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Giardia duodenalis is an intestinal protozoan parasite of humans and

animal hosts and comprises eight microscopically indistinguishable

molecularly-diverse lineages designated as assemblages A–H. Assemblages

A and B are the primary sources of infections in humans and a wide range

of mammals. Here, we identified assemblages, and inter-/intra-assemblage

genetic diversity of human G. duodenalis isolates based on the multilocus

sequence typing of the triosephosphate isomerase (tpi), β -giardin (bg), and

glutamate dehydrogenase (gdh) loci. Multilocus sequence analysis of 62

microscopically-positive G. duodenalis fecal samples identified 26 (41.9%),

27 (43.5%), and nine (14.5%) isolates belonging to assemblages A, B, and

discordant assemblages, respectively. The tpi locus assemblage-specific

primers identified dual infections with A and B assemblages (45.2%).

The sequence analysis of multiple alignments and phylogenetic analysis

showed low genetic polymorphism in assemblage A isolates, classified as

sub-assemblage AII at three loci, subtype A2 at tpi and gdh loci, and subtype

A2 or A3 at bg locus. High genetic variations were found in assemblage

B isolates with 14, 15, and 23 nucleotide patterns at tpi, bg, and gdh loci,

respectively. Further concatenated sequence analysis revealed four multilocus

genotypes (MLG) in 24 assemblages A isolates, two previously-identified

(AII-1 and AII-5), with one novel multilocus genotype. However, the high

genetic variations observed in assemblage B isolates among and within the

three genetic loci prevented the definitive designation of specific MLGs for

these isolates. Multilocus sequence typing may provide new insight into the

genetic diversity of G. duodenalis isolates in Tehran, suggesting that humans

are likely a potential source of G. duodenalis infection. Further host-specific

experimental transmission studies are warranted to elucidate the modes of

transmission within multiple host populations.
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Introduction

Giardia duodenalis (syn. Giardia lamblia, Giardia

intestinalis) is a flagellate protozoan parasite that infects

the small intestine of a wide range of mammals, including

humans (1, 2). Giardia duodenalis is one of the most prevalent

enteric protozoan parasites globally, with prevalence rates

varying from 0.4 to 7.5% in developed countries to 8–

30% in the developing world (3, 4). The G. duodenalis

infections are initiated by ingesting quadrinucleate infective

cysts through food or water contaminated with feces from

infected humans or animals (3). Asymptomatic G. duodenalis

infections are common in humans and, in most cases, are

self-limited and cleared within weeks of exposure with no

treatments (4, 5). Asymptomatic infections can lead to a

malabsorption syndrome, characterized by failure to thrive

and/or stunted growth, especially in children in developing

countries. However, infected individuals with the symptomatic

disease typically exhibit gastrointestinal symptoms, including

diarrhea, abdominal discomfort, flatulence, nausea, and bloating

(1, 4–6).

The G. duodenalis complex comprises eight

morphologically-indistinguishable genotypes with molecularly

diverse lineages designated as assemblages A–H (7, 8). Giardia

duodenalis assemblages A and B infect humans and a variety

of other mammals. Whereas, assemblages C–H are commonly

found in dogs and other canids (C, D), hoofed livestock (E), cats

(F), rodents (G), and marine mammals (H) (3, 4, 7). However,

recent accumulating evidence has demonstrated that those

assemblages thought to be only circulating within the livestock

(i.e., assemblage E) could also infect humans (9–11). This

suggests that host-specificity for at least some assemblages is

less strict, and those adapted to non-human mammals might

be able to infect humans. An allozyme analysis designated four

sub-assemblages within assemblages A and B (AI–AIV and

BI–BIV), of which AI, AII, BIII, and BIV have been mainly

identified in humans (7, 12). Subsequent nucleotide sequence

and phylogenetic analysis have confirmed sub-assemblages AI–

AIII within assemblages A, with AI being isolated mainly from

animals, whereas AII is predominantly identified in humans.

Moreover, AIII is mostly reported in wild mammals (e.g.,

deer), with only two human cases, which have been recently

reported (2, 4, 11, 13). In addition, multilocus sequence typing

(MLST) has characterized 9–12 subtypes/genotypes at each

of the individual loci within the three major sub-assemblages

A (4). However, the phylogenetic analysis of the nucleotide

sequences of the main used genetic loci has not identified

distinct sub-assemblages within assemblage B, likely reflecting a

high sequence diversity within this group not supported by the

bootstrap analysis (2, 14). Assemblages A and B of G. duodenalis

possess a wide range of mammalian hosts, including humans.

Thus, infections with these two assemblages are potentially

considered of zoonotic importance (2, 4).

Multiple genetic markers have been routinely employed to

discriminate better the genetic diversity and the population

dynamics within a given G. duodenalis assemblage (3, 7). To this

end, the small subunit ribosomal RNA (SSU-rRNA), glutamate

dehydrogenase (gdh), triosephosphate isomerase (tpi), and β-

giardin (bg) genes are among the most commonly-used loci

to identify multiple variants of G. duodenalis in different host

species (3, 7). The SSU-rRNA gene is a multi-copy and highly-

conserved locus, making it a feasible genetic surrogate for

detecting and differentiating G. duodenalis assemblages. In

contrast, this locus is considered less useful in identifying intra-

assemblage genetic diversity due to its conserved nature and

usually short amplified fragments in most PCR assays based

on the SSU-rRNA locus (2). In contrast to the SSU-rRNA

locus, the single-copy tpi, bg, and gdh loci are more sensitive

to probing the genetic variation and the classification of G.

duodenalis populations at the sub-assemblage and genotype

levels. However, these loci are not considered feasible candidates

for diagnosing G. duodenalis in clinical settings (8, 15). Despite

existing consensus over the feasibility of these loci to genetically

classify multiple G. duodenalis assemblages, conflicting findings

have been reported regarding the usefulness of a given

single locus in differentiating G. duodenalis populations into

assemblages and sub-assemblages (3, 16). Therefore, to expand

accuracy, a numeric multilocus genotyping (MLG) system

was introduced using tpi, bg, and gdh genes in analysis

simultaneously (17).

Giardia is still considered the most-identified intestinal

parasite in Iran, although its overall prevalence rates have

dramatically decreased in recent years (18–20). The molecular

characterization of the human G. duodenalis isolates in Iran was

predominantly conducted using a single locus (21–26). In the

current study, however, we employed an MLST approach to fill

a gap in our understanding of the population structure, and

genetic diversity of G. duodenlais isolates circulating in a major

metropolitan area in Iran.

Materials and methods

Study subjects and DNA preparation

From June to November 2015, 41 fecal samples positive

for G. duodenalis cysts by microscopy were collected from

individuals referred to health centers in Tehran for routine

stool screenings. Furthermore, archival DNA specimens from

an additional 21 fecal samples positive for G. duodenalis cysts

(2009–2014) were also included for further analyses.

