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Background: Despite the surge in the number of antibiotics used to treat

preclinical osteomyelitis (OM), their e�cacy remains inadequately assessed.

Objective: To establish network comparisons on the e�cacy of antibiotic

regimens on OM in animal studies.

Methods: PubMed, Embase, Web of Science, and The Cochrane Library were

searched from inception to March 2022 for relevant articles. Odds ratios (ORs)

were generated for dichotomous variants, and the standard mean di�erence

(SMD) was calculated for constant variables. The predominant outcomes were

the e�ective rate of sterility, also known as sterility rates, as well as the bacterial

counts at the end of the experiments and antibiotic concentrations in serum

or bone. All the network meta-analyses were performed using STATA MP

16.0. This study was registered in the International Prospective Register of

Systematic Reviews (PROSPERO; no. CRD42022316544).

Results: A total of 28 eligible studies with 1,488 animals were included for

data analysis, including 13 antibiotic regimens. Regarding the e�ective rate

of sterility, glycopeptides (GLY), linezolid (LIN), rifampicin (RIF)+β-Lactam, and

β-Lactam showed significant e�cacy compared with placebo (OR ranging

from 0.01 to 0.08). For radiological grade, only RIF+GLY (SMD: −5.92, 95%CI:

−11.65 to −0.19) showed significant e�cacy compared with placebo. As

for reducing bacteria count, fosfomycin (FOS), tigecycline (TIG), GLY, LIN,

RIF, RIF+β-Lactam, RIF+GLY, aminoglycosides (AMI), and clindamycin (CLI)

showed significant e�cacy compared with placebo (SMD ranging from −6.32

to −2.62). Moreover, the bone concentrations of GLY were higher 1 h after

administration and the higher blood concentrations were higher after 1 h and

4h compared with the other antibiotics.

Conclusion: Multiple antibiotic regimens showed significant e�cacy in

animals with OM, including increasing e�ective rates of sterility, reducing

bacterial counts, and lowering radiological scores. Among them, RIF+GLY was

the most promising treatment regimen owing to its optimal e�cacy. Based

on the preclinical studies included in our meta-analysis, head-to-head clinical

randomized controlled trials are required to confirm these findings in humans.
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Introduction

Osteomyelitis (OM) is a disease of progressive bone

destruction caused by infectious microorganisms and is an

intractable complication observed following orthopedic surgery,

trauma, or arthroplasty (1). Staphylococcus aureus (S. aureus)

is the most common disease-causing pathogen, accounting for

65–80% of the microbes found in patients (2). With more

advanced detection means, the diagnostic rate of OM has

increased worldwide in recent years. Notwithstanding, the

mortality rates of adult spinal OM was remain as high as 6% in

developed countries (3).

In general, the standard treatment procedures

for OM include thorough surgical debridement and

systemic antibiotic administration. Although surgical

treatment is indispensable, the antibiotics used to

fight infections and inhibit biofilm should be chosen

carefully because they can have a significant impact on

the outcomes.

Currently, for OM with S. aureus including Methicillin-

resistant S. aureus (MRSA) and Methicillin-sensitive S. aureus

(MSSA) infection, long-term use of sensitive glycopeptides

(GLY) antibiotics such as vancomycin and teicoplanin is

recommended (1). In addition to the classical antibiotic

regimens mentioned above, broad-spectrum antibiotics are

used as a monotherapy or as an adjuvant medication for the

treatment of OM, such as cephalosporins, aminoglycosides

(AMI), penicillins, carbapenems, sulfonamides, and quinolones

(QUI) with satisfactory efficacy. The combination of

antibiotics for the treatment of OM has become a research

hotspot in recent years. For instance, rifampicin (RIF) in

combination with QUI has been shown to be effective in

implant-associated OM in several studies, given its good

permeability and bioavailability (4, 5). Other combination

regimens, including RIF combined with GLY or β-Lactam

antibiotics, have also been shown to achieve satisfactory

results (6, 7).

