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The retina, the part of the eye, translates the light signal into an electric

current that can be sent to the brain as visual information. To achieve this,

the retina requires fine-tuned vascularization for its energy supply. Diabetic

retinopathy (DR) causes alterations in the eye vascularization that reduce the

oxygen supply with consequent retinal neurodegeneration. During DR, the

mammalian target of rapamycin (mTOR) pathway seems to coordinate retinal

neurodegeneration with multiple anabolic and catabolic processes, such as

autophagy, oxidative stress, cell death, and the release of pro-inflammatory

cytokines, which are closely related to chronic hyperglycemia. This review

outlines the normal anatomy of the retina and how hyperglycemia can

be involved in the neurodegeneration underlying this disease through over

activation or inhibition of the mTOR pathway.
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Introduction

The retina is an anatomical site where microvascular architecture and neuronal

organization are strictly related for proper visual function. Among ocular diseases,

diabetic retinopathy (DR) is an increasingly prevalent degenerative disease and is the

leading cause of blindness in developed countries. DR is one of the disorders related to

diabetes mellitus (DM). DM is a chronic metabolic disease with multiple homeostatic

alterations leading to the disruption of redox regulation, the activation of immune

responses, and systemic inflammation (1). During DM, sustained hyperglycemia is a

well-recognized cause of retinal microvascular/neuronal rewiring. As a consequence of

hyperglycemia-induced energy imbalance, cells quickly alter their biochemical activity

by enhancing the expression of advanced glycation end products (AGEs) and reactive

oxygen species (ROS) (2). The kinase, mammalian target of rapamycin (mTOR), resides

at the interface between hyperglycemia and biochemical modifications. mTOR is a sensor

of nutrient availability and growth factors, and has been implicated in multiple diseases

like cancer, diabetes, and aging (3). mTOR and its related pathways, namely, mTOR

complexes (mTORCs), control tissue homeostasis to manage cell growth, proliferation,
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autophagy, and apoptotic events by virtue of its role. Indeed,

changes in retinal morphology are driven by mTOR pathways,

mainly by ROS production and dysregulated autophagic

processes (4, 5).

This review addresses how hyperglycemia alters mTOR

pathways duringDR and provides useful tools for understanding

normal retinal anatomy and the role of mTOR in tissue

generation and in the pathophysiology of DR.

Functional anatomy of the retina and
blood–Retina barrier

The retina is the innermost of the three layers that

constitute the wall of the eyeball. The retina internally covers

the choroid and externally coats the vitreous body. Based

on histological sections, the retina contains 10 different

conventionally recognized morphological layers, composed of a

complex array of neurons, glial cells, and blood vessels.

The first and outermost layer consists of the retinal pigment

epithelium (RPE), which separates the retina from the innermost

layer of the choroid, Bruch’s membrane. More internally,

three different types of neural cells are connected in series.

Photoreceptors, rods, and cones convert the absorbed light into

a neural signal, accounting for roughly 110–130 million cells

in the entire retina. Photoreceptors, which account for roughly

30 million cells, are radially connected to bipolar cells, and

transfer the neural signal to the innermost layer of ganglion cells

whose axon forms the optic nerve, and are thought to number

between 0.6 and 1.2 million. Physiological convergence of the

signal from themore abundant photoreceptors to fewer ganglion

cells is modulated by two different types of cells embedded in the

retinal wall, horizontal cells that mediate the interaction between

photoreceptors and bipolar cells, and amacrine cells interposed

between bipolar cells and ganglion cells (6).

In addition to these five different types of neurons, the

retina contains a large number of glial cells, namely, Müller

cells, astrocytes, and microglia (7). Müller cells are the most

representative and abundant among retinal glial cells. They

constitute a larger part of the volume of the retina and fill

the remaining space among neurons. Müller cells run radially

from the inner to the outer limiting membrane, traversing all

layers up to the outer nuclear layer and isolating neurons from

each other except at their synaptic contacts. In correspondence

with the internal limiting membrane, Müller cells contribute

to the formation of this membrane with a footplate formed by

their basal expansions. Astrocytes are much less abundant than

Müller cells and are instead confined to ganglion cell and nerve

fiber layers, while microglial cells are distributed throughout

the whole retinal thickness but are particularly found near

the vessels. It has also been demonstrated that glial cells are

involved in retinal inflammation. Indeed, Müller cells have

different receptors for cytokines and release cytokines to regulate

inflammation (8). In physiological conditions, microglial cells

maintain the homeostasis of the retina, undertake phagocytosis,

clear debris, and control inflammation. Prolonged stress

conditions, such as hyperglycemia associated with DR, can

increase the number of microglial cells and release stress

proteins and cytokines (9).

Among human tissues, the retina shows the highest oxygen

consumption per unit weight to sustain elevated aerobic

metabolism (10). In physiological conditions, the elevated

blood flow is guaranteed by a dual arterial supply that allows

independent vascularization of the outer and inner parts of the

retina. Indeed, retinal layers are sandwiched between the outer

and inner blood–retina barriers (oBRB and iBRB), which exhibit

a very different anatomical structure (Figure 1). The retina

from the external limiting membrane to the RPE is avascular

and nourished by diffusion from the choroidal capillaries (11).

Here, the oBRB is composed of the choroidal capillaries, the

RPE, and Bruch’s membrane, which are located between the

basement membranes of the choroidal capillaries and RPE (6).

The choroidal capillaries are fenestrated to provide a sustained

intake of nutrients and adequate removal of waste products.