In total, 62 G. duodenalis isolates from infected individuals

were included in the current study, of which 42 (67.74%) and

18 (29.03%) were males and females, respectively. However, the

genders of two participants (3.23%) were not determined. The

mean age was 37.1 ± 20.9 years, ranging from 3 to 86 years.
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Gastrointestinal symptoms were reported by 12 (19.4%) of 62

participants, while 50 (80.6%) were asymptomatic. The most

common gastrointestinal symptoms, including diarrhea (n =

10), cramps (n = 9), abdominal pain (n = 8), nausea (n = 5),

vomiting (n = 3), flatulence (n = 6), anorexia (n = 6), and

constipation (n = 4), were reported. Collected stool samples

were immediately transferred to the research laboratory of the

Department of Parasitology and Mycology, School of Medicine,

Iran University of Medical Sciences at 4◦C for further laboratory

examination on the same day.

The presence of G. duodenalis cysts in fresh fecal samples

was confirmed by light microscopy or a formalin-ether

concentration method on a pea-sized piece of fecal samples,

followed by further G. duodenalis cysts purification using a

sucrose flotation gradient technique on the remaining fresh

samples (27) to achieve adequate quantity and quality of G.

duodenalis DNA for sequencing (5, 28). Briefly, 10 g of fresh

feces was added to 50mL of PBS (pH 7.4) and thoroughly mixed.

The fecal suspension was passed through three layers of clean

gauze, followed by centrifugation at 800 × g for 5min. The

sediments were re-suspended in 50mL of PBS, and 25mL of

the suspension was layered over 20mL of 1M sucrose solution

(specific gravity = 1.13) in a clean 50-mL conical tube and were

further centrifuged at 800 × g for 5min. The interface and the

upper layer were carefully transferred to a clean 50-mL conical

tube and centrifuged at 800× g for 5min. The fecal pellets were

washed three times with PBS and re-suspended in 0.4mL of PBS

containing 2% polyvinylpolypyrrolidone (PVPP). The Purified

cysts were kept at −80◦C for 24 h before DNA extraction. The

DNA was extracted from purified cysts using a QIAamp DNA

Mini Kit (QIAGEN, Germany) according to the manufacturer’s

instructions with some modifications (29). The extracted DNA

was stored at−20◦C for further analysis.

Multilocus genotyping of G. duodenalis
isolates

Nested PCR amplification of the tpi and bg Loci

A 530-bp fragment of the tpi locus was specifically amplified

using external forward and reverse primers AL3543 and AL3546

and internal forward and reverse primers AL3544 and AL3545,

respectively (Table 1) (30). Both primary and secondary PCR

reactions were performed in 50 µL volume, containing 25 µL

of 2 × Taq DNA Polymerase Master Mix RED (Amplicon III,

Copenhagen, Denmark), 0.2µM of each primer, and 2 µL of

template DNA. The amplification scheme consisted of an initial

denaturation step at 95◦C for 5min, 35 amplification cycles

at 94◦C for 45 s, 50◦C for 45 s, 72◦C for 60 s, with a final

extension at 72◦C for 10min. In the second PCR, the annealing

temperature was increased to 58◦C, whereas other parameters

were left unchanged (36).

Mixed infections with assemblages A and B (A+B) were

identified by amplifying the Giardia tpi gene using a nested-

PCR protocol described elsewhere (31, 32). The primary PCR

reaction was performed as described above, whereas the second

PCR reaction was conducted using primers Af and Ar for

assemblage A and Bf and Br for assemblage B (Table 1). These

primers are designed to amplify a 332-bp and a 400-bp fragment

within the tpi locus of assemblages A and B, respectively. The

secondary PCR was accomplished in 50 µL volumes with 25

µL of 2 × Taq DNA Polymerase Master Mix RED (Amplicon

III, Copenhagen, Denmark), 1–2 µL of the first PCR product

as template DNA, and 0.2µM of each primer (assemblage A)

or 0.4µM (assemblage B). The amplification strategy consisted

of an initial denaturation step at 95◦C for 5min, 35 cycles at

94◦C for 45 s, 64◦C (assemblage A) or 62◦C (assemblage B) for

45 s, 72◦C for 60 s, followed by a final extension at 72◦ C for 10

min (36).

A 511-bp fragment within the bg gene was amplified using

external and internal forward and reverse primers G7, G759,

BG511F, and BG511R (Table 1) (34, 35). The primary and

secondary PCR reactions were performed in 50 µL volume,

containing 25 µL of 2× Taq DNA Polymerase Master Mix RED

(Amplicon III, Copenhagen, Denmark), 0.2µM of each primer,

and 2 µL of template DNA. The amplification scheme consisted

of an initial denaturation step at 95◦C for 5min, 35 cycles at

95◦C for 30 s, 65◦C for 30 s (55◦C for secondary PCR), 72◦C for

30 s, and a final extension at 72◦C for 7 min (36).

Semi-nested PCR amplification of the gdh

locus

A 432-bp fragment of the gdh gene was amplified using

external forward and reverse primers GDHeF and GDHiR and

internal forward primer GDHiF and reverse primer GDHiR

(Table 1) (33). The primary and secondary PCR reactions were

performed in 50 µL volume, containing 25 µL of 2 × Taq

DNA Polymerase Master Mix RED (Amplicon III, Copenhagen,

Denmark), 0.5µM of each primer, and 2 µL of template DNA.

The amplification scheme consisted of an initial step at 94◦C for

3min, 1 cycle at 94◦C for 2min, 61◦C for 1min, and 68◦C for

2min, followed by 30 amplification cycles at 94◦C for 30 s, 61◦C

for 20 s, 68◦C for 20 s and a final extension at 68◦C for 7min.

The secondary PCR amplification consisted of an initial step at

94◦C for 3min, 1 cycle at 94◦C for 2min, 60◦C for 1min, and

65◦C for 2min, followed by 15 amplification cycles at 94◦C for

30 s, 60◦C for 20 s, 65◦C for 20 s with a final extension at 65◦ C

for 7 min.

All PCR reactions were performed using a Gene Atlas

thermocycler (Astec Co., Ltd, Fukuoka, Japan). The DNA

obtained from a Giardia reference strain (ATCC
R©

Number,

30888TM) and sterile distilled nuclease-free water were included

as positive and negative controls, respectively. The PCR

products were fractionated on a 1.5% (W/V) agarose gel
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TABLE 1 Primer sequences and target genes used for molecular identification of Giardia duodenalis assemblages and multilocus sequence

genotyping.

Target gene Nested PCR primer designation and nucleotide sequences (5′-3′) Amplicon size (bp) References

External primers Internal primers

tpi *AL3543: AAATIATGCCTGCTCGTCG AL3544: CCCTTCATCGGIGGTAACTT 530 (30)

AL3546: CAAACCTTITCCGCAAACC AL3545: GTGGCCACCACICCCGTGCC

tpi** Af: CGCCGTACACCTGTCA 332 (31, 32)

AL3543: AAATIATGCCTGCTCGTCG Ar: AGCAATGACAACCTCCTTCC

AL3546: CAAACCTTITCCGCAAACC Bf: GTTGTTGTTGCTCCCTCCTTT 400

Br: CCGGCTCATAGGCAATTACA

gdh GDHeF: TCAACGTYAAYCGYGGYTTCCGT GDHiF: CAGTACAACTCYGCTCTCGG 432 (33)

GDHiR: GTTRTCCTTGCACATCTCC GDHiR: GTTRTCCTTGCACATCTCC

β-giardin G7: AAGCCCGACGACCTCACCCGCAGTGC BG511F: GAACGAACGAGATCGAGGTCCG 511 (34, 35)

G759: GAGGCCGCCCTGGATCTTCGAGACGAC BG511R: CTCGACGAGCTTCGTGTT

*I, Inosine binds to all the four bases; **tpi A and B assemblage primers, primers Af and Ar amplify assemblage A and Bf and Br amplify assemblage B.