With so many regimen combinations to use, surgeons face

the issue of being overwhelmed with the specific regimen

choice. Hence, direct comparisons are required to quantify

efficacy. However, after performing a thorough search of

the literature in both Chinese and English databases, it

was found that the number of studies was lower than the

number of interventions possible, thus it was determined

that the literature on clinical trials was inadequate for

performing network meta-analysis. Consequently, we adopted

animal studies to compare efficacy instead: A network

meta-analysis on the effects of antibiotics on OM animal

models was, therefore, performed. A total of 13 antibiotic

regimens were compared: RIF, tigecycline (TIG), linezolid

(LIN), fosfomycin (FOS), azithromycin (AZI), clindamycin

(CLI), trimethoprim (TRI), GLY, AMI, β-Lactam, QUI, RIF+β-

Lactam, and RIF+GLY.

Materials and methods

This study was performed in accordance with the PRISMA

guidelines (see Supplementary Table 1) and the protocol for

this meta-analysis can be found on the PROSPERO website

(www.crd.york.ac.uk/PROSPERO/; no. CRD42022316544).

Search strategies

PubMed, Embase,Web of Science, and The Cochrane library

were searched from inception toMarch 2022 for relevant articles

using the corresponding Medical Subject Headings (MeSH)

“osteomyelitis,” “chronic osteomyelitis,” “anti-bacterial agents,”

“antibiotic agent,” “animal,” and “animal experimentation”

with Boolean modifiers as appropriate. The in-depth search

strategy for the four electronic databases is shown in

Supplementary Table 2.

Inclusion criteria

1. All subjects were OM animal models with no limits on

species, age, sex, or weight;

2. The antibiotic regimens included any type of antibiotic

regimen or combination of two antibiotics;

3. The study included a negative control group;

4. The outcomes compared the effective rates of sterility,

bacterial counts, radiological grades, and antibiotic

concentrations in serum or bone.

Exclusion criteria

1. Clinical research and non-controlled studies

using animals;

2. Secondary literature (e.g., literature comment or review);

3. Studies limited to in vitro experiments;

4. Studies assessing interventions other than antibiotics (e.g.,

antibiotic carriers or scaffolds).

Study selection and data extraction

All identified studies were independently screened by two

researchers (X. Shi and Y. Wu) based on the titles and abstracts.

Subsequently, they prudently and independently performed the

extracted data based on the pre-established data extraction

checklist. The extracted data were finally collated into a table and

included: (1) basic characteristics of eligibility studies, including

the author’s name, year of publication, and region of study;

(2) basic information on experimental animals, weights, sample

sizes, modeling methods, interventions, total therapy time, and
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other adverse events; (3) outcome indicators: effective rates

of sterility, bacterial counts, radiological scores of bone, and

antibiotic concentrations in serum or bone. The means and

standard deviations (SD) or standard error means (SEM) were

extracted from both the antibiotic regimens and control groups

as outcome indicators. Any discrepancy was adjudicated by a

senior investigator (Y. Xu).

Assessment of methodological quality

The Systematic Review Center for Laboratory animal

Experimentation Risk of Bias (SYRCLE’s RoB) tool for animal

studies was utilized by two well-trained investigators (X. Shi and

Y. Wu) independently to assess the quality of enrolled studies

(8). Any discrepancy was adjudicated by a senior investigator

(Y. Xu). This SYRCLE’s RoB tool is based on the Cochrane

Collaboration risk of bias tool (9) and has been adjusted for

the risk of bias assessment in animal studies with a total of 10

entries related to six types of bias (selection bias, performance

bias, attrition bias, follow-up bias, reporting bias, and other

biases). Moreover, specific evaluation criteria were as follows: a

“yes” judgment to the assessment question indicates a low risk

of bias and a “no” indicated a high risk of bias. When there were

insufficient details based on reports to properly assess the risk of

bias, “unclear” was assigned to indicate this.

Outcome indicators

The primary outcomes were the effective rates of sterility

(sterility rates after treatment), radiological grades, and

bacteria counts.

The secondary outcomes were antibiotic concentrations in

serum or bone.

Statistical analysis

Odds ratios (ORs) were generated for dichotomous variants,

while the standard mean difference (SMD) was calculated

for constant variables regardless of the type of meta-analysis.

