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Background: Regional anesthesia is increasingly used in acute postoperative

pain management. Ultrasound has been used to facilitate the performance

of the regional block, increase the percentage of successfully performed

procedures and reduce the complication rate. Artificial intelligence (AI) has

been studied in many medical disciplines with achieving high success,

especially in radiology. The purpose of this review was to review the evidence

on the application of artificial intelligence for optimization and interpretation of

the sonographic image, and visualization of needle advancement and injection

of local anesthetic.

Methods: To conduct this scoping review, we followed the PRISMA-S

guidelines.We included studies if theymet the following criteria: (1) Application

of Artificial intelligence-assisted in ultrasound-guided regional anesthesia;

(2) Any human subject (of any age), object (manikin), or animal; (3) Study

design: prospective, retrospective, RCTs; (4) Anymethod of regional anesthesia

(epidural, spinal anesthesia, peripheral nerves); (5) Any anatomical localization

of regional anesthesia (any nerve or plexus) (6) Any methods of artificial

intelligence; (7) Settings: Any healthcare settings (Medical centers, hospitals,

clinics, laboratories.

Results: The systematic searches identified 78 citations. After the removal of

the duplicates, 19 full-text articles were assessed; and 15 studies were eligible

for inclusion in the review.

Conclusions: AI solutions might be useful in anatomical landmark

identification, reducing or even avoiding possible complications. AI-guided

solutions can improve the optimization and interpretation of the sonographic

image, visualization of needle advancement, and injection of local anesthetic.

AI-guided solutions might improve the training process in UGRA. Although

significant progress has been made in the application of AI-guided UGRA,

randomized control trials are still missing.

KEYWORDS

artificial intelligence, ultrasound, regional anesthesia, ultrasound-guided regional
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Background

Regional anesthesia (RA) is increasingly used in pain

management for various surgical procedures. Ultrasound (US)

has been used to facilitate the performance of the regional block,

increase the percentage of successfully performed procedures

and reduce the complication rate. US rapidly gained popularity

among practitioners due to its portability, absence of radiation,

and the ability to track the performance of the procedure in a

real-time fashion (1). Other benefits of US in regional anesthesia

include direct visualization of nerves, blood vessels, muscles,

bones, tendons, faster sensory onset time, visualization of the

local anesthetic spread during injection, timely recognition

of maldistribution of local anesthetics, possible prevention of

complications (e.g., inadvertent intravascular injection, intra-

neuronal injection of local anesthetic), longer duration of the

block, possible avoidance of painful muscular contractions

during nerve stimulation in cases of fractures), possible

improvement of quality of block (2–7).

However, the application of ultrasound-guided regional

anesthesia is associated with several technical challenges,

which are especially prevalent in trainees and not experienced

clinicians. The performance of a block can be complicated

by the loss of the reflective signal between the needle and

probe, which decreases the needle visibility, especially if a deep

block is performed or a patient is overweight. Moreover, bone

or hyperechoic soft tissue along the needle trajectory may

worsen needle visibility. Therefore, clear needle localization is

challenging, especially if deep blocks are performed.

Artificial intelligence (AI) has been studied in many

medical disciplines with achieving high success, especially in

radiology (8). Since sonographic visualization is commonly

used in regional anesthesia, AI solutions might be useful

for practitioners in anatomical landmark identification and

reducing or avoiding possible complications such as injury

to the nerve, artery, vein, and puncture of the peritoneum,

pleura, internal organs, as well as local anesthetic systemic

toxicity. AI-guided solutions can improve the optimization and

interpretation of the sonographic image, and visualization of

needle advancement and injection of local anesthetic (3–7).

The purpose of this scoping review (SR) was to synthesize

and analyze the evidence on the application of artificial

intelligence for optimization and interpretation of the

sonographic image, and visualization of needle advancement

and injection of local anesthetic.

Methods

Protocol

To conduct this SR, we followed the PRISMA guidelines

during the design, implementation, and reporting of this review.

We followed the PICO items:

P (patient population): 1. Age 18 years of age and older;

I (intervention): Artificial intelligence-assisted in

ultrasound-guided regional anesthesia.

C (comparator): standard methods.

Participants/population: Patients undergoing surgery under

regional anesthesia.

Goals of the SR

1. To review and assess the value and performance of AI-

assisted UGRA in different anatomical regions and nerves;

2. Machine learning models and algorithms;

3. To assess the benefits of automatic target detection;

4. To assess risks, failures and limitations of the

AI-assisted UGRA.

