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Introduction: This study aimed to construct a radiomics-based machine
learning (ML) model for differentiation between non-clear cell and clear cell
renal cell carcinomas (ccRCC) that is robust against institutional imaging
protocols and scanners.

Materials and methods: Preoperative unenhanced (UN), corticomedullary
(CM), and excretory (EX) phase CT scans from 209 patients diagnosed
with RCCs were retrospectively collected. After the three-dimensional
segmentation, 107 radiomics features (RFs) were extracted from the tumor
volumes in each contrast phase. For the ML analysis, the cases were
randomly split into training and test sets with a 3:1 ratio. Highly correlated
RFs were filtered out based on Pearson’s correlation coefficient (r > 0.95).
Intraclass correlation coefficient analysis was used to select RFs with excellent
reproducibility (ICC > 0.90). The most predictive RFs were selected by the
least absolute shrinkage and selection operator (LASSO). A support vector
machine algorithm-based binary classifier (SVC) was constructed to predict
tumor types and its performance was evaluated based-on receiver operating
characteristic curve (ROC) analysis. The “Kidney Tumor Segmentation 2019"
(KiTS19) publicly available dataset was used during external validation of
the model. The performance of the SVC was also compared with an
expert radiologist's.

Results: The training set consisted of 121 ccRCCs and 38 non-ccRCCs, while
the independent internal test set contained 40 ccRCCs and 13 non-ccRCCs.
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For external validation, 50 ccRCCs and 23 non-ccRCCs were identified
from the KiTS19 dataset with the available UN, CM, and EX phase CTs.
After filtering out the highly correlated and poorly reproducible features, the
LASSO algorithm selected 10 CM phase RFs that were then used for model
construction. During external validation, the SVC achieved an area under the
ROC curve (AUC) value, accuracy, sensitivity, and specificity of 0.83, 0.78,
0.80, and 0.74, respectively. UN and/or EX phase RFs did not further increase
the model's performance. Meanwhile, in the same comparison, the expert
radiologist achieved similar performance with an AUC of 0.77, an accuracy
of 0.79, a sensitivity of 0.84, and a specificity of 0.69.

Conclusion: Radiomics analysis of CM phase CT scans combined with ML can
achieve comparable performance with an expert radiologist in differentiating
ccRCCs from non-ccRCCs.

renal cell carcinoma, computed tomography, radiomics analysis, texture analysis,

machine learning, artificial intelligence

Introduction

Kidney cancers are one of the most common malignancies
in the world accounting for approximately 2.2% of annual
cancer diagnoses (431 thousand/year) and 1.8% of cancer-
related mortality (179 thousand/year) worldwide. It is almost
twice as common in males than in females making it the 11th
highest incidence of cancer in men and the 16th in women (1).

Due to the increasing accessibility of non-invasive
diagnostic procedures nowadays up to 50% of renal neoplasms
are incidentally discovered (2). Many of these small renal masses
are benign, but because of their size, they are hard to characterize
using imaging modalities increasing the importance of biopsy
to select low-risk patients for active surveillance (3). At the
time of diagnosis, approximately 15% of patients already have
distant metastases (4). Accurate preoperative staging is crucial
for making an appropriate treatment decision. For accurate
staging — including the assessment of local invasiveness, lymph
node involvement, and presence/absence of distant metastases —
, contrast-enhanced thoraco-abdominopelvic CT examination
is mandatory in patients with indeterminate renal mass (2, 5).

The histologic classification and grading of renal tumors are
also important, as the prognostic and therapeutic implications
vary among histologic subtypes. The current 2016 World Health
Organization (WHO) classification differentiates between
numerous types of kidney tumors including mesenchymal,
metanephric, nephroblastic, neuroendocrine, and renal cell
tumors among others (3).

Renal cell carcinoma (RCC) is the most common among
the neoplastic diseases of the kidney, with approximately 90%
of them being diagnosed as RCC (6). RCC is a collective
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term defining a heterogenous group of neoplasms including
14 subtypes (3) with drastically different histologic appearance,
genetics, and prognosis, all originating from the renal tubular
epithelium (6). The most common subtypes of RCC are clear cell
renal cell carcinoma (ccRCC), papillary cell renal cell carcinoma
(pRCC), and chromophobe cell renal cell carcinoma (chRCC),
respectively, accounting for about approximately 75, 15, and 5%
of all RCC cases (7).

Previous studies proved that the histologic subtype is an
independent predictor of patient survival, and patients with
ccRCC have a poorer prognosis compared to those with pRCC
or chRCCs (8, 9), also patients with ccRCC are most likely to
have distant metastasis at the time of radical nephrectomy (10).
Due to the markedly higher biological aggressiveness of ccRCC
compared to other subtypes, recent practice guidelines divide
RCCs into two main groups as ccRCC and non-ccRCC (2, 11).

In the case of advanced RCC, treatment options have
been rapidly expanded in the past decades. High-dose bolus
interleukin-2 therapy has brought continued good results since
approval for the treatment of metastatic RCC in 1992 (12)
followed by the era of molecularly targeted therapies and
more recently, the era of immunotherapeutic agents (13).
Molecularly targeted therapies including Vascular Endothelial
Growth Factor (VEGF) targeted tyrosine-kinase inhibitors
such as bevacizumab, sunitinib, and pazopanib have been
used with great success in patients with metastatic ccRCC,
which is currently the recommended first-line standard-
of-care treatment according to the European Society for
Medical Oncology (ESMO) in patients with good risk (2).
Then, novel immunotherapeutic agents revolutionized the
treatment of advanced ccRCC (14). The ESMO guidelines
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recommend combined immune-checkpoint inhibitor antibody
therapy (ipilimumab + nivolumab) as first-line treatment
in patients with intermediate or poor-risk (2), and since
the same results can be achieved using combined immune
checkpoint inhibitors with lower toxicity, the usage of
cytokine monotherapy diminished (14). Even though there
is ample evidence available for the efficiency of sunitinib
as a treatment for metastatic ccRCC, other less common
renal carcinomas are less researched since they are most
often excluded from the controlled phase III trials. Smaller
prospective studies, however, suggest that VEGF inhibitors
and mammalian target of rapamycin inhibitors are also
beneficial in these cases (2). However, pRCCs show a
worse response to VEGF-targeted antiangiogenic agents than
ccRCCs (15).