P < 0.05 was considered statistically significant with a 95%

confidence interval (CI). For network meta-analysis, the

node analysis model was used to check for inconsistencies.

P < 0.05 indicated that there was an inconsistency between

FIGURE 1

PRISMA flow diagram of the study selection process (10).
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FIGURE 2

Risk of bias (A) graph showing the risk of bias; (B) individual risk of bias for each of the included animal studies.

FIGURE 3

Network meta-analysis of the total e�ective rates of sterility (A) network graph; (B) the network funnel plot.
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direct comparison and indirect comparison. Surface under

the cumulative ranking curve (SUCRA) values were calculated

and matrices were generated; a higher value for the former

indicated a higher possibility of being the best treatment.

Random effect models were used for network meta-analysis.

Moreover, matrices were implemented to detect whether the

difference between any one pair with corresponding SUCRAs

reached significance. To reinforce the results, overall and loops

inconsistency tests and consistency tests were performed in

each outcome, and the small sample effect was explored using

a network funnel plot. All the network meta-analyses were

performed using STATAMP 16.0.

Results

Study characteristics and quality
assessment

In total, 28 controlled studies consisting of a total of

1488 animals were included, and a total of 13 antibiotic

regimens were used. The flow diagram of the selection criteria

is shown in Figure 1. Of the included studies, experimental

animal species included New Zealand White rabbits (11–23),

Sprague-Dawley (SD) rats (24–29),Wistar rats (30–35),Madorin

rats (36, 37), or RAR rats (38). The animal infection models

included S. aureus, MRSA, Methicillin-resistant Staphylococcus

epidermidis (MRSE), Klebsiella pneumoniae, or Morganella-

infected animals. The methods of OM induction in six studies

were implant-based models, and the remaining studies were all

post-traumatic models. The duration of administration ranged

from 4 to 28 days. In addition, antibiotic regimens were

administrated intraperitoneally, subcutaneously, intravenously,

intramuscularly, or orally during the treatment phase. The basic

characteristics of the animal studies included are shown in

Supplementary Table S1.

Of the 28 controlled studies included, no studies reported

detailed randomization grouping methods and generation

processes; 18 studies reported similar baseline characteristics

of animals; three studies described in detail that experimental

animals were placed in a randomized housing environment.

Only one study described a blinded assessment of outcomes.

In five studies, animal deaths were reported after antibiotic

treatment. All studies reported expected results. The results

of the methodological quality assessment are shown in

Figures 2A,B.

E�ective rates of sterility

A total of 12 out of 28 studies were included for this

endpoint. Network graphs of each pairwise comparison of

all regimens on effective rates of sterility are shown in T
A
B
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FIGURE 4

Network meta-analysis of radiological grades (A) network graph; (B) the network funnel plot.

Figure 3A. RIF and GLY had the highest number of studies.

From the matrix (Table 1), out of 10 interventions, only GLY,

LIN, RIF+β-Lactam, and β-Lactam showed significant efficacy

compared with the placebo, whereas the rest were inefficient.

Additionally, RIF+β-Lactam was equivalent to GLY, LIN, and

β-Lactam. The network funnel plot suggested that the small

sample effect existed in the comparison between AMI and GLY

on total effective rates of sterility (Figure 3B).

Radiological grades

Of the 28 studies, eight were included for this endpoint. A

network graph of each of the pairwise comparisons of all the

regimens on effective rates of sterility is shown in Figure 4A. RIF

and GLY had the highest number of studies. According to the

matrix (Table 2), out of 10 interventions, only RIF+GLY showed

significant efficacy compared to placebo, while the others were

ineffective. The network funnel plot suggested that the small

sample effect existed in the comparison between RIF+GLY and

the placebo on radiological grades (Figure 4B).

Bacterial counts

Of the 28 studies, 14 were included for this endpoint.

A network graph of each of the pairwise comparisons of all

regimens on bacterial counts is shown in Figure 5A. GLY and

RIF+GLY had the highest number of studies. From the matrix

(Table 3), nine of the 13 interventions showed significant efficacy

compared with the placebo, including AMI, CLI, FOS, GLY, LIN,

RIF, RIF+GLY, RIF+β-Lactam, and TIG. AZI was significantly

inferior to FOS, GLY, LIN, RIF, and TIG. FOS was significantly

superior to AMI, AZI, CLI, QUI, RIF+GLY, and β-Lactam.

