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Emerging prediction methods
for early diagnosis of necrotizing
enterocolitis

Siyuan Wu, Sijia Di, Tianjing Liu* and Yongyan Shi*

Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China

Necrotizing enterocolitis (NEC) is a life-threatening disease of the digestive

system that occurs in the neonatal period. NEC is di�cult to diagnose early and

the prognosis is poor. Previous studies have reported that abnormalities can be

detected before the presentation of clinical symptoms. Based on an analysis of

literature related to the early prediction of NEC, we provide a detailed review

on the early prediction and diagnosis methods of NEC, including ultrasound,

near-infrared spectroscopy, biomarkers, and intestinal microbiota. This review

aimed to provide a reference for further research and clinical practice.
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Introduction

Necrotizing enterocolitis (NEC) is a life-threatening digestive system disease that

occurs in the neonatal period. The incidence of NEC in neonates ranged from 2% to

7%, and the mortality rate was up to 21.9–38% (1). It is one of the leading causes

of death in neonates, especially preterm infants. NEC is also associated with long-

term complications, such as intestinal adhesion stenosis, short bowel syndrome, and

developmental sensory and motor deficits (2, 3).

Abdominal X-ray is the most common diagnostic tool for NEC, but the disease is

already in the progression stage by the time when any manifestation can be detected in

the X-ray. This, however, seems late. Since the onset of NEC is occult and early clinical

manifestations are not specific, early detection of NEC is challenging for clinicians.

Since immature intestinal barrier function, hypoxia-ischemia, and flora imbalance are

involved in the occurrence and development of NEC (4, 5), it might be feasible to detect

NEC from those aspects, by utilizing ultrasound, near-infrared spectroscopy (NIRS),

biomarker monitoring, and intestinal microbiota diversity. This article reviews the tools

and markers that are potential for predicting or diagnosing NEC at an earlier stage

(Figure 1).

Ultrasound

In recent years, ultrasound has been widely used in the diagnosis and monitoring of

NEC (6). It can detect NEC-related symptoms at the early stage (7), with advantages such

as portability, non-invasiveness, and real-time result. NEC patients show portal venous
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gas, pneumatosis intestinalis, intestinal hypoperfusion, focal

fluid collection, and free intraperitoneal gas during ultrasound

examination (8–10).

Studies have shown that abdominal ultrasound may predict

the occurrence of NEC by monitoring the blood flow of the

superior mesenteric artery (SMA). In a prospective study, Guang

et al. placed an ultrasonic probe under the xiphoid to monitor

the SMA in 104 newborns within 12 h after birth. The results

showed that the differential velocity [peak systolic velocity (PSV)

minus end-diastolic velocity (EDV)] of the SMA had a high

sensitivity (0.875) and specificity (0.604) for predicting NEC

with a cut-off value of 34.835 cm/s (11). This study suggests

that the increase in differential velocity may be a predictor of

NEC. Murdoch et al. found that the risk of NEC was positively

correlated with the SMA resistance index (PSV—EDV)/(PSV)

on the first day after birth, while the risk of NEC decreased

in neonates with an increased SMA end-diastolic blood flow

velocity (12). SMA blood flow in a rabbit model of NEC

displayed the same changes (13). In a case-control study, 62

newborns were examined by Doppler ultrasound; the results

showed that an SMA resistance index >0.75 and a pulsatility

index [(PSV—EDV)/mean velocity] >1.85 could distinguish the

NEC and control groups (14). Abnormal blood flow in the SMA

may induce intestinal ischemic injury, which can then lead to the

occurrence of NEC.

Contrast-enhanced ultrasound (CEUS) can be used to assess

intestinal perfusion and motor degradation. CEUS enhances

blood flow and tissue echo through contrast microbubbles.

When CEUS is performed to evaluate intestinal wall and SMA

perfusion, contrast agents are usually injected intravenously, but

there is no dose guideline at present (15). Studies have shown

that CEUS may be applied to many gastrointestinal diseases

(16). Since high-frequency oscillator impedes the detection of

intestinal perfusion by Doppler ultrasound, a case report used

CEUS to evaluate intestinal perfusion in children undergoing

high-frequency oscillator ventilation, which confirmed the

absence of intestinal perfusion. Subsequently, laparotomy

exploration revealed total intestinal necrosis, which indicated

that CEUS could be used when Doppler ultrasound failed to

evaluate blood perfusion (17).