Therefore, the non-invasive, imaging-based differentiation
between tumor subtypes could facilitate the prediction of
patient prognosis and guide clinicians in therapeutic decision-
making and follow-up strategies (16). It has been proved
that the different subtypes of RCCs have different contrast
enhancement dynamics, ccRCCs have peak enhancement on
the corticomedullary phase, meanwhile, pRCCs and chRCCs
reach the peak during the nephrographic phase (17). Previous
studies showed that, relative contrast enhancement of kidney
tumors to the renal cortex (18) and CT imaging traits
such as heterogeneous contrast enhancement, enhancement
degree in corticomedullary phase, the presence of necrosis,
and the presence of calcification show association with RCC
subtypes (19). However, the morphology-based, conventional
radiological evaluation of CT scans is subjective, has low
specificity in differentiating RCC subtypes (20), and is highly
dependent on the expertise of the radiologists (21).

In 2012, the term radiomics was introduced by Lambin
et al. which refers to the automated analysis of medical images
by the extraction of an extensive number of quantitative
features that can objectively describe the given region of
interest (ROI) (22). Radiomics as per definition is the mining
and analysis of quantitative features from radiologic images,
to improve clinical decision-making by identifying predictive
imaging biomarkers and constructing different diagnostic and
prognostic models. This novel technique has the potential to
detect subtle differences in tissue texture that may not be
detected by the human eye (22).

A typical radiomic study comprises the following main
steps: medical
segmentation, feature extraction, feature selection, exploratory

image acquisition, image pre-processing,
analysis, and model building and evaluation (23). Conventional
radiomics analysis requires lesion segmentation in order to
compute hand-crafted radiomics features. The segmentation
can be performed either manually by using semi-automatic
tools, or fully automatically with the help of convolutional
neural networks. In radiomics studies of kidney tumors, the

most widely used method is still the manual segmentation (24).
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Radiomics analysis allows the extraction of a huge number
of quantitative features from the selected volume of interest
(VOI) that refer to the intensity histogram, the shape, or the
texture of a certain lesion. The definitions and the mathematical
formulas of radiomics features can differ between studies,
therefore the Imaging Biomarker Standardization Initiative
(IBSI) was established as an independent international
the
quantitative imaging biomarkers to improve the reproducibility

collaboration aiming to standardize extraction of
of radiomics studies. For a more detailed description of
radiomics features, we refer the readers to the Reference Manual
of the IBSI updated in 2020 (25). Radiomics analysis is most
commonly applied to CT scans given its wide availability.
CT texture analysis (CTTA) on contrast-enhanced CT scans
also provides a quantitative description of the tissue contrast
enhancement distribution after contrast-agent injection.

Radiomics is usually combined with machine learning
algorithms for prediction model building. However, the usage of
a large number of radiomics features often results in overfitting
of the prediction model; therefore the number of features
must be effectively reduced before model building (26). As an
initial feature-selection step, it is recommended to filter out
highly correlated, redundant features (23, 26). The most popular
supervised feature selection methods are the model-based
wrappers including the so-called recursive feature elimination
algorithm that is used to select the optimal subset of predictive
features that maximize the prediction performance; and the
embedded algorithms such as the least absolute shrinkage and
selection operator (LASSO) regression that allows selecting
the most predictive features based on the feature importance
score (23).

The most widely used conventional machine learning
algorithms for prediction model building are logistic regression,
LASSO, random forest (RFC), and support vector machine
(SVCQ) classifiers (27).

Previously published studies have focused mainly on
distinguishing between benign and malignant renal lesions (28-
30) or on identifying aggressive tumor features of ccRCCs
(31-37), and only a minority of studies have sought to
distinguish between subtypes of RCC (20, 38-41). A few studies
also showed that radiomics analysis combined with machine
learning could facilitate the non-invasive diagnostics of kidney
cancers including both classification of renal tumors, prediction
of nuclear grade, identification of patients with poor prognosis,
and prediction of treatment response (42, 43). However, most of
the previously published studies had a single-center study design
and used only internal validation for model evaluation and have
not validated their results on external test cases (24, 43).

Yu et al. were among the first who used CT texture analysis
for distinguishing between RCC subtypes (41). The authors
performed radiomics analysis on 10 selected cross-sectional
areas of the tumors in the nephrographic (NG) phase and
extracted 43 features. Their SVC trained by all the 43 radiomics
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features achieved AUCs of 0.91, 0.92, and 0.85 in differentiating
between ccRCCs vs. pRCCs, chRCCs and oncocytomas; pRCCs
vs. ccRCCs, chRCCs and oncocytomas, and chRCCs vs. pRCCs,
ccRCCs, and oncocytomas, respectively. Yu et al. demonstrated
the ability of first-order statistics and texture features to
predict RCC subtypes (41). By analyzing triphasic CT scans
of 143 c¢cRCCs and 54 non-ccRCCs, Chen et al. illustrated
that the radiomics features extracted from the corticomedullary
(CM) phase have similar diagnostic ability compared to those
extracted from the NG phase in differentiating between ccRCCs
and non-ccRCCs (38). In their recent study, Wang et al.
analyzed 147 ccRCCs and 43 non-ccRCCs and built a RFC,
an SVC, and a logistic regression algorithm-based machine
learning model from four selected radiomics features. The
models achieved good to excellent results on the internal test
dataset with AUC of 0.841-0.909 (20), and the authors also
demonstrated that these radiomics-based machine learning
models can overperform the diagnostic performance of an
expert radiologist (AUC of 0.69). However, in these single-
center studies, the machine learning prediction models were not
validated on independent external test cases.