In contrast, Bruch’s membrane is formed by collagen and

elastic sheets, and regulates the diffusion of nutrients based on

their molecular weight. In addition, Bruch’s membrane limits

cell migration and controls intraocular pressure to randomize

physical forces, thereby stabilizing the RPE layer. As a result,

the RPE provides a wide exchange surface by means of an

elevated number of microvilli, which extend between the outer

parts of rods and cones, regulate nutrient supply, and recycle

intracellular metabolites derived from the phagocytosed outer

parts of photoreceptors. In addition, the RPE stabilizes the oBRB

by providing vascular endothelial growth factor (VEGF) and

other trophic factors to maintain the choroidal capillaries and

their fenestrations. In a healthy individual, the most significant

function of the choroidal circulation and the oBRB is to supply

oxygen to photoreceptors, which are thought to consume more

than 75% of retinal oxygen (12, 13). Notably, the pathological

hallmark of DR is reduced oxygen exchange and consumption,

followed by a low arteriovenous difference and abnormal venous

oxygen saturation (14).

Blood, supplied from the central vessels of the retina which

pass through the optic nerve, emerge at the papilla, and reach the

internal surface of the retina. Unlike the outermost retinal layer,

the innermost retinal layer is vascularized by three different

plexuses organized alongside the layers of nerve/ganglion,

internal plexiform, and outer plexiform. Similarly, the internal

blood–retina barrier, which resembles the blood–brain barrier

more, is consistently different from the oBRB (15). The

capillaries do not show fenestrations but are continuous,

and vicinal endothelial cells are joined together by adherent

and tight junctions (Figure 1). In addition, endothelial cells

are surrounded by pericytes even more covered by Müller

cells, astrocytes, and microglial cells, which participate in the
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FIGURE 1

Retinal microanatomy and blood–retina barriers. (A) This image depicts the retinal structure situated in between the internal limiting membrane

(ILM) and the choroidal layer (choroid), which externally lines the retinal pigment epithelium (RPE) cells. Over the RPE layer, neurons cross the

whole retinal thickness and are radially connected (PR, photoreceptors; BP, bipolar cells; GC, ganglion cells). Other neural cells are amacrine

cells (MA), horizontal cells (HC), and Müller cells (MC), which, in particular, terminate at the level of the outer limiting membrane (OLM). Vessels

derived from the central retina artery form three di�erent capillary beds were placed alongside the layers of nerve/ganglion layer, internal

plexiform, and outer plexiform and interconnected by arterioles and capillaries. In (B), the structure of the internal blood–retina barrier is given

in detail, which consists of several histological elements: the adherent and tight junctions among the capillaries, the pericyte layers around

endothelial cells, and extensions from the Müller cells, all of which take part in the control of metabolites and liquid exchange and endothelial

proliferation. In (C), the structure of the outer blood–retina barrier (oBRB) is represented and made from Bruch’s membrane and the RPE layer,

which play a pivotal role in controlling several parameters including internal pressure and ocular shape, oxygen exchange, and recycling of

materials from the photoreceptor layer.
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formation of the iBRB and collectively regulate endothelial

cell proliferation and blood flow, providing additional trophic

factors, antioxidants, and cytokines (16).

Diabetic retinopathy

Diabetes mellitus is a leading pathology in the industrialized

country, resulting in several serious life-threatening

complications and death. It has been estimated that 1–5

Americans could be affected in 2050 (17). DM affects multiple

organs like the retina, kidney, peripheral nerves, and blood

vessels due to prolonged exposure to hyperglycemia caused by

chronic and/or relative insulin insufficiency (18, 19). Vascular

complications of diabetes are grouped into “macrovascular

diseases,” associated with an increase in myocardial infarction

and stroke, and “microvascular diseases” such as diabetic

nephropathy, retinopathy, and neuropathy (20, 21). Of these,

DR is the most prevalent illness among elderly people with

diabetes living in developed countries. The prevalence of DR has

reached 50% of patients with type 2 diabetes and 75% of patients

with type 1 diabetes and remains a leading cause of moderate-

to-severe vision loss and blindness worldwide (22). Other

microvascular complications, such as diabetic nephropathy,

have been shown to be major risk factors for macrovascular

complications such as heart attacks and strokes (23–25).

In DR, prolonged hyperglycemia changes the structure

of the retina and induces alterations to both neuronal and

vascular cells, resulting in vision loss and blindness (26–28).

In DR, new vessels grow in the normally avascular outer

retina and in the subretinal space. Moreover, older patients

with diabetes show impaired macular blood flow regulation

that exacerbates diabetic retinal damage (29–31). In addition

to vascular remodeling, inflammation, typically associated with

type 2 diabetes, also seems to play a role in DR. This is suggested

by the finding that only half of the patients were successfully

treated with a specific anti-VEGF treatment (32). Accordingly, it

is possible to detect an increase in several inflammatory markers

in the blood serum, aqueous or vitreous humor, and ocular

tissue of patients with DR. In particular, intercellular adhesion

molecule 1 (ICAM-1), interleukin-1β (IL-1β), IL-6, IL-8, tumor

necrosis factor α (TNF-α), and monocyte chemoattractant

protein-1 (MCP-1) have been found to be increased in patients

with DR (33, 34). Both neurons and glial cells are involved in

the release of these inflammatory mediators, which can recruit

leucocytes at the ocular level, further promoting the shift toward

a pro-inflammatory environment. In addition, lymphokines and

chemokines can also directly target endothelial cells, stimulating

cell death and vasculature rearrangements.

The development of new diagnostic techniques has led to

powerful improvements in the visualization of retinal structures

and vasculature and, consequently, in the diagnosis of DR.

Classically, the diagnosis of DR has been based on color fundus

photographs and fluorescein angiography, injecting dye into a

vein in the arm during a dilated eye examination. Nowadays,

optical coherence tomography (OCT) imaging offers a rapid

and non-invasive test by imaging cross-sectional pictures of the

macula layers to detect retinal alteration that heralds the onset of

DR (35).