Inclusion criteria

1) Application of Artificial intelligence-assisted in ultrasound-

guided regional anesthesia;

2) Any human subject (of any age), object (manikin), or animal.

3) Study design: prospective, retrospective, RCTs;

4) Any method of regional anesthesia (epidural, spinal

anesthesia, peripheral nerves);

5) Any anatomical localization of regional anesthesia (any nerve

or plexus).

6) Any methods of artificial intelligence;

7) Settings: Any healthcare settings (Medical centers, hospitals,

clinics, laboratories).

Exclusion criteria

1) Not enough data reported;

2) Out of inclusion criteria;

3) Application of AI other than anatomic landmark

identification and guidance in UGRA (e.g., for AI-based

prediction of the need for nerve blocks, AI for robotic nerve

blocks, prediction of response of regional anesthesia.

Literature search

Search strategy

Studies were identified by electronic search in PubMed,

Google Scholar, Embase, using the following search terms

“Artificial intelligence,” “Deep learning,” “Ultrasound,”

“Ultrasound-guided,” “Needle identification,” “Needle tracking,”

“Regional anesthesia,” “Peripheral nerve block.” Additionally,

we performed a manual search of the articles using the
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references from the published studies. Publications in English,

German and Russian languages were considered.

Data collection and extraction

The data were extracted into a standardized form. Two

authors independently screened the titles and abstracts for

eligibility. The following data were extracted: citation, author,

year, gender, study goals, sample size, types of surgery, nerve

block, the algorithm of AI, comparator, the purpose of AI,

benefits, risks and limitations of the study, model performance

data and conclusions.

Results

The systematic searches identified 78 citations. After the

removal of the duplicates, 19 full-text articles were assessed;

and 15 studies were eligible for inclusion in the review

(Supplementary Figure 1). The studies were conducted on

healthy subjects, parturients in labor or scheduled for cesarean

delivery, bovine/porcine lumbosacral, and bovine/porcine

lumbosacral spine phantoms.

Characteristics of study goals

The included studies aimed to assess the value of AI by the

following methods:

- Studying nerve structure and ultrasound image tracking (9);

- Assessing deep-learning performance for nerve tracking in

ultrasound images (10);

- Studying the accuracy of real-time (AI) -based anatomical

identification (11);

- Assessment of CNN-based framework for needle detection in

curvilinear 2D US (12);

- Evaluation of success rate of spinal anesthesia of AI-assisted

methods (13);

- Using AI for precise needle target localization (14);

- Identification of musculocutaneous, median, ulnar, and radial

nerve) and blood vessels (15);

- Assessment of the utility of ScanNav to identify structures,

teaching and learning UGRA, and increase operator

confidence (16);

- Assessment of UGRA expert perception of risks of the use of

ScanNav (risk of block failure, unwanted needle trauma (eg,

arteries, nerves, and pleura/peritoneum (16);

- Identification of the difference in accuracy between deep

learning (DL)-powered ultrasound guidance and regular

ultrasound images; the use of artificial intelligence to optimize

regional anesthesia puncture path; to identify the effectiveness

of ultrasound-guided imaging “scapular nerve block” surgical

pain of the fracture (17).

Anatomical region and the nerves

It was found that AI-assisted UGRA has the potential to

facilitate the identification of anatomical structures and assist

non-experts in locating the correct ultrasound anatomy to

perform the intervention. The previous reports highlighted the

apparent deficiencies in anatomical knowledge among junior

anesthesiologists (18). These deficiencies may be supported by

the assistance of ultrasound image interpretation. Therefore,

such assistive AI approaches could improve the probability of

successful interventions and reduce their risks (18).

Thus, artificial intelligence-assisted ultrasound-guided

target identification was used for the identification of the

following anatomical structures (nerves): musculocutaneous,

median, ulnar, and radial nerves, “interscalene-supraclavicular”

and “infraclavicular brachial plexus,” “axillary level brachial

plexus,” “erector spinae plane,” rectus sheath, “suprainguinal

fascia iliaca,” adductor canal, “popliteal sciatic nerve,”

“transverses abdominis plane,” anesthesia in the lower

vertebrae regions (sacrum, intervertebral gaps, and vertebral

bones), sciatic nerves, femoral nerve, subarachnoid and epidural

spaces, facet blocks, navigation of blood vessels during UGRA

(9–15, 18–21) (Table 1).