External validation of the machine learning models was
completed in a two-center study by Li et al., who performed
3D texture analysis on both the unenhanced (UN), CM, and
NG phase CT scans of 170 patients (40). In this study,
either the Boruta or the minimum redundancy maximum
relevance ensemble (mRMRe) algorithms were used to select
the most relevant radiomics features. RFC models built in this
study were tested on 85 independent external test cases from
another hospital. The Boruta-based RFC achieved excellent
performance with an AUC of 0.949 while the mRMRe-based
RFC achieved an AUC of 0.851. The two sets of selected
radiomics features differed significantly, suggesting that there
is a huge difference in the performance of the feature selection
algorithms, which significantly affects the performance of the
machine learning classifier. These results also indicate that the
CM features have higher diagnostic ability compared to NG
phase features in the differentiation of ccRCCs from non-
ccRCCs (40).

Kocak et al. were among the first, who validated their
machine learning models’ performance on publicly available
datasets (39). In their retrospective study, the authors collected
48 ccRCCs, 13 pRCCs, and 7 chRCCs and performed CT
texture analysis on UN and CM phase CT scans to differentiate
between RCC subtypes. For external validation 26 cases (13
ccRCCs, 7 pRCCs, and 6 chRCCs) were selected from the
TCGA public datasets including The Cancer Genome Atlas-
Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) (44, 45), the
TCGA-Kidney Renal Papillary Cell Carcinoma (TCGA-KIRP)
(44, 46), and the TCGA-Kidney Chromophobe (TCGA-KICH)
(44, 47). The authors performed radiomics analysis on the
largest cross-sectional areas of the tumors by extracting 275
radiomics features from both the UN and the CM phases.
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After feature selection, artificial neural network (ANN)-based
and SVC-based prediction models were constructed for the
differentiation between ccRCC and non-ccRCCs. The ANN
algorithm-based model trained on CM phase features achieved
an AUC of 0.822, while the SVC reached an AUC of 0.793 on the
external test set (39).

Our study aimed to construct a 3D CTTA-based
machine learning model for differentiating ccRCC from
non-ccRCC that is
different institutional
demonstrate  that
can

robust
We
radiomics-based  machine
with
an expert radiologist. And the final aim of this study

generalizable and against

imaging  protocols. aimed
to our

learning model achieve comparable results

was to validate our prediction models on external
test cases of a publicly available dataset to prove the

models’ reliability.

Materials and methods

Patient population

The institutional ethics committee of our university has
approved the present study based on the World Medical
Association guidelines and the Declaration of Helsinki, revised
in 2000 in Edinburgh. As this is a retrospective study, the need
for written patient consent was waived by the ethics committee.
All patient data were analyzed anonymously.

Preoperative contrast-enhanced abdominal CT scans were
retrospectively collected from patients who had undergone
either radical or partial nephrectomy between 2008 January
and May 2021 at our institution. Out of the patients who had
undergone nephrectomy, 551 had available preoperative CT
scans. The preoperative unenhanced UN, CM, and excretory
(EX) phase CT scans in this study were obtained from
the picture archiving and communication system (PACS) of
our hospital. 346 cases were excluded due to the following
exclusion criteria: diagnosed with benign kidney tumor (n = 33),
diagnosed with other types of malignant kidney tumor (n = 107),
nephrectomy due to other reason than tumor (n = 75), no
available histopathologic report (n = 30), dual-phase (UN,
CM, and EX) CT scan was not available (n = 61), underwent
radiofrequency ablation (n = 2), damaged DICOM file (n = 44),
incomplete coverage of the tumor (n = 1).

The final patient cohort included 209 patients diagnosed
with either ccRCC, pRCC, or chRCC. The final histopathological
diagnosis of RCC subtypes served as the reference standard.
After
transferred to histological processing. The official pathology

nephrectomy, the whole tumor specimens were
reports were retrospectively collected from the hospital
information system. Three patients had two histologically
proven tumors, therefore, the final dataset consisted of 161

ccRCCs, 34 pRCCs, and 17 chRCCs.
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FIGURE 1

Manual segmentation of kidney tumors. The manual segmentation of the kidney tumors was completed on the corticomedullary phase axial CT
scans (A). The entire lesion volume was delineated slice-by-slice (B) in order to perform a three-dimensional radiomics analysis

Imaging protocols

We examined the patients according to our routine
diagnostic protocols with either a 16-slice Brilliance or a 64-
slice Ingenuity Core 64 CT scanner (Philips Healthcare, Best,
the Netherlands). The following acquisition parameters were
used: tube voltage of 100-140 keV; automatic tube current
modulation in the range of 105-977 mAs in CM, 93-918
mAs in UN, and 80-910 mAs in EX phase; collimation of
16 mm x 1.5 mm or 64 mm x 0.625 mm for the 16 and 64-
slice scans, respectively. The 16-slice acquisitions were routinely
reconstructed with filtered back projection (FBP) and 64-slice
scans with the iDose4™ hybrid iterative reconstruction kernel.
The reconstructed slice thickness was 1.25-5 mm. A non-
ionic, iodinated contrast agent (range of concentration: 350—
370 mg/ml) was administered intravenously using a power
injector with an injection rate of 1.5-3.5 ml/s, while the amount
of the injected contrast media was adjusted to the body weight
(0.5 g iodine/kg). After contrast agent administration, the CM
phase was scanned at 30-45 s, and the EX phase at 300-480 s.