Clinical examination of the retinal microvasculature defines

the two major types of DR. Non-proliferative DR (NPDR)

is characterized by the presence of microaneurysms, dot and

blot hemorrhages, exudates, cotton wool spots, and intraretinal

microvascular abnormalities, while proliferative DR (PDR)

involves more extensive ischemia, neovascularization, and

tractional retinal detachment, which is a high-risk factor for

severe vision loss (36).

E�ect of diabetes and hyperglycemia on
microvasculature and neurovascular
units

The causative events underlying the pathogenesis of this

disease are not completely understood. One of the most

accredited hypotheses is that diabetes and hyperglycemia

directly increase ROS production and alter the structure of

the iBRB and oBRB events underlying vascular rearrangements

(37, 38).

Briefly, the exposure of retinal cells to hyperglycemia

triggers several related events, including massive glycation of

cellular proteins, the formation of advanced glycation end

products (AGEs), the formation of ROS, the release of pro-

inflammatory cytokines followed by cell death—particularly in

cells that are more exposed to hyperglycemia, such as pericytes

(39). The loss of pericytes in the iBRB represents an early

hallmark and is a breakthrough for DR because the disruption

of the iBRB corresponds to deregulation in endothelial cell

proliferation, leading to an outgrowth of dilated capillaries

and microaneurysms, followed by vascular leakage and edema.

Alternatively, it is frequently possible to find non-perfused or

obliterated vessels with subsequent impaired flow and ischemia,

followed by hypoxia-driven altered capillary regrowth (40).

Glycolysis is a metabolic pathway that produces adenosine

triphosphate (ATP) under conditions that normally prevent ATP

production by mitochondria. In healthy people with normal

glycemia, glycolysis is fine-tuned to keep the intermediates

stable. In diabetic patients with DR, hyperglycemia boosts

glycolysis, leading to the accumulation of intermediates such

as sorbitol via aldose reductase, as well as diacylglycerol

(DAG) and AGEs (41). Increased DAG production during

hyperglycemia activates protein kinase C-β (PKCβ), an isoform

belonging to the PKC family active in vascular tissue (42),

which consequently induces endothelial permeability, VEGF

secretion, and inflammation (43). AGEs then bind to the ACE
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receptors, triggering VEGF expression and sustaining the pro-

inflammatory event (44). In this view, VEGF has a central

role during the inflammatory response in DR (45), as seen

in other pathologies such as cardiovascular diseases like heart

failure (46).

Being vascular remodeling one of the most dramatic

events in DR, it is not surprising that in recent years,

treatment of this pathology has been targeted at the retinal

vessels: corticosteroids, laser photocoagulation, and anti-

VEGF. Corticosteroids control inflammation and modulate

genes encoding multiple inflammatory and anti-inflammatory

proteins, leading to an amelioration of the BRB, even though

it has also been demonstrated that corticosteroids can induce

ocular hypertension and glaucoma (47). Because of the pivotal

role of vascular outgrowth, laser photocoagulation has been

a well-established treatment option for DR for more than

half a century. Retinal oxygen demand is a regulator of

angiogenesis, and this metabolic requirement can be reduced by

laser photocoagulation, indicating that it could be an effective

treatment for PDR (48). Potential side effects associated with

this technique are moderate vision loss, diminished visual

field, reduced color vision, and contrast sensitivity (49). In

recent years, intravitreal injections of anti-VEGF drugs, such as

ranibizumab, aflibercept, brolucizumab, aflibercept, or off-label

drugs like bevacizumab, have become a common treatment for

macular and retinal pathologies (50–52). However, these drugs

have a short half-life and require regular intravitreal injections

to maintain their efficacy, amplifying the risk of developing

endophthalmitis caused by intravitreal injections of anti-VEGF

agents (53, 54).

In addition to vascular remodeling, it is claimed that

hyperglycemia can act directly and independently on neural

cells. Using OTC analysis in addition to visual function

tests [i.e., contrast sensitivity, perimetry testing, multifocal

electroretinogram (mfERG), and dark adaptation], retinal

thinning and visual dysfunction can be identified before the

onset of DR, as has been demonstrated in diabetic patients

without DR or with very early DR (55–57). This suggests

a role for retinal neurodegeneration in the pathophysiology

of DR. Retinal neurodegenerative events are common among

species, as confirmed by animal models of diabetes. In mice

and rats with autoimmune diabetes induced by the β-cell toxin

streptozotocin, OTC analysis reveals thinning of the ganglion

cell layer or inner plexiform layer, the inner/outer nuclear

layer, as well as the entire retina (58, 59). Along with this

neurodegeneration, vascular manifestation can be independent

or at least concurrent. Indeed, in the ob/ob mouse model

of type 2 diabetes, there was overall glial activation with

leukostasis and a shift in microglia/macrophage phenotype

before microvascular degeneration (60).

The breakdown of the inner BRB leads to loss of this complex

neural environment and contributes to increased retinal vascular

permeability and vision loss (61). Moreover, retinal microglia

lose their motile cellular processes, became unresponsive to

injuries, became denser, and had a smaller dendritic arbor (62).

Retinal damage during DR further implicates retinal Müller

glial cells and microglia as initiators of retinal inflammation.

Purinergic signaling may explain this activation because of its

well-established role in the immune-mediated inflammatory

response in cardiovascular-related diseases (63). Purinergic

signaling relies on the expression of receptors, i.e., purinergic

P1 and P2 receptors, which recognize ATP, ADP, UTP, UDP,

and nucleoside adenosine (ADO) molecules. Along with their

function in the cell, these purine and pyrimidine molecules

act as intercellular messengers. Indeed, after triggering of these

receptors, subsequent cell signal transduction modulates tissue

metabolism and normal physiology, but also the onset of

pathological states of retinal diseases (64). Consistently, in DR,

Müller cells amplify inflammation by releasing ATP in a CD40-

dependent way, resulting in the activation of P2X7 purinergic

receptors on retinal microglia, with subsequent expression of

inflammatory cytokines, leading to neuroinflammation, vascular

damage, and leakage (65).

mTOR: An overview

The mechanistic (mammalian) target of rapamycin is a

serine/threonine protein kinase involved in different diseases

such as cancer, diabetes, and cardiac hypertrophy (66).