NIRS

NIRS is a non-invasive tool to monitor tissue blood oxygen

(18). Animal studies have found that NIRS can detect instant

and persistent gastrointestinal hypoperfusion (19) and that

monitoring tissue oxygen saturation (rSO2) in infants by

NIRS is feasible (20). Therefore, NIRS may be able to predict

NEC through the continuous monitoring of intestinal and

cerebral oxygenation.

Studies have demonstrated impaired visceral oxygenation

before the onset of symptoms of NEC (21, 22), by placing the

sensors below the umbilicus or over the right lower abdomen.

The average splanchnic oxygen saturation of patients with NEC

during the first postnatal week was significantly lower than that

of non-NEC controls (23). Abdominal oxygen saturation ≤56%

has been suggested to be predictive of NEC, with a sensitivity of

86% and specificity of 64% (24).

Fractional tissue oxygen extraction (FTOE) reflects

the relationship between tissue oxygen supply and oxygen

consumption. FTOE is calculated based on the data measured

by NIRS: FTOE = (oxygen saturation—rSO2)/ oxygen

saturation. A study found that the intestinal FTOE of children

with NEC would increase 2 days before the onset of symptoms,

suggesting that FTOE may also be predictive of NEC (22).

Increased FTOE may be a compensatory response to hypoxia to

maintain aerobic metabolism (22, 25). Interestingly, Schat et al.

predicted abdominal diseases by monitoring brain oxygenation

and found that the prevalence of NEC in infants with cerebral

rSO2 <70% within 48 h after birth was significantly higher

than that in infants with cerebral rSO2 ≥70% [odds ratio (OR):

9.00] (22). Cerebral rSO2 is a marker of systemic perfusion, and

hypoxia-ischemia is closely related to the occurrence of NEC

(22, 26).

Currently, NIRS is mainly used to monitor brain oxygen

saturation in children, so NIRS algorithms are mostly based on

the brain and are not fully applicable to the abdomen (27). Since

there are differences in oxygenation in different parts of the

viscera, it is difficult to obtain accurate data (27, 28). Abdominal

oxygen saturation has more variation than that of the brain and

kidney (29), which also limits the clinical application of NIRS.

Biomarkers

Many studies have proposed diagnostic and predictive

biomarkers for NEC (Tables 1–3). Biomarkers are typically

obtained from serum, fecal, or urine samples. Therefore, they are

not affected by the preference or skills of the performers. Besides,

the tests will be very easy and non-invasive when fecal or urine

samples are used. However, most of them are not as specific

as ultrasound presentations. Different methods or essays may

result in diverse reference values that are impossible to integrate

into a universal reference. Therefore, more studies are needed

to investigate the markers for the prediction and early diagnosis

of NEC.

Calprotectin

Calprotectin belongs to the S100 family and is mainly

produced by neutrophils (61). It is involved in the innate

immune response by activating Toll-like receptors (62), which

participate in the pathogenesis of NEC. Therefore, some scholars

believe that calprotectin is a biomarker for the early prediction

of NEC (30, 31).
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FIGURE 1

Summary of the full text. The gray solid line represents the baseline level of healthy infants, and above, below, and after the solid line represents

the increase, decrease and change of markers, respectively. NEC, Necrotizing enterocolitis; SMA, Superior mesenteric artery; NIRS,

Near-infrared spectroscopy; FTOE, Fractional tissue oxygen extraction; CrSO2, Cerebral tissue oxygen saturation; S100A12, S 100 calcium

binding protein a 12; I-FABP, Intestinal fatty acid binding proteins; IAP activity, Intestinal alkaline phosphatase activity; SAA, Serum amyloid A;

CBG, Cytosolic β- glucosidase; DEGs, Di�erentially expressed genes; IAIP, Inter-alpha inhibitor proteins; AMC, Absolute monocyte counts.

Elevated fecal calprotectin in the early life of newborns may

be related to NEC (32). For preterm infants with a gestational

age ≤26 + 1 weeks, the sensitivity and specificity of fecal

calprotectin at 24 h before the onset of clinical symptoms

were 0.89 and 0.87, respectively (30). The fecal calprotectin

concentration of patients with NEC was significantly increased

by 2.1 times (63). A meta-analysis of ten studies showed that

the sensitivity, specificity, diagnostic odds ratio (DOR), and

area under the curve (AUC) for the early diagnosis by fecal

calprotectin were 0.86, 0.79, 34.78, and 0.92, respectively (33).