External test set

For the external validation of our machine learning
prediction model, we included cases from the 2019 Kidney
and Kidney Tumor Segmentation Challenge (KiTS19) public
database (48, 49) that had available dual-phase (UN, CM, and
EX phase) CT scans. We identified 75 cases with dual-phase CT
scans, from those 69 cases were diagnosed with either ccRCC,
pRCC, or chRCC. One case was excluded because the patient’s
position on the EX phase scan was prone instead of supine. The
CT scans were performed by a variety of scanners including 19
different models from four vendors. The slice thickness varied
between 1 and 7 mm, the tube voltage was between 100 and
140 keV, and the tube current varied between 95 and 747 mAs
in the CM, 80-667 mAs in the UN, and 80-664 mAs in the
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EX phase scans. One patient had three tumors, and three had
two tumors, therefore the final external test set consisted of 73
lesions. According to the available metadata, 50 of those were
ccRCCs, 13 were pRCCs, and 10 were chRCCs. In the KiTS19
dataset, the binary segmentation masks were also available to all
the tumors. The results shown here are in whole or part based
upon data from the C4KC-KiTS dataset of The Cancer Imaging
Archive (TCIA) (44, 48, 49).

Subjective classification

For the subjective, imaging feature-based analysis, an expert
radiologist with over 10 years of experience in urologic imaging
classified all the lesions of both internal and external test sets
according to the RCC subtypes blinded to the patients” history,
medical records, and to the results of tumor segmentation.

Image processing and radiomics
analysis

Preoperative axial CT scans were anonymized and
exported from the institutional PACS in Digital Imaging and
Communications in Medicine (DICOM) format. The DICOM
files were then converted to NIfTI file format for further
image processing and analysis. The image processing and
segmentation steps were completed by using the 3D Slicer
software v.4.10.2 (50).

The entire volume of the tumors was segmented slice-by-
slice on the CM phase scans. The segmentation of kidney
tumors was performed by a trainee with 4 years of experience
in tumor segmentation under the supervision of an expert
radiologist with over 15 years of experience in abdominal and
urologic imaging (Figure 1). The segmentation was performed
by avoiding the edge of the tumor to avoid the inclusion of
peripheral fat and partial volume effect. The UN and EX phase
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FIGURE 2

Results of the image co-registration. The manual segmentation of the kidney tumors was completed on the corticomedullary phase CT scans
(A). A non-rigid image co-registration was performed to fit the unenhanced (B) and excretory (C) phase CT scans to the corticomedullary phase

as reference (D).

CT scans were coregistered to the CM phase scans by using the
Elastix extension of 3D Slicer (Figure 2).

To minimize the individual patient factors, the inter-scanner
differences, and the difference between institutional imaging
protocols, the voxel density values of the CM phase CT scans
were normalized to the cortical density. In each case, the density
of the renal cortex was measured by using 3-3 circular region
of interests (ROI), then the mean cortical density was obtained
by calculating the average value of the three measurements. In
each case, the mean cortical density value was subtracted from
the individual voxel intensity values.

For the radiomics analysis, the images were resampled
to an isotropic voxel size of 1 mm X 1 mm x 1 mm to get
rotation invariant radiomics features and to improve the
robustness and reproducibility of the extracted features. The
radiomics analysis was performed with the pyRadiomics
package (51). A fixed bin width of 16 was used during the
calculation of texture features. Altogether, 107 radiomics
features were calculated from each phase scan, including
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18 first-order histogram-based statistical features, 14 shape-
based features, 24 gray-level co-occurrence matrix-based
(GLCM), 16 gray-level run-length
(GLRLM), 16 gray-level size zone
(GLSZM), 14 gray-level dependence
(GLDM), and 5 neighboring gray-tone difference

(NGTDM).

features matrix-based

features matrix-based
features matrix-based
features
available in

matrix-based features Data is

Supplementary Table 1.

Feature selection

Our feature selection method included three steps, all of
which were completed by using solely the training set. First,
highly correlated features were filtered out based on Pearson’s
correlation coefficients (r > 0.95). Then, reproducibility analysis
was performed by using intraclass correlation coefficient (ICC)
analysis. For the reproducibility analysis, the area of the
segmented tumor masks was eroded by 1-1 voxel in each
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KiTS19 dataset
patients with ccRCC, pRCC or chRCC

\/

68 patients
with available preoperative
UN, CM, and EX phase CT scans

v
Image preprocessing

\4

Radiomics analysis

551 patients

with available preoperative CT scans

209 patients
with available
UN, CM, and EX phase CT scans

10.3389/fmed.2022.974485

Nephrectomized patients
(January 2008 — May 2021)

==P 346 patients excluded

« 33 benign kidney tumor

* 107 other type of malignant tumor

« 75 nephrectomy due to other
reason

* 30 no available histologic report

* 61 no available dual phase CT scan

« 2received oncotherapy

* 44 damaged file

* 1incomplete coverage of the tumor

\ 4

Image preprocessing,
Manual segmentation

\/

Radiomics analysis

\/

Train-test split with a 3:1 ratio

v v
External test set Internal test set

50 ccRCC
23 non-ccRCC

40 ccRCC
13 non-ccRCC

v

Training set

121 ccRCC
38 non-ccRCC

Correlation filtering
Pearson’s r < 0.95
1cC20.90

\/

LASSO feature selection

\{

» Machine learning classifier
>

FIGURE 3

Support vector machine

!