The name derives from the identification of mTOR as the

target of rapamycin, a macrolide antibiotic extracted from

Streptomyces hygroscopicus in the 1970’s. mTOR is a 289-

kDa protein with multiple domains: HEATS repeats, the

FAT domain, the FKBP12-rapamycin binding domain [FKBP–

rapamycin-binding (FRB); the core domain that belongs

to the phosphatidylinositol 3-kinase-related kinase family

of protein kinase], and the focal adhesion targeting C-

terminal (FATC) domain. The N-terminus HEATS is a

docking site for the regulatory-associated protein (Raptor)

and the rapamycin-insensitive companion of TOR (Rictor).

The FAT domain binds to the regulatory protein Deptor;

the FRB domain is the domain responsible for mTOR

inhibition via the FKB-12-rapamycin complex; the C-terminus

FATC domain is for substrate recognition and catalytic

activity. mTOR interacts with several proteins to form

two distinct signaling complexes, namely, mTORC1 and

mTORC2, which are implicated in many cellular functions

like cellular growth, metabolism, and autophagy in response

to environmental cues (67). mTORC1 regulates metabolic

pathways involving macromolecular synthesis, cell growth, and

autophagy, while mTORC2 controls cell proliferation, survival,

cytoskeletal remodeling, neovascularization, and autophagy (68,

69). mTORC1 is characterized by the association of mTOR

with Raptor, together with other companion proteins, and by

its sensitivity to rapamycin, while mTORC2 is insensitive to
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FIGURE 2

Schematic representation of mammalian target of rapamycin (mTOR) protein complexes. The mTOR protein (A) is associated with other proteins

to form two distinct multiprotein complexes, mTOR complex 1 (mTORC1) (B) and mTORC2 (C). mTOR is a multidomain protein kinase. From the

N-terminus, the first domain of the mTOR protein is formed by a HEAT repeat (tandem-repeat protein domains) domain, which functions as

protein-protein interaction surfaces for the substrate’s recruitment proteins, Raptor (regulatory-associated protein of TOR, which define mTOR

complex 1, mTORC1) and Rictor (rapamycin-insensitive companion of TOR, which define mTOR complex 2, mTORC2). Proctor (protein

observed with Rictor) and mSin1 (mammalian stress activated protein kinase interacting protein 1) act as a Rictor activator. HEAT repeats further

interaction with the Tt1/Tel2 complex (Tt1, Tel two interacting protein 1; Tel2, telomere maintenance 2, also described as HCLK2), thus

stabilizing the mTOR protein. The Tt1/Tel2 complex (Tt1, Tel two interacting protein 1; Tel2, telomere maintenance 2, also described as HCLK2)

interacts with the HEAT repeats, thus stabilizing mTOR. The FAT (FRAP, ATM, TRRAP) domain is the binding site for the mTOR inhibitor Deptor

(the DEP domain containing a mTOR-interacting protein). The FRB (FKBP–rapamycin-binding) domain, which precedes the kinase domain,

interacts with the inhibitory rapamycin via the immunophilin FKBP-12 (FK506-binding protein 12 kD). The mTOR kinase domain resides between

the FRB and focal adhesion targeting C-terminal (FATC) domains, and shares a characteristic of both PI3K and canonical protein kinase families.

Its kinase activity is enhanced by mLST8 (mammalian lethal with SEC13 protein 8). The latter domain of the mTOR protein is the FATC (FAT

C-terminus) domain, located at the C-terminus of the protein.

rapamycin (70), and Raptor has been replaced by Rictor, which

is necessary for the mTORC2 substrate interaction (Figure 2).

Mammalian target of rapamycin complex 1 responds to

growth factors, amino acids, and ATP levels (67). Growth

factors, such as insulin, activate the phosphatidyl inositol 3-

kinase (PI3K)/Akt cell signaling pathway. Akt phosphorylation

by PDK1 carries out two events: the inactivation of the GTPase

tuberous sclerosis protein (TCS)1/2 complex, which allows the

Ras homolog enriched in the brain (Rheb) to accumulate in a

GTP-bound form capable of binding to mTOR (71), and the

disassociation of the inhibitor PRAS40 from Raptor, both of

which events allow the activation of mTORC1 (72). Moreover,

mTORC1 acts as a sensor of nutrients (amino acids) and

energy (ATP) that enables protein synthesis, only when these

components are available to support the metabolic requirement.

Indeed, amino acids trigger the translocation of mTORC1

to the lysosomal surface where Rheb is located, activating

mTORC1 via the Regulator complex (73). AMPK is a metabolic

enzyme that acts as an indirect mTORC1 regulator, sensing

the cellular AMP/ATP ratio. In the absence of an adequate

amount of intracellular ATP, AMPK promotes the formation

of the TSC1/2 complex, thereby increasing the inactive Rheb

GDP-bound form and consequently inducing the inhibition of

mTORC1 (74).

Mammalian target of rapamycin complex 2 responds to

growth factors via phosphatidylinositol (3–5)-trisphosphate

(PIP3), which is generated by PI3K in the cell membrane. The

inhibition of mTORC2 is relieved upon the binding of PIP3 to

the Pleckstrin homology domain of mSin1. By targeting Ser/Thr

protein kinases (i.e., the AGC family of protein kinases and

Akt), mTORC2 regulates cell migration through cytoskeletal

remodeling and cell proliferation as well as apoptosis (67, 75, 76).