Machine learning models and algorithms

The goal of the included studies was to accurately identify

the target region (i.e., nerve block) on the ultrasound images in

real-time (4). Therefore, some machine-learning methods have

been proposed (Table 1) and their key techniques can be divided

into (1) anatomic region segmentation, (2) target detection (i.e.,

feature extraction), and 3) tracking algorithm (9–15, 18–21).

The U-net is a popular DNN framework to find the region

of interest by its fast and precise segmentation performance

(Table 2).

The feature extraction methods were divided into typical

hand-crafted features and CNN approaches. In general, the

hand-crafted feature is more suitable for the smaller size dataset,

while the CNN has the strength for more complex classification

problems with an automatic feature extraction in the end-to-end

framework. The SIFT, LBP, AMBP, HOG, and bag-of-features

are well-known hand-craft features and have shown promising

results in the US images (9, 21, 24).

The deep-learning models are less optimized with the

time complexity, and they predict the given sequential input

image independently. Therefore, the model performance is

highly sensitive to nerve disappearance due to artifact noise,

illumination, or occlusion. Tracking algorithms are one solution
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TABLE 1 Study and cohort information.

Author,

country, year

Study goal Study

population

(diagnosis)

Sample size

Gender

(males %)

Region of body studied

Bowness et al., 2021

(18)

Assess the AI anatomy identification Healthy

population

244 Interscalene-supraclavicular level brachial plexus block

Rectus sheath block

Axillary level brachial plexus

Erector spinae plane block

Suprainguinal fascia iliaca block

Adductor canal block

Popliteal level sciatic nerve block

Alkhatib et al., 2018,

France (9)

To study nerve structure and

ultrasound images tracking

– 10 6 (60%) males

4 (40%) females

Median nerve identification

Alkhatib et al., 2019,

France (10)

To study the deep-learning

performance for nerve tracking in

ultrasound images

- 42 Median & sciatic nerves

Gungor et al., 2021

(11)

To study the accuracy of real-time

(AI) -based anatomical identification

Healthy

population

40 20 (50%)

males 20 (50%)

females

Block regions: Supraclavicular, infraclavicular, and

transversus

abdominis plane (TAP)

Hetherington et al.,

2017 (19)

Detect the lower vertebral level – 20 Anesthesia in the lower vertebrae regions

(sacrum, intervertebral gaps, and

vertebral bones)

Huang et al., 2019

China (20)

femoral nerve on ultrasound images – – Femoral nerve

Mwikirize et al., 2018

(12)

CNN-based framework for needle

detection in curvilinear 2D US

bovine/porcine

lumbosacral

spine phantom

–

Oh et al., 2019,

Singapore (13)

Success rate of spinal anesthesia Obstetric

women

100 Spinal anesthesia

Pesteie et al., 2017

(14)

Precise needle target localization – 33 –

Smistad et al., 2018,

Norway (15)

Identification of musculocutaneous,

median, ulnar, and radial nerve) and

blood vessels

Healthy

volunteers

49 Axillary nerve block:

four nerves (musculocutaneous, median, ulnar, and radial

nerve) and blood vessels

Tran et al., 2010,

Canada (21)

Features of the lumbar anatomy Parturients in

labor or

scheduled for

cesarean delivery

20 Epidural anesthesia

Bowness et al., 2022

(16)

Assessment of the utility of ScanNav

to identify structures, teaching and

learning UGRA and increase operator

confidence. Assessment of UGRA

expert perception of risks of the use of

ScanNav (risk of block failure,

unwanted needle trauma (eg, arteries,

nerves, and pleura/peritoneum

Healthy

volunteers

2 Nine peripheral nerve block regions

The upper limb (the “interscalene-,” “upper trunk-,”

“supraclavicular-,” “axillary-level brachial plexus” regions;

“Erector spinae plane block,” “rectus sheath plane block

regions”; the “suprainguinal level fascia iliaca plane,”

“adductor canal and popliteal-level sciatic nerve blocks.”

Bowness et al., 2022

(22)

Expert-level AI model performance

evaluation

Healthy adult

subjects

40 Upper-extremity blocks: “upper trunk of the brachial

plexus,” “interscalene-level brachial plexus,”

“supraclavicular-level brachial plexus,” “axillary-level

brachial plexus”

(Continued)
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TABLE 1 (Continued)

Author,

country, year

Study goal Study

population

(diagnosis)

Sample size

Gender

(males %)

Region of body studied

Thoraco-abdominal blocks: erector spinae plane, rectus

sheath block.