AMI was significantly superior to RIF+β-Lactam and LIN.

The network funnel plot suggested that the small sample effect

existed in the comparison between FOS and the placebo on

bacteria counts (Figure 5B).

Antibiotic concentrations in the serum

Antibiotic concentrations in serum 1 hour after

administration (µg/ml): a network graph of each

pairwise comparison of all the regimens is shown in

Supplementary Figure S1A. GLY and AMI had the highest

number of studies. From the matrix (Supplementary Table S2),

RIF was significantly lower to GLY (SMD: −6.51, 95%CI:

−9.28 to −3.75), AMI (SMD: −3.56, 95%CI: −5.27 to −1.84),

and β-Lactam (SMD: −3.48, 95%CI: −5.20 to −1.75). The

network funnel plot suggested that the small sample effect

existed in the comparison between GLY and RIF on the

antibiotic concentration of serum 1 h after administration

(Supplementary Figure S1B).

Antibiotic concentrations in the serum 4 h after

administration (µg/ml): a network graph of each

pairwise comparison of all the regimens is shown in

Supplementary Figure S2A. RIF and GLY had the highest

number of studies. From the matrix (Supplementary Table S3),

GLY was significantly higher than RIF (SMD: 3.20, 95%CI:

0.52 to 5.89), AMI (SMD: 5.90, 95%CI: 2.46 to 9.17), TRI

(SMD: 5.80, 95%CI: 2.01 to 9.58), and β-Lactam (SMD: 6.64,

95%CI: 3.36 to 9.92). The network funnel plot suggested that

the small sample effect existed in the comparison between RIF
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and β-Lactam on the antibiotic concentration of serum after 4 h

after administration (Supplementary Figure S2B).

Antibiotic concentrations in bone

Antibiotic concentrations in the bone 1 h after

administration (µg/g): a network graph of each

pairwise comparison of all the regimens is shown in

Supplementary Figure S3A. GLY and AMI had the highest

number of studies. From the matrix (Supplementary Table S4),

GLY was significantly higher than β-Lactam (SMD: 4.40, 95%CI:

0.32 to 8.47), RIF (SMD: 5.28, 95%CI: 1.89 to 8.67), and TRI

(SMD: 6.28, 95%CI: 1.62 to 10.95). The network funnel plot

suggested that the small sample effect existed in the comparison

between GLY and RIF on the antibiotic concentration of bone

after 1 h after administration (Supplementary Figure S3B).

Antibiotic concentrations in the bone 4 h after

administration (µg/g): a network graph of each

pairwise comparison of all the regimens is shown in

Supplementary Figure S4A. RIF and GLY had the highest

number of studies. From the matrix (Supplementary Table S5),

we conducted pairwise comparisons among five antibiotic

regimens. However, there was no significant difference between

these regimens. The network funnel plot suggested that the

small sample effect existed in the comparison between RIF

and TRI on the antibiotic concentrations in the bone 4 h after

administration (Supplementary Figure S4B).

Discussion

To the best of our knowledge, this is the first network meta-

analysis comparing the efficacy of antibiotic regimens on OM

in preclinical animal models. We found that the combination of

RIF+GLY was more effective than the placebo in the analysis

of radiological grades and bacteria counts after treatment and a

similar animal study on OM came to the same conclusion (39).

There was only one previous meta-analysis with antibiotics for

OM (40), and their analysis showed no difference in the efficacy

of quinolones and β-Lactams in treating patients with OM,

results similar to those obtained in our network meta-analysis.

Interestingly, we analyzed blood and bone concentrations

after antibiotic administration and found that GLY bone

concentrations were higher 1 h after administration and blood

concentrations were higher 1 and 4 h after administration

compared with the other antibiotics. Current guidelines

recommend serum vancomycin concentrations of 15–20µg/ml

in adult patients with S. aureus infection in the clinic (41), and

our analysis described serum concentrations of GLY in OM

models, in which the mean serum concentration at 4 h was

18.7 ± 5µg/ml, approaching the guideline recommendations.