In addition, Thibault et al. reported that the combined regimen

of calprotectin and lipocalin-2 was more favorable for the

prediction of NEC within the first 10 days before the onset of

NEC than either marker independently (31).

There is some controversy on this. Some studies suggest

that fecal calprotectin has a large variation between individuals

(64). A prospective case-control study reported that there was

no statistical difference in calprotectin concentration between

the NEC group and the control group at the 6–8 days (P =

0.80), the 3–5 days (P = 0.80), and within 48 h (P = 0.80) before
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TABLE 1 Fecal biomarkers of NEC.

Biomarker References Subject (number) Sample Assay Predictive/diagnostic value

Calprotectin (30) Humans (206) Feces ELISA P

(31) Humans (132) Feces ELISA P

(32) Humans (120) Feces ELISA D

(33) Humans (568) Feces D

(34) Humans (110) Feces ELISA D

S100A12 (35) Humans (145) Feces ELISA P, D

IAP (36) Rats Tissue Colorimetric assay

(37) Humans (136) Feces Fluorometric detection D

ELISA, Enzyme-linked immunosorbent assay; P, Predictive value; D, Diagnostic value; S100A12, S 100 calcium binding protein a 12; IAP, Intestinal alkaline phosphatase.

TABLE 2 Urine biomarkers of NEC.

Biomarker References Subject (number) Sample Assay Predictive/diagnostic value

I-FABP (38) Humans (37) Urine ELISA D

(39) Humans (78) Urine, Blood ELISA D

(40) Humans (37) Urine, Blood ELISA D

(41) Humans (140) Urine ELISA P

(42) Humans (62) Urine ELISA P

(43) Humans (35) Urine ELISA

SAA (38) Humans (37) Urine ELISA D

(44) Humans (62) Urine ELISA D

(45) Humans (29) Urine ELISA D

I-FABP, Intestinal fatty acid binding proteins; ELISA, Enzyme-linked immunosorbent assay; D, Diagnostic value; P, Predictive value; SAA, Serum amyloid A.

NEC was suspected (64). Additionally, Goold et al. analyzed

two cut-off values of calprotectin for diagnosing NEC (226 and

247µg/g), both with low diagnostic efficiency (34). According

to the research above, fecal calprotectin remains to be further

explored to guide the early prediction and diagnosis of NEC.

S100A12

Human S100A12 up-regulates the expression of

inflammatory genes by interacting with Toll-like receptor

4 (65). It is also involved in ischemia-reperfusion injury through

the activation of ERK signaling (66), which is considered to

be involved in the pathogenesis of transfusion-related NEC. A

study found that the level of S100A12 in the feces of infants

with suspected NEC was higher than that of infants without

gastrointestinal diseases; the sensitivity, specificity, and positive

and negative predictive values of fecal S100A12 for NEC

detection were 70%, 68%, 37%, and 89%, respectively (35).

Intestinal alkaline phosphatase

IAP is expressed in the gastrointestinal tract and plays a role

in maintaining the homeostasis of the intestinal environment

(67). Animal experiments have shown that the IAP activity of

NEC pups was 0.18 U/mg, which was significantly lower than

that of healthy controls (0.57 U/mg). Furthermore, IAP activity

increases after the removal of NEC stressors (36). Heath et al.

observed similar results in human NEC patients and believed

that IAP could not only diagnose NEC but also predict the

severity of the disease (37). In this study, the fecal protein IAP

activity of children with severe NEC (characterized by radiologic

evidence of pneumatosis intestinalis and/or portal venous

gas) and suspected NEC (abnormal clinical and laboratory

findings without evidence of pneumatosis intestinalis or portal

venous gas) was 183(56-507) µmol/min/g and 355 (172–608)

µmol/min/g, respectively, and the accuracy of assessing severe

NEC by IAP activity was 0.76 (95% CI: 0.64–0.86; P <

0.001) (37).

Intestinal fatty acid binding proteins

Fatty acid binding proteins (FABPs) have the pleiotropic

function to maintain healthy tissue homeostasis and participate

in disease pathogenesis (68). I-FABP is a 15-kDa cytoplasmic

protein expressed mainly by intestinal cells located at the top of

the intestinal villi. This protein is released when the intestinal

tissue is ischemic or damaged. The I-FABP response to intestinal
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TABLE 3 Blood biomarkers of NEC.

