problem of breast region

segmentation does not necessary lie in handling data imbalance

between tissue types. Due to the low field-of-view in patch-

wise designs, there will most likely be patches where it is not

possible to assign the correct label without also including global

context. That is probably why our refinement network was more

successful.

5.4. Future perspectives

Qaiser et al. (13) demonstrated improved performance by

using a more advanced clustering design. Thus, in future work,

substituting the traditional ImageNet features + PCA + k-means

clustering approach with a more suited clustering design should

be explored. A natural next step could then be to provide the

predicted cluster heatmap with the tumor heatmap, as it would

provide different, representation-informative, high-resolution

information to the refinement network.

Multiple instance learning (MIL) is a promising approach

that tackles the challenge of weak supervision and noisy ground

truth (61). Exchanging the MIL design with the single-instance

CNN classifier is possible. In this framework, one could still

perform clustering in preprocessing, and sample patches to the

bag, as done in a recent study (37). However, an interesting

approach proposed by (62) was to perform clustering directly

within the MIL design on bag-level. Using attention, one could

train a network, not only to solve a task, but to learn subcategory

structures in the data, while simultaneously filtering redundant

clusters and noisy patches. This was demonstrated by (63).

However, they did not assess the impact of the clustering

component. Future work should involve replacing the single-

instance CNN with the MIL design, incorporating clustering in

an end-to-end fashion, and properly assessing its impact.

5.5. Strengths and limitations

The main strengths of the study are that the models

were trained on a large set of breast cancer WSIs. Tumor

annotations were created in a (semi-)automatic manner, and

manually corrected by pathologists. To ensure consistency, all

annotations were assessed by a pathologist experienced in breast

cancer pathology. Validation studies were conducted using an

independent test set. The performance of the different designs

was also evaluated for each histological grade separately. An

ablation study was performed to assess the impact of each

component in the multi-step pipeline. The proposed design was

validated against baseline methods, and the best method was

integrated in an open platform, FastPathology (27).

The main limitations are that the models were trained using

sections that were H&E-stained in the same laboratory and

scanned in a single scanner. We demonstrated that the model

generalized well to the test set, however, we have not tested our

model onWSIs from other institutions. It is possible to carry out

data augmentation to make the models more invariant, but it is

challenging tomimic different staining and scanning effects (64).

Thus, in the future, data from different laboratories and scanners

will be added for training the models. We did not perform

stain normalization as it would have added an additional layer

of uncertainty and dependency in the pipeline. Furthermore,

it would be interesting to assess the extent of generalization

capability of our models to cancers of other origins, such as lung

or gastrointestinal cancer. Lastly, our hierarchically-balanced

sampling schemewas only used on a single task and not included

in the ablation study.

6. Conclusion

Through our hybrid guiding scheme, we demonstrated

a significant improvement in segmentation of breast cancer

tumors from gigapixel histopathology images. The model

outperformed single-resolution approaches and introduced a

simple, fast, and accurate way to refine segmentation heatmaps,

without the need for overlapping inference or ensembling. We

also presented a hierarchical sampling scheme, that enabled

patches to be streamed from the raw WSI format concurrently

during training. Furthermore, we demonstrated that tissue type

balancing can be performed end-to-end, using a novel loss

function. The hierarchical sampling scheme and the novel

loss function were introduced to make training methods more

scalable and to reduce storage requirements.
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