However, due to the significant difference in metabolic rates
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FIGURE 5

Network meta-analysis of bacteria counts (A) network graph; (B) the network funnel plot.

between rats and humans (42, 43), we should be very careful

in extrapolating results from animal models to humans.

Additionally, the local concentration of antibiotics in the tissue

must exceed the MIC of the bacteria to eradicate the infection

(44). In our included studies, MIC-matched 18–24 h blood and

bone concentrations were not provided, and therefore the exact

efficacy of the drug could not be assessed.

The causative agents of OM include several types of bacteria,

including Gram-positive, Gram-negative, and multi-species

mixed infections. In general, the antibiotic must cross the

outer membrane and cytoplasmic membrane of the bacteria

before entering the cytoplasm to exert its anti-bacterial

effects. More importantly, the aggregation of surface-associated

microorganisms forms biofilms, and the penetration specificity

of antibiotics is directly related to the efficacy of OM (45,

46). In addition to biofilm formation, both Gram-negative

and Gram-positive bacteria can actively expel antibiotics from

cells via efflux pumps, which is another major drug resistance

mechanism (47). Gram-negative bacteria are usually more

resistant to the action of anti-bacterial drugs than Gram-positive

bacteria due to the presence of porins (48, 49).

Rifampicin is a broad-spectrum antimicrobial agent with

penetration specificity for biofilms produced by S. aureus and it

can kill adherent bacteria (50). Because of the powerful biofilm

penetration capacity, RIF is used as a basic therapeutic measure

in the clinical treatment of OM. Nevertheless, the use of RIF

alone in the treatment of S. aureus-associated infections is likely

to rapidly develop drug resistance, increase MIC, and reduce

the effectiveness of antibiotics (51, 52). Therefore, the antibiotic

regimen of RIF combined with drugs has been used in preclinical

and clinical studies for nearly two decades. GLY antibiotics

lyse bacteria by binding to their cell wall peptidoglycans and

primarily target most Gram-positive bacteria; however, they

have significant limitations, such as poor tissue and intracellular

permeability, lack of activity against biofilms, and a slow

bactericidal effect (53). More importantly, RIF enhances the

activity of vancomycin against S. aureus in biofilms (54),

compensating for the above disadvantages of GLY. In terms of

clinical efficacy, GLY antibiotics such as vancomycin remain

first-line agents for the treatment of S. aureus or MRSA-induced

OM. Recently, a case of successfully treated polymicrobial

calcaneal OM using oral RIF in combination with intravenous

vancomycin was described (55).

The combination of RIF and β-Lactam is a common pairing

in the clinical treatment of bone infections. β-Lactam antibiotics

inhibit the synthesis of bacterial cell walls and affect normal

bacterial growth and development (56, 57). Among β-Lactams,

cefuroxime and cephalothin have been shown to be effective

in the presence of biofilm (58). However, β-Lactams are the

most common cause of most antibiotics-associated adverse

events, including severe kidney or liver toxicity, neurotoxicity,

and cytopenia (59). One study showed a 2.5% incidence of

gastrointestinal events with β-Lactam and a higher incidence

of diarrhea when the above combination was used (60). More

importantly, the β-Lactams assessed in this study included only

first and second-generation cephalosporins, and no valid direct

evidence could be produced to support the efficacy of the novel

cephalosporins on OM.

Fosfomycin is a broad-spectrum antibiotic that inhibits

the biosynthesis of peptidoglycan in the bacterial cell wall by

inhibiting MurA enzyme activity and it exhibits bactericidal

activity against a wide range of Gram-negative bacteria (61,
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TABLE 3 Matrix of pairwise comparations of regimens on bacterial counts [shown as SMD (Standardized mean di�erence) and 95% confidence intervals (CIs)].