Biomarker References Subject (number) Sample Assay Predictive/diagnostic value

I-FABP (39) Humans (78) Urine, Blood ELISA D

(40) Humans (37) Urine, Blood ELISA D

IAIP (46) Humans (51) Blood ELISA D

(47) Humans (53) Blood ELISA D

DEGs (48) Piglets (129) Blood qPCR D

(49) Rats Tissue RNA-Seq D

(50) / / D

(51) Humans (301) Blood Microarray, qPCR D

SAA (52) Humans (144) Blood Immunonephelometric method D

(53) Humans (154) Blood Immunoassay D

CBG (54) Rats Blood ELISA P, D

(55) Humans (82) Blood ELISA D

(56) Humans (205) Blood D

Surrogate markers of NETosis (57) Mice, humans Blood, tissue ELISA D

(58) Mice, humans (76,9) Blood Immunohistochemical staining D

AMC (59) Humans (326) Blood D

(60) Humans (105) Blood D

I-FABP, Intestinal fatty acid binding proteins; ELISA, Enzyme-linked immunosorbent assay; D, Diagnostic value; IAIP, Inter-alpha inhibitor proteins; DEGs, Differentially expressed genes;

qPCR, Quantitative polymerase chain reaction; RNA-Seq, RNA sequencing; SAA, Serum amyloid A; CBG, Cytosolic β- glucosidase; P, Predictive value; AMC, Absolute monocyte counts.

hypoperfusion is related to the pathogenesis of NEC (69).

Studies suggest that I-FABP levels in the urine and blood can

be used in the prediction and early diagnosis of NEC (38–

41).

Increased urinary I-FABP in infants is associated with

subsequent NEC (38). A cohort study showed that I-FABP

>13.3 ng/mL could predict NEC with 60% sensitivity and

78% specificity seven days before the onset of symptoms, and

I-FABP >13.9 ng/mL was found to have a 65% sensitivity

and 84% specificity within 3 days before NEC onset

(41). Urinary I-FABP/creatinine >10.2 pg/nmol had a

sensitivity of 100% and specificity of 95.6% 1 day before NEC

onset (42).

The urinary and plasma level of I-FABP in patients withNEC

was reported to be significantly higher than that in other infants

(40, 43). Schurink et al. determined that the cut-off values for

NEC diagnosis within 8 h after onset were 9 ng/mL (plasma I-

FABP) and 218 ng/mL (urinary I-FABP), and the corresponding

likelihood ratios were 5.6 and 5.1, respectively (40). FABP can

also help to predict the need for surgical treatment (39, 70, 71).

I-FABP distinguishes patients who need conservative treatment

from those that need surgical treatment in the early stage of

NEC with the cut-off values of 19 ng/mL (plasma I-FABP) and

232 ng/mL (urinary I-FABP) (40).

I-FABP is also a potential marker for distinguishing NEC

from sepsis. In a study of 42 infants, the I-FABP concentration

in patients with NEC is significantly higher than that in patients

with sepsis (72). Another study combines plasma I-FABP,

liver-type FABP (L-FABP), and intestinal trefoil factor as LIT

score (0–9) to differentiate NEC from sepsis. The LIT score of

children with NEC is significantly higher than that of children

with septicemia (P = 0.001) (73).

Although there have been many studies on I-FABP as an

early diagnostic and predictive marker of NEC, the cut-off value

for the diagnosis and staging of NEC has not been determined

due to the inconsistency of the studies. Therefore, multicenter

studies with larger sample sizes are needed to aid clinicians in

decision making.

Inter-alpha inhibitor proteins

IAIP has extensive anti-inflammatory activity and

participates in neutralizing extracellular histone cytotoxicity

(74). A prospective observational study of 34 newborns shows

that the plasma IAIP level in patients with NEC decreases (P

< 0.0001) (46). Shah et al. suggests that IAIP <207 mg/L has

a high diagnostic value for NEC (AUC: 0.98, sensitivity: 100%,

specificity: 88.2%). On this basis, IAIP can help differentiate

NEC from spontaneous intestinal perforation (47). However,

IAIP is not specific for predicting NEC as it also decreases

in the plasma of patients with sepsis (75). Stober et al. have

shown that IAIP can relieve endothelial inflammation in

sepsis and protect endothelial cells from damage caused by

activation of C5a (76), but there is no research on its effect

against NEC.
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Di�erentially expressed genes

Changes in gene expression of the whole blood are mainly

related to severe NEC, and their expression inmild NEC changes

slightly (48). Compared to normal controls, 53 circular RNAs

have been found to change in the NEC group (49). In recent

years, studies have identified some DEGs in infants with NEC.