Lower-extremity blocks: “suprainguinal fascia iliaca,”

“adductor canal and distal femoral triangle,” “popliteal-level

sciatic nerve blocks.”

Yang et al., 2022 (23) Development a deep learning

algorithm to locate the “interscalene

brachial plexus” based on ultrasound

images to aid anaesthesiologists.

Patients 1076 (dataset

−11 392 images

Interscalene brachial plexus

Liu et al., 2021 (17) To identify difference in accuracy

between deep learning-powered

ultrasound guidance and regular

ultrasound images; the use of artificial

intelligence to optimize regional

anesthesia puncture path; to identify

the effectiveness of ultrasound-guided

imaging “scapular nerve block”

surgical pain of the fracture

Patients 100 “Scapular nerve block”

for not losing the target object (i.e., nerve) from the initially

represented features in the ROI. Previous studies have shown

an efficient tracking performance with the conventional MI

algorithms, such as Kalman/particle filter (25), mean shift (26),

kanade-Lucas-Tomasi (KLT), etc (8). The DNN-based tracking

approaches have recently been proposed in the CV domain,

however, it is rarely used in sonographic image. Alkhatiba

et al. (10) firstly investigated the performance of 13 DNN

models, (e.g., ECO, SANet, SiameFC, CFNet) and compared

their performance with the hand-crafted feature (AMBP-PF).

The study indicates that the CNN models have outperformed

the traditional MI algorithms in terms of accuracy and stability,

and reported some important findings for enhancing the

performance by (1) using a deeper layer, (2) reducing the

redundancies, (3) incorporating particle filter (or RNN) in

the network.

In many cases, DNN approaches have been implemented

along with data augmentation, knowledge transfer, and

visualization to overcome the limitations, i.e., small-size

datasets, parameter optimization, and low interpretability,

respectively. Positional augmentations (scaling, affine

transformation, etc.) are common techniques; Pesteie et al. (14)

proposed Walsh-Hadamard transform to train a deep network

with a set of distinctive directional features from the spatial

domain. Mwikirize et al. (12) employed transfer learning, where

the network weights are initialized by non-medical images, then

fine-tuned with US images.

Overall performance of detection rate were between 88 and

95% and 0.638–0.722 in terms of the precision rates, and IoU

evaluation, respectively (19, 20), and tracking performance was

above 85% (10).

Benefits of automatic target detection

The main benefits included an automatic detection and

tracking of nerve structure, overall good performance, assistance

in successful recognition of specific anatomical structures,

confirming the correct placement of the needle, ultrasound

view to anesthetists and standardization of clinical procedure,

a real-time interpretation of anatomic structures for immediate

decision-making during blocks, provides automatized nerve

block using the remote control system, successful detection

of vertebral regions at the real-time speed (9–15, 18–21, 26,

27). It was reported that artificial intelligence can provide

assistance for both novice trainees and experienced clinicians

unfamiliar with ultrasound techniques. The ultrasound-guided

approach does not increase as the automated ultrasound-

guided neuraxial technique takes less than a minute. The

automated approach was reported to result in a high

rate of first attempt success rate that could reduce the

complications from multiple entry attempts (19, 25–28).

In another study, DL-assisted ultrasound-guided imaging

for scapular nerve block in scapular fracture surgery was
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TABLE 2 Artificial intelligence method and its purpose.

Study

citation,

first author

Machine learning model Purpose of ML Benefits Risks and limitations

Bowness et al.

(18)

ScanNav Anatomy Peripheral Nerve

Block system (Intelligent Ultrasound Ltd

[IUL], Cardiff, UK) - deep convolutional

neural networks based on the U-Net

architecture

To identify

anatomical regions

Identifying the specific anatomical

structures, correct ultrasound view to

anesthetists and standardization of

clinical procedure

Model-related:

Recognizes only anatomical structures

on images

Alkhatib et al.

(9)

Adaptive Median Binary Pattern

approach Joint Adaptive Median Binary

Pattern approach Three tracking

algorithms: particles filter, Mean Shift

and Kanade-Lucas-Tomasi (KLT)

techniques

To imrove tracking

procedure

Automatic detection and tracking of

nerve structure, ROIs

Model-related:

Nerve appearance might be similar to

surroundings

Difficulties in real-time tracking

Risk of error after many iterations

Alkhatib et al.