Placebo QUI AZI β-

Lactam

CLI AMI RIF+GLY RIF+β-

Lactam

RIF LIN TIG GLY FOS

FOS 6.32

(3.83,8.81)

5.60

(1.47,9.73)

5.19

(2.07,8.32)

4.14

(0.46,7.83)

3.70

(0.52,6.88)

3.32

(1.22,5.42)

3.27

(0.14,6.40)

2.98

(−0.70,6.66)

2.63

(−0.58,5.83)

2.30

(−1.42,6.01)

1.16

(−2.41,4.72)

1.24

(−1.77,4.25)

1

GLY 5.08

(2.10,8.06)

4.36

(−0.09,8.80)

3.95

(0.43,7.48)

2.90

(−1.13,6.93)

2.46

(−1.12,6.03)

−2.07

(−5.76,1.62)

2.03

(−1.50,5.55)

1.73

(−2.29,5.76)

1.38

(−2.21,4.98)

1.06

(−3.00,5.11)

−0.09

(−1.99,1.81)

1 −1.24

(−4.25,1.77)

TIG 5.17

(1.64,8.70)

4.44

(−0.39,9.28)

4.04

(0.03,8.04)

2.99

(−1.47,7.44)

2.54

(−1.51,6.59)

−2.28

(−6.16,1.61)

2.11

(−1.89,6.12)

1.82

(−2.63,6.27)

1.47

(−2.59,5.54)

1.14

(−3.34,5.62)

1 0.09

(−1.81,1.99)

−1.16

(−4.72,2.41)

LIN 4.02

(1.26,6.78)

3.30

(−1.00,7.61)
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(0.19,5.61)
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1.40

(−1.29,4.09)
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(−6.75,−0.48)

0.97

(−2.38,4.32)
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(−3.19,4.55)

0.33

(−1.55,2.21)

1 −1.14

(−5.62,3.34)

−1.06

(−5.11,3.00)

−2.30

(−6.01,1.42)

RIF 3.70

(1.68,5.71)
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(−0.90,6.85)

2.57

(0.62,4.52)

1.52

(−1.87,4.91)

1.07

(−0.85,3.00)

1.02

(−2.41,4.46)

0.64

(−2.13,3.41)

0.35

(−3.03,3.73)

1 −0.33
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(−5.54,2.59)
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RIF+β-

Lactam
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1 −0.35

(−3.73,3.03)

−0.68
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62). Although FOS demonstrated a significant advantage in

reducing bacterial counts compared to RIF+GLY in our analysis,

FOS is commonly used in the treatment of complicated

urinary tract infections, and its use as a clinical treatment

for OM has not been reported. Importantly, the incidence

of hypokalemia with intravenous FOS infusion was as high

as 26%, a very high incredible rate (63). In contrast, the

nephrotoxicity of vancomycin could be avoided by reducing

the dose of the drug or by replacing it with teicoplanin, which

exhibits less nephrotoxicity. The primary adverse reactions of

RIF were gastrointestinal reactions and certain hepatotoxic

effects (transaminase levels increased to 3–5 times normal

levels). Perveen et al. (64), Ibrahim et al. (65); however, the

gastrointestinal symptoms and hepatotoxicity of RIF could also

be addressed by lowering the dose (66).

In terms of cost, the median daily drug price of RIF for

infection was less than 0.115 dollars (67). For the treatment

of S. aureus-associated infection, the cost of vancomycin

was generally very low, while for MRSA the cost increased

accordingly. The problem of refractory MRSA-associated OM

has been solved with the use of new GLY antibiotics including

dalbavancin and teicoplanin, which also have the advantage of

shorter hospital stays and low total costs.

Thus, RIF+GLY may be the most promising clinical option

for OM treatment in terms of biofilm penetration, clinical

feasibility, cost-effectiveness, and safety. However, the drug–

drug interactions between RIF and co-antibiotics may reduce

the effective blood levels of the co-antibiotics (68). Conversely,

it is worth paying attention to the high incidence of side effects

of RIF combinations, which highlights the potential need for

therapeutic drug monitoring and rational administration during

clinical treatment.