The expression of micro RNA (miR)-223 and miR-451a is up-

regulated in patients with NEC at disease onset (50, 63) and

miR-223/nuclear factor I-A axis may play an important role in

the pathophysiology of NEC by aggravating inflammation and

tissue damage (77). A meta-analysis shows that miR-429/200a/b

and miR-141/200c clusters are poorly expressed in patients with

NEC. They can down-regulate target genes related to NEC,

and be used as potential biomarkers for early detection (50).

Furthermore, a prospective cohort study found that miR1290

might be used as a specific marker for the early diagnosis of

NEC (sensitivity: 0.83, specificity: 0.96, DOR: 127.50). It has high

diagnostic efficiency and can effectively distinguish NEC from

sepsis (51).

Serum amyloid A

SAA is mainly derived from hepatocytes. Its expression

increases rapidly in case of inflammatory response. Serum SAA

level increases significantly after infection, trauma, and other

stimulation (78).

In a study including 144 infants, the SAA level in blood

samples of NEC patients is significantly higher than that of

healthy controls (43.2 ± 47.5 mg/dl vs. 3.2 ± 3.4 mg/dl, P <

0.05) at the time of NEC diagnosis (52). SAA is more common

in predicting NEC together with other markers. A prospective

cohort study differentiates NEC from sepsis using apoSAA score,

which is calculated from plasma apolipoprotein C2 (apoC2) and

SAA; the results show that the apoSAA score is helpful in the

early diagnosis of NEC and the differentiation of NEC from

sepsis (53). A combination of liver FABP, I-FABP, and SAA may

indicate portal venous gas in NEC (38). However, Reisinger

et al. find that the combination of urinary SAA and I-FABP can

not improve the diagnostic accuracy of NEC compared with I-

FABP alone (44). Urinary SAA in the NEC surgery group is

significantly higher than that in the conservative group before

surgery (38). The cut-off value was 34.4 ng/mL (sensitivity: 83%;

specificity: 83%) (45). Therefore, SAA combined with other

markers is expected to promote the early diagnosis of NEC.

Cytosolic β-glucosidase

CBG is a member of the cellulase family, which is widely

distributed in nature and has also been detected in the human

body. CBG is a hydrolytic enzyme distributed in intestinal

epithelial cells. Animal experiments find that serum CBG is

significantly elevated in ischemic injury caused by arterial

occlusion or closed intestinal obstruction (79). Dimmitt et al.

measured the serum CBG activity in an NEC rat model and

found that serum CBG activity increased before the onset of

transmural injury, suggesting that CBGwasmeaningful for early

monitoring of intestinal ischemic injury (54). Subsequently, an

increase in serum CBG in neonates with NEC is also confirmed

(55). Serum CBG activity of NEC neonates is higher than that of

non-NEC neonates, and the cut-off value of 15.6 mU/mg may

distinguish neonates with NEC from healthy neonates at the

early stage (56). Therefore, CBG can provide potential evidence

for the early diagnosis of NEC.

Surrogate markers of NETosis

Neutrophils participate in the NEC inflammatory response

by phagocytosis, degranulation, or neutrophil extracellular traps

(NETs) (80). NETs occur in both human and mouse NEC tissue

(57). The formation of NETs is accompanied by the death of

neutrophils, known as NETosis (81). In recent years, studies

have shown that NETs play a role in the intestinal inflammatory

response containing NEC (58, 82–84). Vincent et al. report

that serum substitute markers, such as cfDNA and DNase of

NETosis may predict the occurrence of NEC in mouse models;

cfDNA and DNase increase significantly with the induction

time of the NEC model, and receiver operating curve analysis

shows that the cut-off value of cfDNA is 1,250 ng/mL, which

has a sensitivity and specificity of 100% for NEC (58). Serum

substitutes of NETosis are expected to become biomarkers for

the early diagnosis of NEC; however, the evidence is limited.

More studies establishing a relationship between NEC and

NETosis are still needed.

Absolute monocyte counts

Compared with the baseline value, the AMC of children with

NEC significantly decreased. In infants with feeding intolerance,

AMC decreases by more than 20%, and the sensitivity and

specificity for predicting NEC are 0.70 and 0.71, respectively

(59). AMC also differs at different stages of NEC. The AMC

of patients with NEC stage III decreases by 81.9%, which is

significantly lower than that of II-NEC (44.5%) (60). Thus, AMC

may be a potential biomarker for the early diagnosis and severity

assessment of NEC.