Expert radiologist

Flowchart of the data analysis steps. ccRCC, clear cell renal cell carcinoma; pRCC, papillary cell renal cell carcinoma; chRCC, chromophobe
renal cell carcinoma; KiTS, kidney tumor segmentation dataset; UN, unenhanced; CM, corticomedullary; EX, excretory; LASSO, least absolute
shrinkage and selection operator; ICC, intraclass correlation coefficient.

direction as proposed previously (52, 53), and the radiomics
feature extraction was repeated. The ICC was calculated
for each radiomics feature based on a 2-way, single-rater,
absolute agreement model. Only the features with excellent
reproducibility defined as ICC value >0.90 were included
in the wrapper-based feature selection step. The final step
included either a least absolute shrinkage and selection operator
(LASSO) algorithm, or a tuned Relieff (TuRF) algorithm
which selected the most relevant features based on their
feature importance score. The optimal hyperparameter ()
for LASSO feature selection was automatically determined
on the training dataset by using the grid search method
with 5-times repeated 5-fold stratified cross-validation. During
hyperparameter tuning, negative mean squared error was
used as a performance metric that the grid search tried to

maximize.
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Machine learning — Model building

For the machine learning-based analysis, the cases were
randomly split into training and test sets with a 3:1 ratio. The
radiomics features of the training dataset were standardized by
centering around the mean with a unit standard deviation (SD).
The test dataset was transformed using the hyperparameters
from the training dataset. From the features selected by
LASSO, SVC-based machine learning models were constructed
to differentiate ccRCCs from non-ccRCCs. From the radiomics
features selected by the TuRF algorithm, random forest
classifier-based models were constructed. The hyperparameters
of the classifiers were optimized with the grid search method
based on the accuracy score during five-times repeated 5-fold
stratified cross-validation on the training set. To overcome
the class imbalance issue, balanced class-weights were used
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while fitting the models. The diagnostic performance of the
models was evaluated on both the training set, the internal test
set, and the external test set based on the receiver operating
characteristic curve (ROC) analysis. During ROC analysis, the
ccRCC data were set as the positive class, while the non-
ccRCC as the negative class. The sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), and
area under curve (AUC) values were calculated. A two-tailed
p-value < 0.05 indicated statistical significance. Figure 3 shows
the main steps of the data analysis.

Statistical analysis

The continuous variables in ccRCC and non-ccRCC patient
groups were checked for homogeneity of variance with the
F-test and normal distribution with the Shapiro-Wilk’s test.
Categorical variables were compared between the two groups
with the chi-squared test and continuous variables with the
Mann-Whitney U-test. The 95% confidence interval (CI) of the
AUC values were calculated based on DeLong’s method. The
best threshold was determined based on the “closest top left”
method; the point on the ROC curve closest to the top left
corner of the plot was defined as min[(1-sensitivities)> + (1-
specificities)?]. The statistical comparisons between the ROC
curves were performed according to the DeLong test. The
threshold of p < 0.05 was applied to determine significance in
all comparisons.

The statistical analysis was completed with “sklearn,
“skrebate,” “statmodels;” and “scipy” packages written in Python
(v.3.7.11.) computer language, and with “dplyr,” “stats,” “pROC,
and “irr” packages written in R (v.3.6.3.) computer language.

Results

Patient population

The final study population contained 209 patients with
212 tumors (161 c¢ccRCCs and 51 non-ccRCCs). There were
no differences in patient age (p = 0.079) or sex (p = 0.9782)
comparing ccRCCs with non-ccRCCs (Table 1). For the
machine learning-based analysis, the cases were randomly split
into training and test sets with a 3:1 ratio. The distribution
of RCC subtypes in the training dataset was ccRCC in 121
cases and non-ccRCC in 38 cases (25 pRCC and 13 chRCC),
meanwhile the internal independent test set contained 40
ccRCCs and 13 non-ccRCCs (9 pRCC and 4 chRCC).

From the KiTS19 public dataset 68 cases with 73 tumors
were included in this study as an external test set. In the ccRCC
group 33 (66.0%) patients were male and 17 (34.0%) were
female, while in the non-ccRCC group, 10 (43.5%) were male
and 13 (56.5%) were female (p = 0.069). The median age and
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interquartile range were 60.5 (23.2) years for ccRCCs and 53
(13.0) years for non-ccRCCs (p = 0.556).

Feature selection

During radiomics analysis, 107 radiomics features were
extracted from both CM, EX, and UN phase scans. After
filtering out the highly correlated and non-robust features,
39 CM, 38 EX, and 35 UN phase features remained. During
hyperparameter tuning of the LASSO algorithm, the grid search
defined 0.01 as the optimal X\ value. In all three cases, an
optimized LASSO algorithm (A = 0.01) was used to select
the most predictive radiomics features based on the feature
importance score, which selected 10 CM phase, 5 EX phase,
and 9 UN phase features. The selected radiomics features
included both shape-based features, first-order statistics, and
texture features in each case. The selected features are listed in
Table 2.

Machine learning

The optimized SVC model (kernel: rbf, C: 500, gamma:
0.005) trained on the CM phase radiomics features achieved
the highest prediction performance in differentiating ccRCCs
from non-ccRCCs. During ROC analysis, its performance on the
training set was AUC of 0.951 [95% CI: 0.913-0.989], accuracy
of 0.925, sensitivity of 0.926, and specificity of 0.921 at threshold
0.655, it also achieved very good prediction rate on the internal
independent test set with AUC of 0.873 [95% CI: 0.774-0.973],
accuracy of 0.811, sensitivity of 0.90, and specificity of 0.539, and
its diagnostic accuracy proved to be robust during validation
on external test cases with AUC of 0.834, accuracy of 0.781,
sensitivity of 0.800, and specificity of 0.739 (Figure 4). We also
compared the diagnostic value of this model against the accuracy
of an expert radiologist, which showed comparable results with
no significant difference on either the internal (p = 0.866) or
the external (p = 0.256) test sets (Table 3). On the internal test
set, the expert radiologist achieved slightly better performance
with an AUC of 0.886 (vs. 0.873), accuracy of 0.906 (vs. 0.811),
sensitivity of 0.925 (vs. 0.90) and specificity of 0.846 (vs. 0.539),
while on the external test set, the SVC slightly overperformed
the expert radiologist, who achieved an AUC of 0.768 (vs.
0.834), accuracy of 0.795 (vs. 0.781), sensitivity of 0.84 (vs. 0.80),
specificity of 0.696 (vs. 0.739) (Figure 4).