(10)

Deep learning methods: C-COT, ECO,

CNT, MDNet SANet, SiameFC, CFNet,

DCFNet, MCPF, HDT, HCFT CREST,

DLT, PF-AMBP

Median and the

sciatic nerves

Good performance

Overcoming noise difficulties

No need for pre-filtering images

Model-related:

Nerve appearance might be similar to

surroundings

Failure of retracing the nerve

Gungor et al.

(11)

Nerveblox, Smart Alfa Teknoloji San Identify anatomical

structures

A real-time interpretation of anatomic

structures

Model-related:

Low accuracy in pediatric/geriatric

patients

Hetherington et

al. (19)

SLIDE (Spine Level IDEntification)

System based on deep convolutional

neural network

transverse spinal

ultrasound planes

classification

Successful detection of vertebral regions

at real-time speed

Model-related:

Failure in identifying the difference

between gap and bone images

Real-time speed considerations

Huang et al. (20) Deep learning model: U-Net identify femoral nerve Fast training and forecasting of the

method

Real-time segmentation

Study-related:

Small sample size

Limited number of images

No data augmentation

Mwikirize et al.

(12)

Deep learning (DL) based on

convolution neural networks (CNNs)

Evaluate the new

method

2D US data; deep convolution neural

network usage detection data and

intensity invariant feature maps

Model-related:

Cannot systematically find the needle

Relying on an expert

sonographer

Oh et al. (13) to detect the inter-spinous images Localize L3/4 Confirm the sonographic images and

structures.

Time saving method

Less possible complications

Study-related:

Lack of a comparator arm

Highly specific algorithm.

The system is validated by current study

population

Absence of complex spinal

anatomy, obesity, pediatric and geriatric

patients.

The risk of misinterpretation of fusion or

reduced interspinous distance

Pesteie et al. (14) CNN-based machine learning technique Evaluate the

convolutional

network architecture

Few outliers in detecting the needles

Performance is better compared with

others

Model-related:

Not running in real time

(Continued)
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TABLE 2 (Continued)

Study

citation,

first author

Machine learning model Purpose of ML Benefits Risks and limitations

Smistad et al.

(15)

Deep convolutional neural network –

U-Net

Identify

musculocutaneous,

median, ulnar, and

radial nerves and

blood vessels

Accurate detection of blood vessels,

median and ulnar nerves

Real-time identification

Direct comparison of 4 methods

Study-related:

Small sample size

Low precision and recall values

Poor identification of

musculocutaneous, radial nerves

Tran et al. (21) MATLAB algorithm Detect the LF depth Helps to find the epidural space and

measure the skin-to-LF depth

An implementation in a wide range of

ultrasound machines.

Model-related:

Insignificant errors and failures to detect

the LF mean

Poor image quality might result in

unsatisfactory outcomes

Bowness et al.

(16)

ML/DL Identification of the

anatomical structures

Potential to support non-experts in

training /clinical practice, as well as

experts in teaching UGRA. It may

promote the uptake and spread of

UGRA.

Model-related:

Experts reported an increase in risk

Bowness et al.

(22)

DL (based on U-Net architecture) Identification of the

anatomical structures;

highlighting

anatomical structures

of interest

High TP/TN and low FP/FN rates in key

anatomical structure identification

Model-related:

UGRA itself has not reduced the

incidence of nerve injury;

Study-related: remote expert were not

present when the subjects were scanned.

Yang et al. (23) DL The developed model located the

“interscalene brachial plexus” more

accurately compared to nonexperts.

Liu et al. (17) DL, SegNet Model to optimize regional

anesthesia puncture

path;

DL ultrasound guided imaging for

scapular nerve block in scapular fracture

surgery was more efficient, significantly

shortened the time of performing nerve

block and reduced complications

compared to traditional method.

ML, machine learning; PPV, positive predictive value; NPV, Negative predictive value; AUC-area under the curve; FP-false-positive; FN-false-negative.

more efficient, significantly shortened the time of performing

nerve block, and reduced complication rate compared to the

traditional method (17).

Risks, failures, and limitations of the
AI-assisted UGRA

Although the application of automated solutions has several

benefits, the risks, failures, and limitations were also reported.