(SinaClon, Tehran, Iran) in Tris-acetate-EDTA (TAE) buffer,

stained with ethidium bromide (0.05 mg/mL), and were

visualized under UV illumination (GeneFlash, Syngene Bio-

Imaging, Cambridge, UK).

Sequence and phylogenetic analysis

The nested- or semi-nested PCR products for each

locus were excised and gel-purified using a MinElute Gel

Extraction Kit (Qiagen, Hilden, Germany) and were subjected

to sequence analysis in both directions (Macrogen, Korea).

The DNA sequences were viewed and read by the CHROMAS

software (Technelysium Pty Ltd., Queensland, Australia)

and further aligned and assembled with the DNASIS MAX

program (v. 3.0; Hitachi, Yokohama, Japan). The DNA

sequences were blasted (http://blast.ncbi.nlm.nih.gov) to

compare homology against DNA sequences deposited in

GenBank. The DNA sequences from the tpi, bg, and gdh

loci were combined to achieve concatenated sequence for

each G. duodenalis isolate successfully amplified at the three

loci (37).

The phylogenetic analysis was performed in MEGA X

(www.megasoftware.net) using the maximum likelihood (ML)

with evolutionary distances calculated by the best-fitting model

to describe a robust estimate of the evolutionary distances.

Models with the lowest Bayesian Information Criterion (BIC)

scores best describe the substitution pattern. In addition,

bootstrap analysis was performed with 1,000 replicates to

evaluate the reliability of clusters. The sequences obtained from

this study were deposited in the GenBank under the accession

numbers LC183913–LC183966, LC184067–LC184028, and

LC184423–LC184474 for tpi, bg, and gdh, respectively.

Statistical analysis

The demographics and the association between

symptomatic and a given G. duodenalis assemblages were

analyzed using SPSS 24.0 software (SPSS Inc., Chicago, IL,

USA), and data were presented with 95% confidence intervals.

Results

Giardia duodenalis assemblage
identification

The multilocus sequence analysis of 62 G. duodenalis-

positive fecal samples using the tpi, bg, and gdh genes identified

26 isolates as assemblage A (41.9%), and 27 isolates (43.5%)

as assemblage B, whereas nine G. duodenalis isolates (14.5%)

showed inconsistent assemblage classification, also referred to

as “discordant assemblages” (Table 2). Using primers targeting

the G. duodenalis tpi locus of both assemblages A and B, we

found 9 (14.5%) and 23 (37.1%) isolates as assemblages A and

B, respectively. However, 28 (45.2%) clinical samples harbored

both assemblages A and B (Tables 2, 3).

The amplification of the bg locus was successful in all 62

isolates (100%), whereas 54 (87.1%) and 52 (83.9%) of the

isolates were successfully amplified by targeting tpi, and gdh loci,

respectively. Consequently, 48 and 10 isolates were characterized

in three and two loci, respectively, and four isolates were only

amplified at the bg locus. The sequence analysis of the tpi and bg

genes identified 29 (53.7%) and 28 (45.2%) isolates as assemblage

A, and 25 (46.3%) and 34 (54.8%) isolates as assemblage B,

respectively. Consistently, the amplification of the gdh gene

identified 28 (53.8%) and 24 (46.2%) of G. duodenalis isolates

as assemblages A and B, respectively (Table 3).
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TABLE 2 Assemblages (subassemblage-subtype) A and B identification based on tpi, bg, and gdh loci and mixed A and B infections according to tpi A

and B assemblage-specific primers.