The optimized RFC model (criterion: entropy, n_estimators:
50) trained on the 10 CM phase radiomics features selected by
the TuRF algorithm was able to distinguish between ccRCC vs.
non-ccRCCs with an AUC of 1.000 on the training set, and also
overperformed the SVC model on the internal test set (AUC of
0.874 vs. 0.811), however, showed poor results during external
validation with an AUC of 0.663, which indicates overfitting and
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TABLE 1 Distribution of demographics and tumor types in the patient cohorts.

Study population External test set
ccRCC non-ccRCC P-value ccRCC non-ccRCC P-value
Number of cases (1) 161 51 - 50 23 -
Male, n (%) 107 (66.5%) 34 (66.7%) 0.978 33 (66.0%) 10 (43.5%) 0.069
Age, median (IQR) years 64.2 (15.6) 66.8 (16.6) 0.079 60.5 (23.2) 53 (13.0) 0.556
IQR, interquartile range; ccRCC, clear cell renal cell carcinoma.
TABLE 2 List of the selected radiomics features.
Corticomedullary phase Excretory phase Unenhanced phase

Shape-based Flatness; sphericity

First-order 10th percentile; energy; mean

GLCM_Correlation;
GLRLM_GrayLevelNon-Uniformity;
GLRLM_LongRunEmp;
GLDM_DependenceNon-
UniformityNorm;
NGTDM_Coarseness

Texture feature

Sphericity; SurfaceVolumeRatio

GLDM_DependenceEntropy

Sphericity; SurfaceVolumeRatio

Energy; median Entropy; InterquartileRange;Median

GLCM_InverseVariance;
GLDM_DependenceEntropy;
GLSZM_LargeAreaEmphasis;

GLSZM_SizeZoneNon-

UniformityNormalized

GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size zone matrix; GLDM, gray-level dependence matrix; NGTDM, neighboring gray-

tone difference matrix.

ROC for CCRCC vs. non-CCRCC

True Positive Rate

0.2 q

+»7 —— SVC (Training set) (AUC= 0.9513)
//’ ——— SVC (Internal test set) (AUC= 0.8731)
0.04 3 —— SVC (External test set) (AUC= 0.8339)
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
FIGURE 4

classifier; ccRCC, clear cell renal cell carcinoma.

True Positive Rate

Receiver operating characteristic curves for distinguishing ccRCCs from non-ccRCCs. The performance of our support vector classifier (A) was
similar to that of a radiologist specializing in urological imaging (B). The radiomics-based machine learning model achieved an AUC of 0.951,
0.873, and 0.834 on the training set, internal test set, and external test set, respectively. Meanwhile, the expert radiologist reached an AUC of
0.886 on the internal test set, and an AUC of 0.768 on the external test set. ROC, receiver operating characteristic curve; SVC, support vector

ROC for CCRCC vs. non-CCRCC

1.0 1
0.8 1
0.6
0.4 4
0.2 4

//’ Expert (Internal test set) (AUC= 0.8856)

0.0 = —— Expert (External test set) (AUC= 0.7678)

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

demonstrates that the LASSO + SVC model can overperform the
TuRF + RFC model in this task.

The optimized SVC (kernel: rbf, C: 75, gamma: 0.05) trained
by the EX phase radiomics features showed worse performance
on both the internal and external test sets with AUC of 0.719
and 0.64, respectively. As expected, the optimized SVC (kernel:
linear, C:200) trained on the UN phase features showed even
poorer performance with an AUC of 0.725 on the internal test set
and AUC of 0.598 on the external test set. The UN and EX phase
features were not able to increase the diagnostic performance
of the SVC trained on CM phase features, the combined model
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(kernel: rbf, C: 500, gamma: 0.005) achieved an AUC of 0.862
and 0.711 on the internal and external test sets, respectively.

In Supplementary Table 2, we compare the results of our
machine learning models with those reported in previously
published studies.

Discussion

In this study, we constructed an externally validated
radiomics-based machine learning prediction model for the
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TABLE 3 Diagnostic performance of the machine learning models compared to that of an expert radiologist.

AUC Threshold Accuracy Sensitivity Specificity PPV NPV
SVC - Training set 0.951 [0.913-0.989] 0.655* 0.925 0.926 0.921 0.974 0.796
SVC - Internal test set 0.873 [0.774-0.972] 0.655 0.811 0.900 0.539 0.857 0.636
SVC - External test set 0.834 [0.730-0.938] 0.655 0.781 0.800 0.739 0.870 0.630
RFC - Training set 1.000 [1.000-1.000] 0.500* 1.000 1.000 1.000 1.000 1.000
RFC - Internal test set 0.874 [0.755-0.993] 0.500 0.868 0.950 0.615 0.884 0.800
REC - External test set 0.663 [0.529-0.796] 0.500 0.685 0.900 0217 0.714 0.500
Expert — Internal test set 0.886 [0.776-0.996] 0.500 0.906 0.925 0.846 0.949 0.786
Expert — External test set 0.768 [0.659-0.877] 0.500 0.795 0.840 0.696 0.857 0.667

*The optimal threshold was determined based on the point closest to the top left corner of the graph.