Thus, the most important limitation was detection and tracking

failure (if the nerve appearance is similar to surrounding areas),

risk of the nerve disappearance and identical appearance with

the surrounding areas- losing the nerve, issues with real-time

tracking error after numerous iterations risk of failing to re-track

lost nerve (9–15, 18–21). Another limitation of this technology

is the failure of distinguishing osseous images. Although real-

time allows proper scanning of block regions, it does not always

result in the detection of the whole needle, which can occur

at a steep insertion angle. The evidence on the application

of AI-assisted technologies in regional anesthesia is still in its

initial stage. Thus, limited evidence on accuracy in many patient

populations, such as in pediatric/geriatric patients is currently

available. Overreliance on an expert sonographer to detect the

ground-truth tip localization is a limitation especially if the tip

is completely invisible. The algorithm is highly specific only

if all landmarks are detected. AI algorithms are not designed

or validated in the case of complex spinal anatomy, geriatric
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patients, obesity patients, and pediatric patients. The risk of

image misinterpretation could be high in case of abnormal

anatomy (e.g., fusion or reduced interspinous distance).

The following risks were assessed and reported in

the studies:

- increased risk of block failure;

- risk of needle trauma to structures (eg, arteries, nerves,

pleura, peritoneum);

The assessed complications included:

- nerve injury and “postoperative neurological

manifestations”;

- “local anesthetic systemic toxicity”;

- pleural injury (pneumothorax);

- peritoneal injury.

Discussion

Artificial intelligence-assisted medical image interpretation

is one particularly popular research direction in healthcare

artificial intelligence (18). Artificial intelligence has been used for

the detection of the optimal needle insertion site, estimation of

the trajectory of the needle insertion, and facilitating automatic

tip localization. Tracking is one of the most widely used tasks

in computer vision with such applications as video medical

imaging, compression, and robotics.

Several artificial intelligence models have been reported to

improve the quality of monographic anatomical target detection.

Thus, a multiple model data association tracker has been used to

track the left ventricle in the cardiac examination (8).

AI was reported to be helpful in 99.7% of the cases.

Identification of specific anatomical structures by ultrasound

and confirming the correct view are essential components of

ultrasound-guided regional anesthesia (18).

A recent study reported a statistically significant difference

between the performances of blocks in different regions. Thus,

the rectus sheath and interscalene supraclavicular level brachial

plexus regions yielded the lowest results, whereas the adductor

canal block and axillary brachial plexus yielded the highest

results (18). It is noteworthy to note that two of the three

lowest-ranked blocks were plane blocks and anatomical regions

that did not have major vascular landmarks in close proximity.

Conversely, the highest-ranked anatomic regions have bones

and vessels.

The results demonstrate the potential for the clinical utility

of AI in UGRA and especially for non-experts users (18).

It is challenging to develop the AI algorithms to identify

all anatomical features using ultrasound de novo due to

the diversity, complexity, and operator dependence, such as

inter-and intra-individual variation (25). Therefore, automated

image interpretation technologies can be trained to identify a

wide variety of structures using machine learning (25). This

technology could be used to improve the interpretation of

ultrasound anatomy by improving target identification such as

peripheral nerves and fascial planes, and the mapping of optimal

insertion site by detecting the relevant landmarks and guidance

structures (such as muscles and bones). The safety profile can be

improved by highlighting anatomical structures such as blood

vessels) to reduce or even avoid unwanted injury (26).

Although AI-assisted techniques appear to be promising,

only a few applications are currently introduced in clinical

practice, therefore, the potential for its utilization is yet

to be proven (28). Understanding the sonographic anatomy

and image interpretation represents critical importance in

UGRA. Robust AI-assisted technologies could help clinicians to

improve performance and training in ultrasound-guided nerve

blocks (26).

AI-assisted technologies can change the practice of UGRA

and its education. Anesthesia practitioners should contribute to

the transformation of UGRA (28).

Although training can be performed in non-clinical settings,

such as educational courses, clinical practice training takes a

fundamental role.

AI-assisted UGRA is a novel medical device, with which

many clinicians might not be familiar. Therefore, its initial use

may be associated with lower confidence, which will improve

with time of training and practice.