Isolate tpi bg gdh tpi-mixed Isolate tpi Bg gdh Tpi-mixed

IGT1 B (BIII/BIII-like) B (BIV-B3) B B IGT32 B (BIII) B (BIV) B A+B

IGT2 A (AII-A2) A (AII-A3) A (AII-A2) A+B IGT33 B (BIII-like) B (BIV) – B

IGT3 A (AII-A2) B (BIV-B3) – B IGT34 B (BIII/BIII-like) B (BIV) B B

IGT4 B B (BIV-B6) A (AII-A2) B IGT35 B (BIII) B (BIV-B3) B A+B

IGT5 A (AII-A2) B (BIV) – B IGT36 B (BIII) B (BIV) B B

IGT6 – B (BIV-B3) – B IGT37 A (AII-A2) A (AII-A3) A (AII-A2) A

IGT7 B (BIII) B (BIV) B A+B IGT38 – B (BIV) A (AII-A2) –

IGT8 A (AII-A2) A (AII-A2) A (AII-A2) A IGT39 A (AII-A2) A (AII-A3) A (AII-A2) A

IGT9 A (AII-A2) A (AII-A3) A (AII-A2) A IGT40 A (AII-A2) A (AII-A3) A (AII-A2) A

IGT10 B (BIII) B (BIV-B3) B A+B IGT41 A (AII-A2) A (AII-A2) A (AII-A2) A

IGT11 A (AII-A2) A (AII-A3) A (AII-A2) A+B IGT7H A (AII-A2) A A (AII-A2) A

IGT12 A (AII-A2) A (AII-A3) A (AII-A2) A+B IGR12 – B (BIV-B3) B B

IGT13 A (AII-A2) A (AII-A3) A (AII-A2) A+B IGT52 B (BIII) B (BIV) B (BIII) B

IGT14 A (AII-A2) A (AII-A3) A (AII-A2) A+B IGR81 A (AII-A2) A (AII-A3) A (AII-A2) A+B

IGT15 B (BIII/BIII-like) B (BIV) B B IGT93 B (BIII) A – B

IGT16 A (AII-A2) B (BIV) – B IGR101 B (BIII) B (BIV) B A+B

IGT17 B (BIII/BIII-like) B (BIV-B3) B A+B IGT110 B B (BIV) B (BIV-like) A+B

IGT18 B (BIII/BIII-like) B (BIV) B A+B IGT117 – A (AII-A3) – A+B

IGT19 A (AII-A2) A (AII-A2) A (AII-A2) A+B IGT143 A (AII-A2) A (AII-A3) A (AII-A2) A+B

IGT20 A (AII-A2) A (AII-A3) A (AII-A2) A IGT152 – B (BIV) – B

IGT21 A (AII-A2) A (AII-A3) A (AII-A2) A IGT164 B (BIII) B (BIV-B3) B (BIV-like) B

IGT22 A (AII-A2) A (AII-A3) A (AII-A2) A+B IGT165 A (AII-A2) B (BIV) – –

IGT23 B (BIII/BIII-like) B (BIV-B3) B (BIII-like) B IGT182 B (BIII) B (BIV) B (BIII) B

IGT24 B (BIII) B (BIV-B3) B B IGR197 B B (BIV) B (BIII) A+B

IGT25 A (AII-A2) A (AII-A3) A (AII-A2) A+B IGT213 – A (AII-A3) B (BIV-like) B

IGT26 A (AII-A2) A (AII-A3) A (AII-A2) A+B IGR287 A (AII-A2) A (AII-A3) A (AII-A2) A+B

IGT27 B (BIII) B (BIV-B3) B B IGA305 B (BIII) B (BIV) B (BIV) A+B

IGT28 B (BIII) B (BIV-B3) B B IGA340 A (AII-A2) A (AII-A3) A (AII-A2) A+B

IGT29 A (AII-A2) A (AII-A2) A (AII-A2) A+B IGR386 – B (BIV) A (AII-A2) A+B

IGT30 A (AII-A2) A (AII-A3) A (AII-A2) A+B IGA458 – B (BIV) – B

IGT31 A (AII-A2) A (AII-A2) A (AII-A2) A+B IGR519 B (BIII) B (BIV) B B

Discordant assemblage isolates are in bold. The dash (–) indicates no amplification.

TABLE 3 Identification of assemblages A and B based on tpi, bg, and

gdh loci, multilocus genotypes (MLGs) and mixed infection according

to tpi A and B assemblage-specific primers.

Genes Assemblages n (%) Total

A B A + B

tpi 29 (53.7) 25 (46.3) – 54 (87.1)

bg 28 (45.2) 34 (54.8) – 62 (100)

gdh 28 (53.8) 24 (46.2) – 52 (83.9)

MLGs 24 (52.2) 22 (47.8) – 46 (74.2)

tpi-mixed 9 (14.5) 23 (37.1) 28 (45.2) 60 (96.8)

The MLG typing of G. duodenalis isolates from

infected individuals without (n = 50) and with (n

= 12) clinical symptoms showed 21 (42.0%; 95% CI

29.4–55.8) and 22 (44.0%; 95% CI 31.2–57.7), and 7

(14.0%; 95% CI 7.0–26.2) of the asymptomatic individual

were infected with assemblages A, B, and discordant

assemblages, respectively. Furthermore, symptomatic

individuals were equally infected with assemblages A (5)

and B (5) (41.7%; 95% CI 19.3–68.0), while discordant

assemblages were detected in 2 (16.7%; 95% CI 4.7–44.8).

There was no statistical association between assemblages

and symptoms.
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FIGURE 1

The phylogenetic analysis of the tpi gene nucleotide sequences of Giardia duodenalis using the Maximum Likelihood (ML) method and Tamura

3-parameter model (38) (T92 + G + I). The analysis involved 23 nucleotide sequences: Nine representative nucleotide sequences of tpi retrieved

from this study (LC183913–LC183966) compared with 13 reference sequences of known assemblages from Genbank (indicated in bold) with

Giardia microti as an outgroup. The percentage of trees in which the associated taxa clustered together (achieved from 1000 replicates) is

shown next to the branches, only bootstrap values >50% are demonstrated. A discrete Gamma distribution was used to model evolutionary rate

di�erences among sites [5 categories (+G, parameter = 9.6789)]. The rate variation model allowed for some sites to be evolutionarily invariable

[(+I), 27.96% sites]. The scale bar represents substitutions per nucleotide. The final dataset contained 456 positions. Evolutionary analyses were

conducted in MEGA X (39).

Molecular characterization of G.
duodenalis isolates within assemblage A:
The sole occurrence of AII

Multiple sequence alignments and the phylogenetic tree

construction based on the tpi locus classified all 29 assemblage

A isolates as sub-assemblage AII, subtype A2 (AII/A2),

placing these isolates in a single cluster with AII/A2, as

evidenced by a strong bootstrap value (Figure 1). Furthermore,

the multiple alignments based on the tpi gene sequences

also identified three-nucleotide substitution patterns, where

27 isolates, as represented by IGT2 (LC183914), had a

100% homology with the AII reference sequences (U57897,

KJ888993). In comparison, two isolates demonstrated a single

nucleotide substitution at positions 536 (T→G) and 445 (G→A)

(Table 4).

As depicted in Figure 2, the phylogenetic analysis based on

the bg locus placed five isolates (representative: IGT8) in a

single cluster with sub-assemblage AII, subtype A2 (AII/A2),

whereas 18 isolates (representative: IGT2) were classified

in a clade together with sub-assemblage AII, subtype A3

(AII/A3). The bg locus sequence analysis found six distinct

nucleotide substitution patterns, with two isolates displaying

sequence homology to subtype A3 with a single substitution

at the nucleotide position 460 (T→C) and one isolate with

two nucleotide substitutions at positions 303 (A→G) and

460 (T→C). Furthermore, two G. duodenalis assemblage A

isolates had multiple nucleotide substitutions and overlapping

Frontiers inMedicine 06 frontiersin.org

https://doi.org/10.3389/fmed.2022.976956
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


H
a
sh

e
m
i-H

a
fsh

e
ja
n
i
e
t
a
l.

1
0
.3
3
8
9
/fm

e
d
.2
0
2
2
.9
7
6
9
5
6

TABLE 4 Triosephosphate isomerase (tpi) multiple alignment sequence isolates in this study with reference sequences retrieved from GenBank, representing position of intra-genotypic substitutions in

assemblages and sub-assemblages of assemblages A and B.

Isolates/GenBank accession no. Nucleotide position from the start of the gene

Assemblage A 129 399 445 536

AI KR051228 T C G G

AI L02120 . . . T

AII-A2 U57897 C T . T

AII-A2 KJ888993 C T . T

AII-A2 IGT2, 5, 8, 9, 11–14, 16, 19–22, 25, 26, 30, 31, 37, 39–41,

7H, 143, 165; IGR81, 287; IGA340

C T . T

AII IGT3 C T . .

AII IGT29 C T A T

Assemblage B 39 91 141 159 162 165 168 210 269 304 393 402 420 429 504 534

BIII AY368165 G C C G G C C G G G T A T G C C

BIII AF069561 - . . . . . . . . A C . . . . –

BIV L02116 A T . . . T T A . A C . . . . T

BIV AF069560 A T . . . T T A . A C . . A . –

BIII/BIII-like IGT1, 15, 17, 18 . . . . . Y . . . A C . . . . .

B IGT4 A T T . A . . . . A C . . . T .

BIII IGT7 . . . . . . . . . R Y . . . . .

BIII IGT10 . . . . . . . . . A C . . . . T

BIII/BIII-like IGT23 R . . . R . . . . A C . . . . .

BIII IGT24 R . . R . . . . . A C . . . . .

BIII IGT27 A . . . . . . . . A C . . . . .

BIII IGT28, 32, 35, 36, 52, 93, 164, 182; IGR101; IGA305 . . . . . . . . . A C . . . . .