AUC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive value; RFC, random forest classifier; SVC, support vector classifier.

differentiation of ccRCC from non-ccRCC. Our SVC algorithm-
based machine learning model trained by CM phase features
achieved very good performance on the independent test cases
from our institute with an AUC of 0.87 and its diagnostic ability
also proved to be reproducible with an AUC of 0.83 during
validation on external test cases from the KiTS19 dataset. In
addition, we evaluated the accuracy of our SVC against that of
an expert radiologist, which showed that the performance of
the machine learning model is comparable (accuracy of 0.79 vs.
0.78 on the external dataset) which further supports the current
literature and demonstrates the potential of CT texture analysis
in this application.

The majority of the previously published studies focused
on differentiating between benign and malignant kidney lesions
(28-30) or identifying aggressive tumor features of ccRCCs (31—
37), and only a handful of studies aimed to distinguish between
the RCC subtypes (20, 38-41). It is important to highlight that
previous studies used different softwares for radiomics feature
extraction including both in-house developed algorithms (40,
41), and open-source tools such as the MaZda software (39)
and the pyRadiomics package (38) which complicates the
direct comparison of the previously published results. More
importantly, most of the previous studies had a single-center
study design and their models had not been validated on
independent, external cases.

Yu et al. were among the first who used CT texture
analysis for distinguishing between RCC subtypes (41). The
authors performed radiomics analysis on 10 selected cross-
sectional areas of the tumors in the NG phase and extracted
43 features. In each case, the average of the 10 values per
feature was calculated. A 5-fold cross-validated, linear SVC
was built to differentiate RCCs from oncocytomas for each
radiomics feature separately. In distinguishing between ccRCCs
vs. pRCCs, chRCCs and oncocytomas, first-order statistics
“geometric mean” achieved the best predictive value with an
AUC of 0.809. In the task of distinguishing between pRCCs
vs. ccRCCs, chRCCs and oncocytomas, first-order statistics
“median” reached the highest performance with an AUC of
0.811. While in the prediction of chRCCs vs. pRCCs, ccRCCs,
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and oncocytomas none of the features achieved good diagnostic
performance: the highest AUC was 0.757. The SVC trained
by all the 43 radiomics features achieved AUCs of 0.91, 0.92,
and 0.85 in the three tasks, respectively, which may indicate
that the prediction performance of the combination of the
radiomics features is superior compared to the diagnostic value
of individual features. Yu et al. demonstrated the ability of first-
order statistics and texture features to predict RCC subtypes,
however, in this single-center study all the scans were performed
on the same CT scanner and the results were not validated
on an independent test set (41). Yu et al. built SVC models
from NG phase radiomics features, while in our study, we built
an SVC prediction model from the combination of the most
predictive CM features that proved to be reproducible when
tested on independent external test cases (41). Our prediction
model achieved comparable results compared to those reported
by Yu et al. (AUC of 0.87 on the internal test set vs. AUC
of 0.91 during cross-validation), which may indicate that the
performance of CM features and NG features is comparable
in predicting ccRCCs, although Yu et al. also included 10
oncocytomas in their dataset (41).

Chen et al. retrospectively collected triphasic CT scans from
patients with RCCs (38). The final cohort in this study included
143 ¢cRCCs and 54 non-ccRCCs. To extract non-textural
features, the authors calculated 13 different absolute and relative
enhancement and attenuation ratios and values. After radiomics
analysis, LASSO was used to select the most important features
and to calculate texture-score with the linear combination of the
selected features. Finally, three different prediction models were
built, one logistic regression-based model from non-texture
features, one model from texture features, and a third, combined
logistic regression model. Among both the non-textural and the
texture-feature-based models, the CM phase models achieved
the highest performance with AUC = 0.823 and 0.887, while
the performance of the combined model showed similar results
in the CM and NG phases with AUCs of 0.891 and 0.900. The
results of this study showed that adding non-texture features can
improve the prediction performance of the texture feature-based
model and that the CM phase and the NG phase radiomics
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features have similar diagnostic ability in differentiating between
ccRCCs and non-ccRCCs. However, these models were not
validated on an independent test set in this manuscript (38). The
results of this study are comparable with the results of our SVC
model trained on the CM phase radiomics features, especially
with the results we reported on the training set (AUC = 0.951),
however, we also validated the performance of our model on
both independent internal (AUC = 0.873) and external test
cases (AUC = 0.834).

In their recent study, Wang et al. analyzed 147 ccRCCs
and 43 non-ccRCCs and built a RFC, an SVC, and a logistic
regression algorithm-based machine learning model from four
selected radiomics features (20). The authors reported very
good results on the internal test dataset for each machine
learning algorithm. Their RFC achieved the highest diagnostic
performance with an AUC of 0.909 followed by the logistic
regression classifier with an AUC of 0.906, while the SVC
showed slightly worse results with an AUC of 0.841 (20). These
results on the independent internal test set (AUC = 0.841-0.909)
are very similar to the results of our SVC (AUC of 0.88) on the
independent internal test set. However, all patients were scanned
with the same CT scanner in this single-center study, and the
models were not validated on external test cases. The diagnostic
performance of an expert radiologist was also reported in
this study, and the authors successfully demonstrated that
radiomics-based machine learning models can overperform the
accuracy of an expert radiologist. Although, the radiologist’s
performance reported in this manuscript was slightly inferior to
that of our study (AUC of 0.69 vs. 0.76-0.88, sensitivity of 0.85
vs. 0.84-0.93, and specificity of 0.58 vs. 0.70-0.85).