By virtue of their role as a sensor for the availability of

nutrients and growth factors, mTORC1 and mTORC2 play

physiological roles during embryonic development and tissue

regeneration. Studies on animal models have shown that

hematopoietic stem cells (HSCs) undergo long-term exhaustion

as a result of mTOR ablation, enhancing their transition fromG0

to G1 (77, 78). This exhaustion is higher in the high HSC ROS

population where p38 inhibitor or rapamycin was able to restore

HSC function (79).

Moreover, mTOR signaling plays a critical role in neuronal

development, particularly in adult neurogenesis and neuronal

atrophy (80). In the central nervous system, the mTOR pathway
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prevents apoptotic cell death, and this function is strictly linked

with trophic factor activity (81). mTOR signaling is also involved

in neurogenesis of the eye, and is highly activated in embryonic

stages. Indeed, its temporal regulation is essential for the normal

development of the retina and the optic nerve (82). Upon the

deletion of TSC1, the activation of the mTOR pathway triggers

the regeneration of adult retinal ganglion cells after optic nerve

injury (83). This activity seems to be dependent on mTORC1

(84). Interestingly, in addition to its main role of regulating the

production of red blood cells, erythropoietin (EPO) also has a

role in neuroplasticity and neurogenesis after functional hypoxia

(85), and this role seems to be linked to mTOR activity. Indeed,

after oxygen-glucose deprivation, a condition that could cause

some ischemia at the retinal level, EPO intimately regulates the

mTOR pathway, preventing cellular injury and apoptotic events

via the inhibition of PRAS40 (86). The relationship between

EPO and mTOR could dependent on the Wnt pathway (87), as

it has been documented that WISP1 activates mTORC1 through

the phosphorylation of PRAS40 and TSC2 during microglial

oxidative stress (88, 89). Moreover, the treatment of EPO also

decreases mTOR expression and orchestrates the autophagy-

related signaling pathways, suppressing cell injury in a rotenone-

induced neurotoxicity model (90). In some cases, under hypoxic

and superoxide stress, EPO promotes the survival of retinal

progenitor cells by reducing autophagy (91) and becoming a

promising neuroprotective agent for optic nerve protection and

repair (92).

mTOR and retinopathy

The retina is a high-demand site for oxygen and nutrients.

During DR, in response to metabolic insults such as hypoxia,

the retina undergoes morphological changes characterized by

neovascularization with epiretinal vascular proliferation and

subsequent vascular leakage and tractional retinal detachment.

Early retinal pathophysiological modifications occur within the

first few weeks of diabetes (93), and sustained hyperglycemia

alters the distribution of oxygen around the retinal arterioles,

inducing retinal vasculature rewiring, as is shown in a

diabetes-induced rat model (94). Hypoxia modulates the

angiogenic factor HIF-1α, an oxygen-sensitive transcription

factor, to support retinal neovascularization. VEGF-α is a

hypoxia-inducible gene target of HIF-1α. These proteins are

downstream targets of mTORC1, as shown by rapamycin-

directed suppression of hypoxia-inducible factors and vascular

endothelial growth factors, followed by a reduction in

vascularized tumor volume (95). In hyperglycemic rats for

8 weeks, an intraperitoneal injection of rapamycin reduces

diabetes-induced VEGF overexpression that controls vascular

permeability and angiogenesis (96). These observations are

in line with the studies by Liu et al., in which the degree

of retinopathy was mTORC1 dependent according to the

expression of VEGF and PEDF proteins induced via the p-

S6 protein in a DR rat model (97). Furthermore, VEGF may

subsequently activate mTOR. Indeed, after the binding of VEGF

to its receptor VEGFR-2, the PI3K/Akt pathway is activated

and subsequently activates mTOR (98). This highlights that

targeting the PI3K/Akt/mTOR signaling pathway could be a

strategy to improve DR, as seen in human acute lymphoblastic

leukemia (99).

Immunolocalization studies on human, rat, and mouse

retinae have shown that the inner retina expresses mTORC

pathways, with mTORC1 mainly localized to retinal ganglion

cells and mTORC2 primarily relying on glial cells (100).

As previously stated, the retina is a high-demand site for

energy, and mTOR not only drives the perception of multiple

upstream stimuli but also the regulation of cell metabolism and

growth as downstream targets of PI3K. Indeed, the concurrent

loss of mTORC1 and mTORC2 leads to inner and outer

retinal morphology changes with a concurrent reduction in

cone function, thus explaining the photoreceptor function

loss observed during diabetes (101). In the retina, glial cells

exert trophic support and influence programmed cell death,

potentiating the neurodegeneration observed in retinal diseases

(102). Experiments in an in vitro immortalized human Müller

glial cell line and in an in vivo mouse-induced diabetic model

show that the blockade of PPP1CA/YAP/GS/Gln/mTORC1

inhibits Müller cell proliferation and activation, suggesting a

potential way to mitigate the development of DR (103).

The crosstalk between mTOR and ROS in
DR

Despite a wide body of literature focusing on ROS-

induced microvasculature alterations, many studies report that

retinal neurons can be directly targeted by diabetes, become

an independent source of ROS, and undergo cell death,

independently of and even before microvasculature alterations

(104, 105).

It is well-known that hyperglycemia, as a consequence

of nutrient overload, can promote oxidative stress through

various metabolic pathways (5). Excessive amounts of ROS

alter lipids, proteins, or deoxyribonucleic acid (DNA). NF-κB,

acting as a redox sensor, plays a critical role in the regulation

of the inflammatory response and programmed cell death

(apoptosis) (5). In the retina, increased ROS production causes

the activation of microglia with the expression of inflammatory

cytokines, including IL-6, TNF-α, IL-1β, and IL-8, and adhesion

molecules like ICAM-I and vascular cell adhesion molecule 1

(VCAM-1). Overall, these factors contribute to leukostasis and

vascular leakage (106).