BIII-like IGT33 . . . . A . . . . A C . . . . .

BIII/BIII-like IGT34 . . . . R . . . . A C . . . . .

BIII IGT35 . . . . . . . . . A C . . . . .

B IGT110 A T . . . T . . A A C G . . . .

B IGR197 R . . . . T Y . . A C . . . . .

BIII IGR519 . . . . . . . . . A C . Y . . .

Accession numbers of the isolates used as sub-assemblage reference isolates are given in bold. Numbers in bold represent nucleotide substitutions from the start of the gene, which differentiate between sub-assemblages introduced by Weilinga and

Thompson (15) position and breakdown of intra-genotypic substitutions. Heterogeneous positions are indicated by standard IUPAC codes in bold. Dots denote nucleotide homology with the AI (KR051228) or BIII (AY368165) reference sequences.
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FIGURE 2

The phylogenetic analysis of the bg gene nucleotide sequences of Giardia duodenalis using the Maximum Likelihood method (ML) and Tamura

3-parameter model (38) (T92 + G + I). The analysis involved 30 nucleotide sequences: 14 representative nucleotide sequences of bg retrieved

from this study (LC183967–LC184028) compared with 16 reference sequences of known assemblages from Genbank which are indicated in

bold. The percentage of trees in which the associated taxa clustered together (achieved from 1,000 replicates) is shown next to the branches,

only bootstraps values >50% are demonstrated. A discrete Gamma distribution was used to model evolutionary rate di�erences among sites [5

categories (+G, parameter = 0.1294)]. The rate variation model allowed for some sites to be evolutionarily invariable [(+I), 42.59% sites]. The

scale bar represents substitutions per nucleotide. The final dataset included 506 positions. Evolutionary analyses were conducted in MEGA X (39).

nucleotide peaks in fifteen positions, preventing them from

being further characterized at the sub-assemblage/subtype level,

as shown in Table 5.

Based on the gdh locus sequence analysis, the phylogenetic

tree construction placed all 28 assemblage A isolates in a single

cluster with a sub-assemblage/subtype AII/A2 (L40510), with

a 99% bootstrap value (Figure 3). Furthermore, the multiple

alignments using gdh sequences also demonstrated that 27

isolates possessed a 100% identity with the A2 subtype (L40510)

of G. duodenalis, whereas an isolate (i.e., IGT4) showed a single

substitution (A→G) at the nucleotide position 562 (Table 6).

Molecular characterization of G.
duodenalis isolates within assemblage B

Multiple sequence alignments based on the tpi locus

amplification identified 25 isolates as assemblage B of G.
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TABLE 5 β -giardin (bg) multiple alignment sequence isolates in this study with reference sequences retrieved from GenBank, representing position of intra-genotypic substitutions in sub-assemblages

of assemblages A and B.

Isolates/GenBank accession no. Nucleotide position from the start of the gene

Assemblage A 177 204 216 273 285 303 333 357 393 417 432 435 460 468 498 516 534 541 564 567 606 624

AII-A2 AY072723 C A G G C A T G T T G T C T A C G G C G T G

AI-A1 X85958 . . . . . . . . . . . . . . . . . . . . C .

AII-A3 AY072724 . . . . . . . . . . . . T C . . . . . . . .

AII-A4 AY545642 . . . . . . . . . . . . . . . . . A . . C .

AII-A3 IGT2,11-14, 20-22, 25-26, 30, 37, 39-40, 117, 143; IGR81,287 . . . . . . . . . . . . T C . . . . . . . .

AII-A2 IGT8, 19, 29, 31, 41 . . . . . . . . . . . . . . . . . . . . . .

AII-A3 IGT9; IGA340 . . . . . . . . . . . . . C . . . . . . . .

AII-A3 IGT213 . . . . . G . . . . . . . C . . . . . . . .

A IGT93 T . R . . . Y . . Y A C . Y . . R . . S . S

A IGT7H . R . R Y R . Y Y Y A . T C M Y R . T S . .

Assemblage B 210 228 273 303 327 354 357 384 393 432 435 438 450 471 538 541 550 564 594 609 610 636 639 645 648

BIII-B2 AY072726 C A G G C C C C C A C C C C G G G T G C G G G C G

BIV-B3 AY072727 . . A . . . T . . . . . . . . . . . . . . . . . .

BIV-B1 AY072725 T . A . T T T . . . . T . . . . . . . . . . . . A

BIV-B4 AY072728 . G A . . T T . . . . . . . . . . C . T . . . T .

BIV-B5 AY647265 . . A . . T T . . . . . . T . . . . . . . . . . .

BIV-B6 AY647266 T . A . . . T . . . . . . . . . . . . . . . . . .

BIV-B3 IGT1,3,6,10,17,23,24,27,28,35,164; IGR12 . . A . . . T . . . . . . . . . . . . . . . . . .

BIV-B6 IGT4 T . A . . . T . . . . . . . . . . . . . . . . . .

BIV IGT5 T . A . . . T . . . . . . . . . . . . . A . . . .

BIV IGT7,15,16,34 . . A . . T T . . . . . . . . . . . . . . . . . .

BIV IGT18; IGR197 . . R . . . T . . . . . . . . . . . . . . . . . .

BIV IGT32 . . A . . . T . . . . . . . . . . R . . . . . . .

BIV IGT33 . . A . . . T . T . . . . . . . . . . . . . . . .

BIV IGT36, 38; IGR101,386 T . A . . T T . . . . . . . . . . . . . . . . . .

BIV IGT52 . G A . . . T . . . . . . . . . . . . . . . . . .

BIV IGT110; IGA305 T . A . . T T . . . . . . . . . . . A . . . . . .

BIV IGT152 . . R . . . T . . . . . . . T C C . . . . . . . .

BIV IGT165 Y . R R . T K T T . . . . . . . . . . . . . . . .

BIV IGT182 . . A . . T T T T G T . . . . . . . . . . . . . .

BIV IGA458 . . A . . . T . . . . . T . . . . . . . . . . . .

BIV IGR519 . . R . . . T . . . . . . . . . . . . . . A T . .