In a two-center study by Li et al., external validation of the
machine learning models was also completed (40). The authors
performed 3D texture analysis on both the UN, CM, and NG
phase CT scans of 170 patients. After the extraction of 3 x 52
texture features from the tumors, either the Boruta algorithm
or the minimum redundancy maximum relevance ensemble
(mRMRe) was used to select the most relevant features. Two
RFCs were trained, one with the 8 CM phase features selected
by the Boruta algorithm, and one by the combination of 7
nephrographic and one CM phase features selected by the
mRMRe algorithm. The machine learning models were tested
on 85 independent external test cases from another hospital. The
Boruta-based model achieved an AUC of 0.949 and an accuracy
of 92.9%, which significantly overperformed the mRMRe-based
model which reached an AUC of 0.851 and an accuracy of
81.2%. Their results suggest that there is a huge difference
between the performance of feature selection algorithms, as the
two sets of selected features were markedly different. These
results also indicate that the CM features have higher diagnostic
ability compared to NG phase features in the differentiation of
ccRCCs from non-ccRCCs (40). In our study, we extracted not
just second-order texture features, but also first-order statistical
parameters and shape-based features from the tumor volumes
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in the CM phase. The LASSO algorithm selected two shape-
based, three first-order, and five texture features as the most
important ones, which may indicate the importance of first-
order statistics and shape-based features in addition to texture
features. Although our results on the external test set are slightly
worse than those reported by Li et al. (AUC of 0.834 vs. 0.949),
it could be at least partly due to the fact that our independent
test sets contained a significant number of atypical cases which
is supported by that the accuracy of our SVC model proved to be
comparable with that of an expert radiologist (accuracy of 0.78
vs. 0.79) (40).

Kocak et al. were among the first, who validated their
machine learning models’ performance on publicly available
datasets (39). In their retrospective study, Kocak et al. collected
48 ccRCCs, 13 pRCCs, and 7 chRCCs and performed CT
texture analysis on UN and CM phase CT scans to differentiate
between RCC subtypes. For external validation, the authors
selected 13 ccRCCs, 7 pRCCs, and 6 chRCCs from three
publicly available datasets including The Cancer Genome Atlas-
Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) (44, 45), the
TCGA-Kidney Renal Papillary Cell Carcinoma (TCGA-KIRP)
(44, 46), and the TCGA-Kidney Chromophobe (TCGA-KICH)
(44, 47). After manual segmentation, the authors performed
texture analysis on the largest cross-sectional areas of the
tumors by extracting 275 radiomics features from both the
UN and the CM phases. After feature selection, the authors
constructed artificial neural network (ANN)-based and SVC-
based prediction models, that were evaluated based on ROC
curve analysis and Matthews correlation coefficient (MCC)
values. In the differentiation between ccRCC and non-ccRCCs,
the ANN algorithm-based model combined with adaptive
boosting trained on CM phase radiomics features, achieved an
AUC = 0.870, accuracy of 86.7%, and MCC = 0.686 during
internal validation, and AUC = 0.822, accuracy of 84.6%, and
MCC = 0.728 on the external test set. Meanwhile, the SVC
combined with adaptive boosting achieved an AUC = 0.852,
accuracy of 89.7%, and MCC = 0.745 during internal validation,
and AUC = 0.793, accuracy of 65.3%, and MCC = 0.426 on
the external test set (39). Our results can be compared with
those reported by Kocak et al., our SVC achieved slightly
better performance both during internal validation (AUC 0.873
vs. 0.852 and external validation (AUC of 0.834 vs. 0.793),
however, it is important to note that for external validation, we
used 73 tumors from the KiTS19 dataset, while Kocak et al.
validated their results on 26 selected cases from the TCGA
datasets (39).

We confirmed the results of previous studies that the CM
phase radiomics features are superior compared to the EX phase
ones (29, 38). Interestingly, contrary to the results of Raman
et al. (29), we were unable to prove that the addition of UN
and/or EX phase radiomics features increase the predictive
performance of the model, however, we did not analyze NG
phase scans as these were not available in the KiTS19 dataset.
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The limitation of our study is the relatively low number
of patients, and that only the three most common RCC
subtypes were studied, however, the other subtypes are rare.
The distribution of the RCC subtypes was unbalanced, reflecting
the unequal distribution in the global population. To handle
unbalanced datasets, instead of using synthetic sampling
methods, we used class-weight optimization during “training”
and then we tested the model on independent cases from
different institutions. Since the inclusion criteria in this study
were not strict to avoid selection bias, the internal and external
test datasets were also slightly unbalanced reflecting real-
world conditions. We decided not to use synthetic sampling
techniques to balance the groups of test sets, as we wanted our
results on test sets to illustrate how the model would work in the
daily clinical practice. The distribution of patients by sex in the
training and test datasets were also slightly imbalanced, but it is
well known that in the general population men are more likely to
be affected by kidney cancer than women and that kidney cancer
is about twice as common in men as in women. Accordingly, the
number of male patients in our own study was slightly higher
than the number of female patients in both our own dataset
and the external test set. However, the distribution did not reach
a significant level, i.e., the imbalance was similar between the
c¢cRCC and non-ccRCC groups. Finally, nephrographic phase
CT scans were not included in our study, as those were not
available in the KiTS19 dataset.

In conclusion, we successfully built a support vector
classifier-based machine learning model from CM phase
radiomics features that was able to differentiate between ccRCCs
and non-ccRCCs with good accuracy. The performance of our
model was validated on both cases from our own institute
during internal validation (AUC = 0.87), and cases from
the KiTS19 dataset during external validation (AUC = 0.83),
which proved our machine learning model’s reliability and
generalizability. We also compared the accuracy of the SVC with
that of an expert radiologist (accuracy of 0.79 vs. 0.78 on the
external dataset), which showed non-inferior results. Therefore,
we conclude that radiomics analysis combined with machine
learning could facilitate the non-invasive diagnosis of RCCs in
clinical practice in an objective and automated way.
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