Yoshida et al. have shown that in a mouse model, hypoxia

activates NF-κB in various retinal cell types (107). Furthermore,
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a recent in vitro experiment showed that NF-κB is activated in

human retinal cells, including endothelial cells, pericytes, and

astrocytes, under high glucose conditions (16). The overall effect

of ROS can be ameliorated by oral administration of the natural

phenol resveratrol, which reduces the level of inflammatory

TNF-α and IL-6, in addition to activating NF-κB, in diabetic rat

models (108, 109). This is in line with the effects observed by

Bucolo et al. where the administration of antioxidant natural

compounds, such as curcumin, carnosine, and α-lipoic acid,

reduced the TNF-α and VEGF levels in the retinae of diabetic

rats (110, 111). The mechanism of this inhibition could be

explained by the downregulation of phosphorylation of NF-κB

and the MAPK family in a mTOR-dependent manner, as shown

in in vitro experiments conducted in lipopolysaccharide- (LPS-)

stimulated microglial cells (112). Furthermore, it is well-known

that ARPE-19, a human RPE cell line, under hyperglycemia

presents metabolic changes including oxidative stress mediated

by ROS (113). Yahg et al. have shown that the combined

treatment of antidiabetic drugs, semaglutide, and rosiglitazone

reduces high glucose-induced inflammatory injury by inhibiting

ROS/PI3K/Akt/mTOR signaling pathway-related proteins TNF-

α, IL-6, and IL-1β in ARPE-19, and enhances overall antioxidant

capacity in a DR rat model by downregulating and upregulating,

respectively, the levels of serum lipid peroxidation and

superoxide dismutase (SOD) (114).

It is well-known that RPE cells play an essential role in

maintaining the viability and functionality of photoreceptors,

and that their loss of function results in alterations that are

potentially causative of various retinal diseases (115). During

pathogenic conditions, fully differentiated epithelial cells, via

a process known as epithelial–mesenchymal transition (EMT),

could reverse their phenotype to mesenchymal cells with

invasive and migratory behavior toward the neuroretina, which

in turn differentiate into fibroblasts/myofibroblasts. Next, the

latter cell types could secrete excessive amounts of extracellular

matrix components such as collagen (types I, III, IV, V,

and VI) and fibronectin, resulting in fibrosis (116). Of note,

during DR, EMT seems to be linked with the mTOR pathway

and ROS, mainly driven by TGF-β. TGF-β has been found

to be upregulated in the postmortem eyes of patients with

ocular diseases and EMT, revealing a relevant role during the

generation of DR (115, 117). Indeed, Kim et al. suggested a

mechanism formTOR activation and ROS generation with TGF-

β, which contributes to EMT and fibrosis in retinal pigment

epithelial cells (118).

Furthermore, recent findings in support of the involvement

of the mTOR pathway showed that an mTOR inhibitor can

modulate the expression of VEGF in the diabetic rat retina and

VEGF-induced ROS enhancement in the Müller cell line (TR-

MUL5) (96). These results are in line with the studies by Kim

et al. where resveratrol limits the increase of VEGF, reducing

early vascular lesions in diabetes-induced mouse retinae (119).

L-glutamate is a major excitatory neurotransmitter in the

nervous system, but excess extracellular glutamate may lead

to neuronal and non-neuronal death and/or damage (120). In

this context, ROS reduces glutamate clearance in the retina via

the inhibition of glutamate intake in Müller cells, ultimately

inducing retinal neurodegeneration (121). These effects are in

line with the aforementioned relationship between ROS and

mTOR, in the light of glutamate transporter 1 expression being

a downstream target of mTOR (122).

From this point of view, it is clear that the observed

relationship between oxidative stress and mTOR pathway in DR

could be used to unveil potential new therapeutic opportunities

to treat this illness.

The crosstalk between mTOR and
MicroRNAs in DR

MicroRNAs (miRNAs) are small, non-coding ribonucleic

acids (RNAs) that regulate gene expression by pairing

with complementary DNA sites and/or interfering with

mRNA translation and stability (123). Although several

studies have highlighted the crosstalk between the mTOR

pathway and miRNA gene targeting (124, 125), few

articles have investigated the role of miRNAs during DR.

Among them, Li et al. have shown that the presence of

ROS modulates the expression of miRNA-34a, increasing

oxidative stress-related markers and cell apoptosis in ARPE-

19 treated with high glucose (126). These findings are in

line with a study by Liao et al. that miR-34a upregulates

the phosphorylation of mTOR, which further reduces

autophagy and enhances apoptosis in prostate cancer cells

(127). However, further studies are needed to address the

direct target(s) of miR-34 in regulating the mTOR pathway

during DR.

Furthermore, in the treatment of ARPE-19 under high

glucose conditions (50mM), the overexpression of miR-130a

exerts an antioxidant role by increasing the scavenger SOD1

levels in a TNF-α-dependent manner, as confirmed by the

upregulation of TNF-α or knockdown of SOD1 (128). Although

there is no clear evidence of the crosstalk between miR-

130a and the mTOR pathway during DR, it is noteworthy

that miR-130a is a negative regulator of TSC1, capable

of upregulating the mTOR pathway in high-grade serous

ovarian carcinoma (129). Then, the consequent aforementioned

TNF-α upregulation and SOD1 phosphorylation could be

the result of mTORC1 activation (114, 130). These findings

could open up attractive new research areas for researchers

involved in the study of DR. Currently, other miRNAs

seem to be involved in the mTOR pathway during DR.

During hypoxia, miR-7 is a critical mediator of the cellular

response, reversing hypoxia-induced inhibition of mTOR

signaling (131). Furthermore, it has been found that miR-7 can
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modulate cell proliferation by downregulating the expression

of Hoxb3, mTOR, p-PI3K, and p-AKT in retinal epithelial

cells (132).