Microbiota

The normal intestinal flora resists pathogens and

participates in the intestinal immune response (85). Intestinal
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microflora disorders are present before and after NEC (86–88),

indicating that microbial communities are related to the

occurrence and development of NEC.

A study analyzes the fecal samples of children with NEC

using 16 s rRNA and metagenomic sequencing technology and

finds that the intestinal microbial diversity of children with

NEC decreases (87, 89). Hosfield et al. also demonstrate the

association between intestinal microbial diversity and NEC in

an animal model (86). In contrast, no difference in intestinal

microbial diversity is found in a case-control study of 32

newborns, possibly due to factors such as a small sample

size (90). Children with NEC not only have changes in

microbial diversity, but they also have significant changes in

the composition of the flora. The intestinal flora of healthy

infants consists mainly of Bifidobacterium (91). The relative

abundance of Bifidobacterium and Lactobacillus in patients

with NEC decreases (86, 87, 90, 92), whereas the abundance

of Escherichia and Klebsiella increases (86). Similar changes

also occur before the onset of NEC (88, 89, 92). Therefore,

monitoring neonatal intestinal microbiota may be a potential

method for the prediction of NEC. However, its application

is limited due to the significant differences in intestinal flora

composition among different regions (93).

Maternal milk affects the establishment of the early neonatal

intestinal microbiota (94). Human milk oligosaccharides are

important components that participate in the regulation of

intestinal microbiota by inhibiting pathogen adhesion, growth,

and reproduction in the intestinal tract (95). Masi et al.

analyzed 19 oligosaccharides of mother’s breast milk and

found that the concentration of disialyllacto-N-tetraose in

oligosaccharides of mother’s breast milk of children with NEC

decreased (P < 0.001). Univariate analysis shows that the

concentration of disialyllacto-N-tetraose is 241 nmol/mL, which

can distinguish NEC from non-NEC infants with an accuracy

of 91% (92). Another case-control study also supports this

conclusion and indicates that oligosaccharides are protective

factors against NEC.

Volatile organic compounds (VOCs) in the feces reflect the

composition of intestinal microflora and the interaction between

microbiota and the host. Fecal VOCs assessed by electronic

nose can be used to predict microbial composition (96). Fecal

VOC profiles change significantly in inflammatory bowel disease

(97) and colitis (98). In NEC experimental animals, fecal VOC

profiles are different from those of the control group (86).

Moreover, a multicentre prospective study reports that children

with NEC can be distinguished from the control group by fecal

VOC profiles at 2–3 days (AUC: 0.77 ± 0.21; sensitivity: 83%;

specificity: 75%) and 0–1 days (AUC: 0.99 ± 0.04; sensitivity:

89%; specificity: 89%) before the onset of clinical symptoms of

NEC (99). Wright et al. also suggest that VOCs can be detected

early before NEC occurs (100). Fecal VOC may be a promising

marker for the prediction of NEC.

Limitation

We only reviewed the prediction and early diagnosis of

NEC with a single tool, and did not discuss the combination of

tools. In addition, we have not conducted much analysis on the

applicability of each tool.

Summary and conclusion

Although there have been numerous attempts in the

literature to develop new techniques or summarize existing

regimens to predict the incidence of NEC or diagnose

NEC at a very early stage, there have been no established

regimen that can be universally accepted. Ultrasound and

NIRS mainly detect changes in blood flow and oxygenation,

which are helpful in the early prediction of NEC. Novel

biomarkers, including calprotectin and I-FABP show

great potential to become an independent or part of a

complex regimen. However, some other biomarkers are

still facing a long way from experimental studies to clinical

practice. The intestinal microbiota has been profoundly

investigated, but our current achievements still cannot

guarantee its wide application. Since the prediction and

timely diagnosis of early-stage NEC may significantly benefit

NEC victims, future investigations and co-operations are

still invaluable.

Method

Data for this review were identified by searches of PubMed,

we first searched through “diagnosis” and “necrotizing

enterocolitis” and screened out the literature related to the

early diagnosis of NEC through abstracts and rough reading

of the literature. Then we searched through “prediction” and

“necrotizing enterocolitis ” and screened out the literature

predicting NEC. Finally, we searched through “ultrasound,”

“near infrared spectroscopy,” “biomarkers,” “microbiota,”

“diagnosis,” “prediction” and “necrotizing enterocolitis”

and other related words were searched to avoid missing

relevant literature.
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