Adverse reaction analysis

In the present study, only a few studies briefly reported

adverse reactions in animals after administration, including

seven rabbits in the TIG group that died from gastrointestinal

inflammation and seven rabbits in the RIF+β-Lactam group

that died from gastrointestinal reactions (diarrhea and

gastrointestinal inflammation). Moreover, two rabbits and

three rats in the RIF+GLY group, and one rabbit in the

GLY group had an unknown cause of death. Gastrointestinal

inflammation in the TIG and RIF+β-Lactam groups may be

caused by extensive destruction of the normal intestinal flora

(20). Additionally, gastrointestinal adverse effects of RIF include

common symptoms, such as loss of appetite and diarrhea;

however, gastrointestinal inflammation is rare (69). Therefore,

in future, the adverse effects of antibiotic combinations should

be considered in the selection of antibiotic regimens for the

treatment of OM.

Limitations

First, due to a lack of clinical literature and the absence of

primary outcomes, we used preclinical animal studies to assess

the efficacy of various antibiotic regimens. Nevertheless, we

could give clear recommendations based on the existing studies

on humans.

Second, the pathogenic bacteria used to establish the OM

animal model were not identical and included some uncommon

bacteria, such as Klebsiella pneumoniae and Morganella. After

conventional meta-analysis low heterogeneity in conventional

meta-analysis for S. aureus and MRSA separately, but this might

still affect the interpretation of efficacy.

Third, in our selection of animal model species for OM,

we included only the most common rat and rabbit as target

models, and therefore the efficacy results should be interpreted

with caution. The primary reason for this is that most

of the current comparative studies on antibiotic treatments

for OM have focused on rat and rabbit models of OM,

and other models such as dog, pig, and sheep lack valid

comparative evidence.

Research prospects

First, selection of animal models: Current therapeutic

animal models for OM are limited to rats and rabbits,

such animals differ greatly from humans in vivo, particularly

with regard to the pathological molecular biology, thus they

have limited reference value regarding clinical treatment

(70). Therefore, animal models that are more similar to

humans, such as monkeys and apes, should be considered

in future to better simulate the pathological conditions of

clinical OM.

Second, safety indicators: Only a very small number of

studies have reported the gastrointestinal adverse effects of

antibiotics, and most studies focused on efficacy and bacterial

eradication rates. Therefore, attention should be paid to the

safety of antibiotics in future to avoid adverse events in

clinical applications. In addition, preclinical trials for OM

treatment should take into account the rigor of design and the

standardization of outcome assessment to improve the quality

of the study and provide a reference for the clinical treatment of

OM as much as possible.

Third, as antimicrobial resistance continues to increase

worldwide, the biofilm penetration of vancomycin and β-lactam

antibiotics for Gram-positive bacteria is diminishing. Novel

glycopeptide antibiotics such as oritavancin and telavancin, and

fifth-generation cephalosporin antibiotics such as ceftobiprole

should be given more attention in future and applied in

preclinical and clinical studies to provide a reliable basis for

antibiotic treatment options for OM.
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Fourth, local antibiotic delivery systems have become the

key development direction of preclinical and clinical research

for the treatment of OM in recent years (71). In addition to

the mechanical support, biocompatibility, biodegradability, and

osteoinductive ability of the new material, the combination of

new antibiotics also need more research in the animal models of

OM to achieve the final clinical application.

Fifth, the vast majority of comparative studies on the efficacy

of antibiotics use rabbits and rats as model animals to study

OM. However, it has been reported that, in comparison to the

serious adverse reactions of rabbits after antibiotic treatment, the

gastrointestinal flora of the pig is similar to that of humans and

can be used to assess systemic antibiotic treatments (72, 73), and

the mechanical and biological functions of dogs’ tibia and femur

are similar to those of humans (74). Therefore, researchers need

to further explore other animal models of OM that are more

similar to human bodies and evaluate the efficacy of antibiotics,

in order to provide theoretical support for the clinical treatment

of OM with antibiotics in future.

Conclusion

In conclusion, multiple antibiotic regimens have shown

significant value in animal models of OM, including increased

efficacy, reduced bacterial counts, and lower radiological scores.

Among them, RIF+GLYwas significantly effective and possibly

the most promising treatment regimen. However, it is necessary

for future preclinical studies to provide more reliable evidence

for the clinical treatment of OM using this regimen.
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