Accession numbers of the isolates used as sub-assemblage reference isolates are included in bold. Numbers in bold represent nucleotide substitutions from the start of the gene, which differentiate between sub-assemblages introduced by Weilinga

and Thompson and Cacciò et al. (15, 17) position and breakdown of intra-genotypic substitutions. Heterogeneous positions are indicated by standard IUPAC codes in bold. Dots indicate nucleotide identity to the AII (AY072723) or BIII (AY072726)

reference sequences.
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FIGURE 3

The phylogenetic analysis of the gdh gene nucleotide sequences of Giardia duodenalis using the Maximum Likelihood method and Tamura

3-parameter model (38) (T92 + G + I model). This analysis involved 29 nucleotide sequences: Nine representative nucleotide sequences of gdh

retrieved from this study (LC184423–LC184474) compared with 19 reference sequences of known assemblages from Genbank (indicated in

bold) with Giardia ardeae as an outgroup. The percentage of trees in which the associated taxa clustered together (achieved from 1,000

replicates) is shown next to the branches, only bootstraps values >50% are demonstrated. A discrete Gamma distribution was used to model

evolutionary rate di�erences among sites [5 categories (+G, parameter = 0.4823)]. The rate variation model allowed for some sites to be

evolutionarily invariable [(+I), 36.49% sites]. The scale bar represents substitutions per nucleotide. A total of 433 positions were evaluated in the

final dataset. Evolutionary analyses were conducted in MEGA X (39).

duodenalis, representing 14 distinct nucleotide substitution

patterns (Table 4). Fifteen isolates (15/25) were characterized

as sub-assemblage BIII, of which 10 isolates had a 100%

identity with the reference sequence AF069561. Moreover, two

isolates showed a single nucleotide substitution at positions 534

(IGT10) and 39 (IGT27), which were not in the sub-assemblage-

defining positions (hotspot sites) (15). Sequences of 10 isolates

(10/25, 40%) presented overlapping nucleotide peaks in eight

positions. Only two were in hotspot sites, so double peaks did

not interfere with the characterization of sub-assemblage BIII

in three isolates. The comparative sequence analysis between

14 distinct nucleotide substitution patterns and the reference

sequences representing BIII and BIV categorized one isolate

as BIII-like, and six isolates showed overlapping nucleotide
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TABLE 6 Glutamate dehydrogenase (gdh) multiple alignment sequence isolates in this study with reference sequences retrieved from GenBank, representing the position of intra-genotypic

substitutions in sub-assemblages of assemblages A and B.

Isolates/GenBank accession no. Nucleotide position from the start of the gene

Assemblage A 562 603 621

AII-A2 L40510 A C T

AI-A1 M84604 . T C

AII-A2 IGT2, 8-9, 11-14, 19-22, 25-26, 29-31, 37-41, 7H, 143; IGA340; IGR81, 287, 386 . . .

AII-A2 IGT4 G . .

Assemblage B 279 297 309 357 359 360 375 405 429 432 447 465 519 540 546 561 597 612 636 666

BIII AF069059 C C C T C G G G T C T C C C C C C G T T

BIII-like DQ090541 . T . C . . . . . . C . T . . . T A . -

BIV L40508 . . T . . . . . C . C . . T . T . A . .

BIV EU594666 . . T C . . . . C . C . . T . T . A . C

BIV-like AY826192 . . T C . . . . C . C . . T . . . . . .

B IGT1, IGT17 . . Y . . . . . Y . Y . . . Y . . . . .

B IGT7 . . Y . . . . . Y . . . . . . . . . . .

B IGT10 . . Y . . . . . Y . Y . Y Y . . . R . .

B IGT15 . . W C . . R R C . C . . . . . . A . .

B IGT18 . . W Y . . . . Y . Y . . Y . . . A . C

BIII-like IGT23 . . T . . . . . . . . . . . . . . . . C

BIII IGT24 . . Y . . . . . . . . . . . . . . . . C

BIII IGT27 . . Y . . . . . . . . . . . . . . . . .

B IGT28 . . Y . . . . . . . . . . . . . . R . C

B IGT32 . . . Y . . . . C Y . . Y . . . . A . C

B IGT34 . . T C . . . . Y . Y Y . . . . Y A . C

B IGT35 . . Y Y . . . . Y . Y . . . . . . A . C

B IGT36 . . T C . A . . Y . Y . . . . . . A . C

B IGR12 . . . . . . . . . . . . . . . . . R . C

BIII IGT52 . . . . . . . . . . . . . . . . . . . C

B IGR101 . . Y . . . . . . . Y . Y Y . . . R . C

BIV-like IGT110 . . T C . . . . C . C . . T . . . A C C

BIV-like IGT164 . . T . . . . . C . C . . T . . . . C C

BIII IGT182 . . . . . . . . . . . . T . . . . . . C

BIII IGR197 . . . . . . . . . . . . Y . Y . . . . C

BIV-like IGT213 . . T C T . . . C . C . . T . . A . C

BIV IGA305 T . T C . . . . C . C . . T . T T A . C

B IGR519 . . . Y . . . . . . . . . . . . . R . C

Accession numbers of the isolates used as sub-assemblage reference isolates are included in bold. Numbers in bold represent nucleotide substitutions from the start of the gene, which differentiate between sub-assemblages introduced by Weilinga and

Thompson (15) position and breakdown of intra-genotypic substitutions. Heterogeneous positions are indicated by standard IUPAC codes in bold. Dots indicate nucleotide identity to the AII (L40510) or BIII (AF069059) reference sequences.
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TABLE 7 Multilocus genotyping (MLG) and subtypes in Giardia duodenalis assemblage A–positive of Iranian isolates according to sequencing data

from tpi (triosephosphate isomerase), bg (β -giardin), and gdh (glutamate dehydrogenase) loci.

MLG Subtype No. of isolates

(isolate code)

GenBank accession no

tpi bg gdh tpi bg gdh

AII-1 A2 A2 A2 4 (IGT8, 19, 31, 41) U57897, LC183919,

LC183930, LC183942,

LC183951

AY072723, LC183974,

LC183985, LC183997,

LC184007

L40510, AY178737,

LC184427, LC184437,

LC184449, LC184458

AII-1N A2n A2 A2 1 (IGT29) LC183940 AY072723, LC183995 L40510, AY178737,

LC184447

AII-5 A2 A3 A2 17 (IGT2, 11–14,

20–22, 25-26, 30,

37, 39–40, 143;

IGR81, 287)

U57897, LC183914,

LC183922–5,

LC183931–3,

LC183936–7, LC183941,

LC183948, LC183949–50,

LC183958, LC183954,

LC183963

AY072724, LC183968,

LC183977–80,

LC183986–8,

LC183991–2, LC183996,

LC184003, LC184005–6,

LC184016, LC184011,

LC184023

L40510, AY178737,

LC184424, LC184430–3,

LC184438–40,

LC184443–4, LC184448,

LC184454, LC184456–7,

LC184465, LC184462,

LC184470

AII-5* A2 A3* A2 2 (IGT9, IGA340) U57897, LC183920,

LC183965

KC313948, LC183975,

LC184025

L40510, AY178737,

LC184428, LC184472

Superscript n indicates a novel nucleotide sequence in A2. *Indicates the nucleotide substitution in the A3 sequence.

peaks at one or two positions could classify the isolates as

BIII/BIII-like of G. duodenalis. Further characterization of the

remaining three isolates initially identified as assemblage B was

not attainable at sub-assemblage levels (Table 4). As shown in

Figure 1, the phylogenetic analysis showed the monophyletic

group of assemblage B with bootstrap support of 100%.