Recent findings showed that the retinae of mice with

DR notably decreased the expression of miRNA-29, and

this event was associated with the inhibition of AMPK

phosphorylation, with AMPK being the target protein

of miR-29, and increased the expression of p-mTOR,

thereby leading to excessive apoptosis observed during

DR (133).

Lastly, the role of miRNA and mTOR pathways in DR

needs further study, and bioinformatic analysis could be a

useful tool to highlight their contribution to the pathophysiology

of DR. Indeed, according to bioinformatic analysis, miRNA-

204 with its three target genes Rictor, Dlg1, and SYNJ2BP, is

associated with retinal diseases, suggesting that it has a relevant

role in regulating Wnt signaling, the blood–retinal barrier, and

angiogenesis (134).

The crosstalk between mTOR and
autophagy in DR

Autophagy is a catabolic process in which damaged

cellular components are sequestered within a vacuole and

degraded by fusing with lysosomes. Autophagy also allows

cells to obtain free fatty and amino acids to sustain protein

synthesis, and occurs as a selective process against specific

organelles for disposal and tissue remodeling (135). Therefore,

autophagy maintains adequate cellular homeostasis and energy

levels. Autophagy can be distinguished into three main types:

macroautophagy, microautophagy, and chaperone-mediated

autophagy. Furthermore, autophagy discriminates targets in a

specific and non-specific manner. Selective autophagy requires

one or more receptors that tag targets for engulfment in

the autophagosome, while non-selective autophagy is a bulk

process that randomly picks up any kind of cytoplasmic

proteins and ships it into the lysosome. In macro- and

microautophagy, cytosolic components are engulfed in vacuoles

and lysosomes through selective and non-selective mechanisms,

while in chaperone-mediated autophagy, lysosome-associated

membrane protein type 2A (LAMP-2A) first binds the substrate

protein to the lysosomal membrane (136, 137).

Notably, the modulation of autophagy

processes has been shown to represent an effective

approach to the treatment of several human

pathologies including neurodegenerative diseases

(138, 139).

On the other hand, the modulation of autophagy is

strictly dependent on the specific illness. Autophagy can

play contrasting roles in different neurodegenerative

diseases, playing an ameliorative role in some

illnesses and contributing to the course of the disease

in others.

In some neurodegenerative diseases, autophagy can act

as a scavenger of misfolded and abnormally aggregated

proteins, and in this context, autophagy stimulation can

have a positive therapeutic role. Indeed, mTOR inhibition

and autophagy activation have been shown to play a critical

role in Alzheimer’s disease. In Alzheimer’s disease, mTOR

activation promotes the production and accumulation of

amyloid-β in the brain, and this event is linked with a direct

inhibition of the autophagy-lysosomal system (140). Moreover,

autophagy reduces the production of amyloid-β and ameliorates

memory function in some animal models of Alzheimer’s

disease (141).

Similar findings are shown in neurogenerative Parkinson’s

disease where autophagic processes are dysfunctional

with related accumulation of α-synuclein and other

polyubiquitinated proteins (142).

Ischemia causes disorders related to nutritional needs

and metabolic demands, and autophagy restores energy

production via a catabolic process that allows neuronal cells

to survive the nutrient depletion (143). In a neonatal model

of hypoxia/ischemia, the inhibition of mTOR can activate

autophagy (144). Moreover, in a model of spinal cord

injury, rapamycin drives neuronal cell protection, promoting

autophagy by inhibiting mTOR signaling (145).

Recently, Patergnani et al. reported alterations in glucose

metabolism, impairment in mitochondrial functions, and excess

of autophagy and mitophagy related to alterations in the

mTOR/ULK1 pathway, in in vitro, ex vivo, and in vivo models

of multiple sclerosis. The inhibition of autophagy with FDA-

approved drugs strongly ameliorated axonal remyelination in all

models and in vivo behavioral tests (146).

Similarly, in a mouse model of spinal cord

injury, treatment with bisperoxovanadium was

shown to activate the Akt/mTOR pathway, reduce

autophagy, and rescue motor neurons from

death (147).

Neurodegenerative disorders are significantly increasing

worldwide. DR is now widely recognized as a neurodegenerative

disorder (148), and its pathophysiology is closely related to

the regulation of autophagy. Non-neuronal cells like RPE cells

may also play a critical role in DR. RPE is part of the oBRB

and regulates the transport of nutrients, water, and solutes

from the choroid to the retina. In addition, RPE sustains

photoreceptors and ensures the recycling of cones and rods

that need to be replaced upon light absorption. Therefore, the

autophagy of these cells appears to be relevant during DR.

Consistently, Zhang et al. showed that high glucose conditions

mediate the damage to ARPE-19 and increase its autophagy

as well as apoptotic markers (p-p53, Bcl-2, and p62), and that

these damages can be reversed by the autophagy inhibitor

3-methyladenine (3-MA), indicating a dysregulation of the
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autophagic process (149). This last observation was further

confirmed by the same group, pointing out the beneficial effect

of procyanidin, a member of the flavonoids, which inhibits

autophagy (150). Interestingly, these beneficial effects were

reversed when the autophagy agonist rapamycin was added to

procyanidin treatment.