Multiple sequence alignments based on the bg locus

confirmed that all 34 isolates initially identified as assemblage

B belonged to the BIV sub-assemblage of G. duodenalis,

representing a total of 15 nucleotide sequences patterns

(Table 5). In addition, two nucleotide substitution patterns

representing 12 isolates (i.e., IGT1) and one isolate (IGT4)

showed a 100% identity with the B3 (AY072727) and B6

(AY647266) subtype reference sequences of G. duodenalis,

respectively. Sequences of six isolates (6/34, 17.6%) presenting

overlapping nucleotide peaks in five positions were not in

hotspot sites, so double peaks did not interfere characterization

of sub-assemblage BIV. The nucleotide heterogeneity and

genotype characterization of all 34 isolates are detailed

in Table 5. The phylogenetic tree construction based on

the bg locus clustered all assemblage B isolates of G.

duodenalis in a single clade, with bootstrap support of 88%

(Figure 2).

Further sequence alignment based on the gdh locus

amplification identified 23 nucleotide substitution patterns,

representing 24 assemblage B G. duodenlais isolates (Table 6).

Nucleotide sequences of 17 isolates (17/24, 70.8%) presenting

double nucleotide peaks in 13 positions mostly were in hotspot

sites. Ten isolates were classified at sub-assemblage levels,

whereas fourteen isolates exhibited nucleotide substitutions or

ambiguous nucleotides at sub-assemblage–defining positions

and could not be further characterized at sub-assemblage

levels (Table 6). The phylogenetic analysis confirmed that the

assemblage B clinical isolates all clustered in a monophyletic

clade, supported by a 100% bootstrap value, as shown in

Figure 3.

Finally, the sub-assemblage classification of assemblage B

isolates by the three markers revealed inconsistent genotyping

results at the intra-assemblage level: assemblage B isolates were

tentatively classified as sub-assemblages BIII (tpi locus), BIV (bg

locus), and BIII or BIV (gdh locus) (Table 2).

Multilocus genotyping of G. duodenalis
isolates

Employing an MLST approach, forty-six G. duodenalis

isolates were successfully amplified, sequenced, and genotyped

using the tpi, bg, and gdh loci. The simultaneous sequence

analysis of the three loci (tpi + bg + gdh) were combined for

each isolate to obtain the corresponding concatenated sequences

(37). Further sequence alignment and phylogenetic analysis on

the 29 concatenated sequences with unambiguous (no double

peak) positions revealed that 24 G. duodenalis isolates were

assemblage A in four distinct haplotypes. Besides, five isolates

were assemblage B with five haplotypes (Table 7; Figure 4).

The phylogenetic tree construction using obtained concatenated

sequences showed that those clinical isolates initially identified

as assemblage A or assemblage B of G. duodenalis clustered

in two monophyletic branches with robust bootstrap support
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FIGURE 4

The phylogenetic analysis of the concatenated tpi, bg, and gdh nucleotide sequences of Giardia duodenalis using the maximum likelihood

method (ML) and Tamura 3-parameter model (38) (T92 + G + I). The analysis involved 40 nucleotide sequences: 29 concatenated (tpi + bg +

gdh) nucleotide sequences retrieved from this study compared with 11 known multilocus genotype reference sequences reported in previous

studies (17, 40, 41) are indicated in bold. The red-filled square represents the new MLG of assemblage A reported in this study and the blue-filled

circles indicate the one nucleotide substitution in A3 compared with the AII-5 MLG of assemblage A based on the modified numerical MLG

reviewed in Cai et al. (4). The final dataset contained 1,395 positions. The percentage of trees in which the associated taxa clustered together

(achieved from 1,000 replicates) is shown next to the branches, only bootstraps values >50% are demonstrated. A discrete Gamma distribution

was used to model evolutionary rate di�erences among sites [5 categories (+G, parameter = 0.3229)]. The rate variation model allowed for

some sites to be evolutionarily invariable [(+I), 37.78% sites]. The scale bar represents substitutions per nucleotide. Evolutionary analyses were

conducted in MEGA X (39).

of 100%, being completely separated from each other and the

host-specific assemblages C to G (Figure 4). Moreover, 24 G.

duodenalis isolates initially identified as assemblage A were

further classified into four MLGs (Table 7; Figure 4). As a result,

we identified four isolates as MLG AII-1, profile A2/A2/A2,

and 17 isolates as MLG AII-5, profile A2/A3/A2. Furthermore,
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two isolates were referred to as MLG AII-5, which showed one

nucleotide substitution compared with AY072724 (4, 40). These

twoMLGs have been previously reported (3, 4, 17). Interestingly,

we identified one novel MLG for assemblage A isolates, whose

MLG could not be classified based on previously-proposed

nomenclature (4, 17, 41) (Table 7). More specifically, a single

isolate (IGT29) was designated as MLG AII-1N, (Table 7). No

further definite classification of assemblage B isolates based on

identified MLGs was not possible, since additional information

on the nomenclature of assemblage B MLGs is not currently

available (Figure 4).

Discussion

The multilocus sequence typing (MLST) of cyst-positive

Giardia isolates from infected individuals in Tehran was

performed to classify assemblage and inter-and intra-assemblage

genetic diversity of human G. duodenalis in Tehran, Iran, based

on tpi, bg, and gdh genes. We identified one new MLG of

assemblage A.

To the best of our knowledge, this is the first study conducted

on G. duodenalis-infected individuals in Tehran, Iran, using

MLST. However, the overwhelming majority of studies in Iran

have reported the molecular characterization of G. duodenalis

isolates based on the analysis of one locus (21–26, 42, 43) or two

loci of gdh and tpi (44–46) or gdh and bg (47). TheMLG data was

reported for two Giardia isolates in the only multilocus analysis

in southwestern Iran (48).

Multilocus sequencing results of tpi, bg, and gdh genes

showed G. duodenalis-infected individuals in Tehran to be

infected with assemblages A and B, agreeing with reports of

human infection worldwide [reviewed in Feng and Xiao (3)].

Furthermore, assemblages A and B occurred at equal rates,

similar to a Giardia MLG study performed in Malaysia (36).

Although Ryan and Cacciò (7) reported that assemblage B is

more prevalent than A in humans worldwide, the predominance

of assemblage A was reported in previous studies in Iran (21,

22, 25, 47), Turkey (49), Iraq (50), Syria (51), Saudi-Arabia (52),

Egypt (53), Thailand (54), Italy (34), the Czech Republic (55),

and Ethiopia (56). The disparities might reflect geographical

distribution, study populations and differing molecular tools

and genes used, as the effect of loci was evident in the results of

assemblage B in bg (∼55%, 34/62) compared with the tpi (∼46%,

25/54) and gdh (∼46%, 24/52) genes in our study (Table 3).

Moreover, the amplification rate of these genetic loci differs,

as about 60% of bg and tpi genes and 40–60% of gdh genes

can be detected by most primers (3), possibly explaining the

different rates of amplification of bg (100%), tpi (87.1%), and gdh

(83.9%) observed in this study. These findings are in agreement

with previous reports (3, 36). Although the majority of our

isolates (77.4%) were consistent assemblage classification in

three loci, 14.5% showed discordant assemblage typing, which

was in agreement with previous studies on human and animal

isolates (3, 36, 57, 58). As Cacciò and Ryan (16) suggested,

this phenomenon might result from mixed infections in fecal

samples or gene exchange between assemblages, also known as

allelic sequence heterozygosity (ASH). A high level of ASH is

reported in Giardia parasites, which have a tetraploid genome

resulting from being a binucleated organism. Furthermore, the

different levels of ASH have evaluated among G. duodenalis

assemblages in which the ASH degree in assemblage B is about

10-fold higher than assemblage A isolates. On the other hand, it

is usually challenging to distinguish between a high level of ASH

or mixed infection when the DNA of cysts retrieved from fecal

samples is typing (37).

Mixed assemblage infections have been commonly reported

in humans and animals (17, 32, 58), and assemblage-specific

PCR assays provide evidence that the prevalence of mixed

assemblage infections is high in clinical specimens (32, 36). In

this study, tpi assemblage-specific PCR assays showed a high

prevalence (45.2%) of mixed infection of A and B assemblage

in Tehran isolates, but less than reported in Malaysia (64%)

(36), although greater than in Belgium (32.4%) (32) using the

same primers. Co-infection by assemblage A and B has been

previously reported in Iran based on PCR-RFLP of the gdh locus

(21, 25, 43, 45).

Consistent with previously global reports (2, 4), we

found that genotyping of assemblage A revealed low genetic

polymorphism. Furthermore, AII was the only sub-assemblage

identified with the greatest variation at the bg locus, followed

by tpi and gdh, which could be reflecting the presence of double

peak nucleotide positions in two assemblage A isolates at the

bg locus. This finding contrasts with previous studies reporting

the greatest variability in the tpi gene and lowest in the bg gene

(15, 17). However, it agrees with Wegayehu et al. (59), who

observed variation at the bg locus. AII, with the predominant

subtype A2, is considered the most prevalent sub-assemblage

in humans, whereas AI and AIII sub-assemblages are rarely

reported [reviewed in (2, 3, 7)]. Identifying sub-assemblage

AII, subtype A2 in the examined assemblage A isolates at the

three loci, which is rarely found in other animals, suggests the

potential of human-to-human transmission in the population

studied. These results support previous findings of AII in the

gdh locus that indicate potential anthroponotic transmission

of Giardia in Tehran (21), Shiraz (22, 43), and Kashan (25).

However, validating this hypothesis requires extensivemolecular

studies of Giardia isolates in animals and the environment, as

well as considering the infection risk factors.

Higher genetic polymorphism of G. duodenalis in

assemblage B than in A observed at the bg, tpi, and gdh loci

in this study are consistent with previous reports (37, 41, 59–

61). Furthermore, the higher genetic heterogeneity in those

isolates representing the assemblage B of G. duodenalis was

predominantly noticeable at the gdh locus (70.8%), followed

by the tpi (40.0%) and bg (17.4%) loci which are in agreement
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with prior studies (17, 59). However, the finding contrasts

with earlier observations (15), showing tpi to be the most

polymorphic locus, with fewer polymorphisms observed in

bg and gdh loci. Geurden et al. (32) reported high diversity

at the bg locus and less at gdh and lowest at tpi, while Lecová

et al. (55) reported the highest gdh followed by bg and tpi.

These seemingly contradictory results can be potentially further

explained by the differential selective pressures that ultimately

determine the extent to which a given gene exhibits the genetic

polymorphism. In contrast to assemblage A, subgrouping of

assemblage B is not supported by phylogenetic analyses of

nucleotide sequences of current genotyping loci (2, 3, 14).

Sub-assemblage determination was not possible among all

assemblage B isolates due to high nucleotide polymorphism

with the heterogeneous nucleotide in the sequence, as has

been reported (14, 41, 60). Inconsistency among the three

markers in sub-assemblage B isolates was observed in this

study as well as in earlier reports (32, 41, 55, 59, 62). This

finding may reflect differences among the loci (59) or mixed

infections with different sub-assemblages (37) or ASH

(4, 7, 37).

To resolve the discrepancies among genetic markers, MLST

of Giardia-positive samples was performed by combining the

sequencing data of tpi, bg, and gdh loci, according to Cacciò et al.

(17). As a result, the concatenated sequences of 24A assemblages

were classified into three MLGs: two (AII-1 and AII-5) MLGs

frequently reported throughout the world (4, 17, 41, 55) and one

novel (AII-1N) MLG, with one SNP in subtype A2 tpi locus,

considering a single nucleotide mutation sufficient to designate

a new subtype (16, 41, 63, 64). Therefore, since 2008, when

Cacciò et al. (17) proposed a genotyping nomenclature system

based on MLG analysis of the tpi, bg, and gdh loci, new MLGs

have frequently been identified based on different combinations

of tpi, bg, and gdh (4, 41, 55, 64). However, the presence of

highly overlapping nucleotide peaks in the sequencing profiles

and the broad genetic variability among and within the three

target genetic loci made classifying assemblage B isolates in

nominated MLGs impossible. It has been proposed that the

high sequence variability and double peaks are due to the

high degrees of ASH, genetic recombination through cryptic

sex involving two nuclei of Giardia, true mixed infections, or

a combination of those factors (4, 37, 59, 65). Therefore, as

mentioned (3, 7, 37), MLST is useful for the typing of assemblage

A of G. duodenalis, although MLGs grouping of assemblage

B is more complex as a result of its high inter-and intra-

sequence variability. In addition, as shown in the concatenated

phylogenetic tree (Figure 4), the MLST is a practical tool for

separating A and B isolates from each other and host-specific

assemblages (C–G) and constructs host-specific clusters with

high bootstrap support. Therefore, applying MLST allowed us

to characterize G. duodenalis isolates circulating in Tehran and

identify their genetic diversity.

The AII sub-assemblage is mainly reported in humans,

considering that human and non-human primates are the

predominant hosts of assemblage B and is much less frequent

in wildlife and dogs (4, 7). Our identification of anthroponotic

assemblages and sub-assemblages (B and AII) of G. duodenalis

suggest that humans are likely a potential source of infection

and person-to-person transmission probably occurs in Tehran.

However, the main limitation of this hypothesis is the

limited data on non-human giardiasis in Iran. To address

this issue, comprehensive molecular studies to determine

the genotype/subtype of Giardia infection of humans and

companion and livestock animals that cohabit or occur in

the same location, as well as environmental G. duodenalis

isolates, are essential. Moreover, typing of assemblage B isolates

should be performed separately using the MLST scheme

with the newly identified best-performing genes developed in

recent years to shed light on the transmission cycle of this

mysterious parasite.

Conclusions

Assemblages A and B are equally represented in G.

duodenalis-infected individuals in the current study. The

multilocus sequence analysis reveals genetic diversity in both

assemblages and novel MLG of assemblage A. However, the

lack of a solid consensus around the nomenclature of genetic

variants within the assemblage B of G. duodenalis at the sub-

assemblage levels is challenging. The multilocus sequencing is

useful for typing assemblage A and discriminating assemblages

of G. duodenalis. Applying MLST also provides insight into

the genetic diversity of G. duodenalis isolates. Our findings

suggest that G. duodenalis is potentially transmitted via a

person-to-person route in Tehran, although further MLST of

Giardia isolates from humans, companion animals, livestock,

and the environment is recommended to elucidate the mode

of transmission.
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