In DR, hypoxia and nutrient starvation increase

circulating adipokines (i.e., leptin and adiponectin) to

FIGURE 3

Schematic representation of the e�ects of the mTOR pathway in diabetic retinopathy (DR). Hyperglycemia and hypoxia prompt a plethora of

e�ects associated with the expression of the PI3K/Akt/mTOR pathway, reactive oxygen species (ROS), advanced glycation end products (AGEs),

inflammatory cytokines, and glycolysis intermediates, which in turn sustain vascular leakage and overall inflammation of the retina, with the loss

of the blood–retina barrier and the neural microenvironment being mainly driven by increased vascular endothelial growth factor (VEGF)

production and dysregulated autophagy.
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overcome metabolic deficiency. Recent findings indicate that

adipokines may contribute to neovascularization during DR

(151), a phenomenon linked with the mTOR pathway and

the autophagy process. Li et al. found that in the rhesus

choroid-retinal endothelial (RF-6A) cell model, during high

glucose treatment, adiponectin promotes the expression of

p-PI3K, p-AKT, and p-mTOR, increasing cell viability and

lowering the autophagic process, therefore inhibiting high

glucose-induced angiogenesis (152). Moreover, in the retina

of DR mouse models, hypoxia and high glucose increase the

expression of AGGF1 (an angiogenic protein with a function

similar to VEGF-A) and promote autophagy with related

angiogenesis. These phenomena were further confirmed

in vitro using RF/6A cells, where the inhibition of the

PI3K/AKT/mTOR pathway and the activation of autophagy-

induced AGGF1-driven cell proliferation and tube-like structure

formation (153).

As previously mentioned, hyperglycemia, acting as a major

mechanism of DR pathology, causes neurodegeneration

earlier than the detectable microvascular damage in

which the mTOR/autophagy pathway is prominent.

Recent studies on streptozotocin-induced diabetic models

suggest that prolonged hyperglycemia downregulates

mTOR-related proteins and GLUT1, with an increase of

apoptotic markers as well as autophagic proteins in the

ganglion cell layer. Blockage of autophagy by phlorizin

(an insulin-independent glycemic control) and MHY1485

(an mTOR activator) normally rescues neuronal cells,

suggesting that the mTOR pathway plays a relevant

role associated with the damage to retinal ganglion

cell (4).

Collectively, these observations highlight the dual nature

of autophagy. In some circumstances, autophagy behaves as a

protective mechanism, regulating inflammation, reducing

starvation stress, and destroying noxious proteins. In

others, it can worsen mitochondrial activity and energy

replenishment, definitely targeting cells for death. This makes

the dysregulation of autophagy a very interesting target

in attempts to prevent the worsening of several illnesses,

including DR.

Cellular responses like autophagy and senescence are

closely related because many stresses including DNA damage,

oxidative stress, and oncogenic stress can activate them. Both

cellular responses prevent further proliferation of damaged

cells, triggering cytotoxic or cytoprotective effects (154). Indeed,

according to the level of autophagy, cells are driven to cell

death or cellular senescence. It has been well-described that the

exposure of ARPE-19 cells to a high concentration of glucose

alters metabolism and increases overall ROS production and

lipid accumulation, contributing to senescence (155, 156). Thus,

Chae et al. reported interesting results: in a doxorubicin-induced

mouse model of RPE senescence, they found that selective

targeting of senescent RPE cells by Nutlin-3a ameliorates

age-related macular degeneration (157). This finding may

appear tricky, but it is noteworthy that although p53 is an

autophagy agonist via the inhibition of mTORC1, Nutlin-3a

causes quiescence and senescence program suppression (158,

159). Overall, in RPE, given that mTOR and p53 are key

mediators of autophagy and senescence responses, this may

represent an attractive target to eliminate senescent cells

in DR.

Along with non-retinal cells that are affected by DR,

Müller cells and retinal microvascular endothelial cells have

been implicated in altering autophagic processes. Müller cells

respond to vascular injury, trauma, and metabolic stresses

by releasing trophic factors (i.e., VEGF) and phagocytosing

degenerated cells to maintain retinal homeostasis (160). In

vitro experiments have shown that upon high glucose stress,

Müller cells increase autophagic markers with the accumulation

of p62/SQTSM1. Despite this process, glial cells undergo

programmed cell death and release massive amounts of

VEGF. On the other hand, rapamycin restores the autophagic

machinery and protects cells from apoptosis, thus highlighting

the role of autophagic dysfunction in these cells during DR

(161). Along with these alterations, Müller cells undergo the

dysregulation of mitophagy and become more susceptible to

redox stress (162).

Therefore, the induction of autophagy seems to play a

relevant role in maintaining cell survival in the nervous system,

and mTOR is a conductor for autophagic activity in the

cells, making it a candidate for the crosstalk between the

mTOR pathway and autophagy as an attractive option to

manage DR.

Conclusion

Diabetic retinopathy is a complex disease without a

completely clarified etiology. Diabetes at the intracellular

level prompts oxidative stress and redox equilibrium

imbalance through different cellular and mitochondrial

pathways. The successive cellular alterations and death

lead to profound changes in the histology of the retina,

with malfunction and loss of photoreceptors and other

neural cells. In parallel, weakening the BRB leads to

microvascular changes that reduce the availability of oxygen

to photoreceptors. This impacts the survival of neurons and,

in the meantime, induces a marked trophic factor-dependent

redrawing of the retinal microvascular structure, as is typical

of DR.

Mammalian target of rapamycin coordinates multiple

anabolic and catabolic processes involved in promoting

cell growth and acts as a sensor for growth factors and

nutrients. The finding reported in this review highlights

that in neurodegenerative diseases like retinopathy,

the mTOR pathway can be over activated or inhibited.
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Furthermore, corticosteroids, laser photocoagulation, and

anti-VEGF therapy are becoming the standard of care for

the treatment of DR, but can have adverse problems or

encounter non-responding subjects, preventing their use in

some patients.

Concurrently, this review highlights that in DR, the

mTOR pathway seems to be involved in a plethora of

effects linked to oxidative stress, autophagy dysregulation,

and cell death, as seen in various experimental models

(Figure 3). In this opinion, although knowledge gaps deserve

further elucidation, mTOR targeting in particular could be an

attractive target for researchers to postulate novel therapies to

treat DR.
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