Generally, the included studies reported a low perception

of increased risk associated with using AI assistance, although

complications may be clinically important (eg, nerve injury/

LAST). Possible causes of error are related to technological

performance, e.g., improper highlighting, which may result

misinterpretation of the ultrasound images. Block failure and

undesirable trauma to critical structures may be more likely if

the practitioner is misleadingly reassured by the color on the

screen. Other risks may be related to the usage of the device, e.g.,

highlighting resulting in distraction or focusing on one object

and neglecting another structure.

AI-assisted technology therefore should be used as a

source of additional information (image augmentation system)

rather than a decision-maker. Furthermore, correct anatomical

structure identification can be useful for anesthesiologists,

although it does not ensure safe UGRA nor guide needle

placement. Therefore, it is the performer’s responsibility to take

into consideration hazards (26, 28).

Challenges in using AI regional anesthesia

Tracking anatomical targets in ultrasound-guided

procedures can be challenging due to Illumination changes,

occlusion, noise, and deformation of the target, which can

result in tracking failure. Moreover, the object motion may

exhibit abrupt changes; the images may be corrupted by a

multiplicative noise leading to false alarms, misdetection; some

detected features may not belong to the object. It is important to

Frontiers inMedicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2022.994805
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Viderman et al. 10.3389/fmed.2022.994805

highlight that the wrongly detected features should be neglected

by the tracker because they may mislead medical professional

and jeopardize the performance of the procedure (8). Finally,

the object shape might change during the tracking (8).

Barriers to the development of AI-guided
UGRA

AI especially CNNs has been improving success in image

recognition for many years, since the development of LeNet-

5 (29). One of the major reasons for this success is the

development of new algorithms, the availability of large data

sets, and improvements in hardware (30). The major limitation

of training deep CNNs is the requirement of a large number of

images; therefore, it is challenging to achieve good results with

training deep CNNs using small data sets (24). The challenge,

however, can be overcome with transfer learning that can be

used for training CNNs on relatively small data sets (24, 27).

Transfer learning uses knowledge learned from one area and

applies in another area. Transfer learning can solve classification

tasks in a new domain using pre-trained CNNs (27). It can

be especially useful in medical image classification. To perform

image classification, trained CNNs extract features via ascending

layers of the network (27). CNNs that have been trained on a

large number of images have optimized parameters for image

recognition, and, therefore, that knowledge can be transferred

to use for other tasks. Moreover, only a few products, especially

those assessing images in a real-time manner have received

regulatory approval.

Limitations of the current study

The main limitations of this study are that the studies

included in this review are small sample size, therefore, the

results should be replicated in studies with a larger number

of participants with different anatomical abnormalities and

comorbidities. Other limitations were an insufficient number

of images with a large field of vision and deep depth, no data

augmentation limiting image segmentation properties of the

studied method. Some studies did not have a comparator arm.

Additional limitation was the “trustworthiness” of clinicians

who are under-confident in their anatomical and sonographic

expertise, and may over-rely on AI assistance. Therefore, it is

important to appreciate that the AI may mistakenly identify

the incorrect anatomical location, and a robust understanding

of the sonographic anatomy is required even when AI-assisted

technologies are used for such procedures (18). Regional

anesthesia educators with suitable expertise must be central

to training in UGRA and “AI-assisted devices” should not

replace expert educators. Trainees should still practice standard

methods of sonographic scanning, probe angulation, rotation

pressure, and tilt to enhance image acquisition (26).

The next limitation is that the highest were scores

demonstrated as regions with major vascular structures and

nerves, rather than fascial planes used as a target. Therefore, it

is important to find out whether it is due to the operator’s input

to the system or it is due to the algorithm. This may help to

identify what anatomical landmarks and structures are the most

beneficial for AI-assisted UGRA (18).

Additionally, the performance of AI-assisted UGRA could

be evaluated by diverse criteria such as accuracy, consistency,

time complexity, the robustness of noise, and sometimes

the visualization results should be qualitatively evaluated by

the human. However, current CNN studies have not fully

investigated in terms of the model generalization toward a

large-size dataset with sufficient evaluation assessments.

Future development

Ultrasound has become an integral part of regional

anesthesia and significantly contributed to its development.

Nevertheless, it is challenging to develop excellent skills to

interpret ultrasound images and achieve the necessary level of

proficiency to perform regional anesthesia safely and reduce the

rate of block failure, especially for beginners. Moreover, there is

a degree of subjectivity in interpreting ultrasound images, which

leads to heterogeneous interpretation even among experienced

users. Therefore, the application of AI in UGRAmightmaximize

the benefits of ultrasound guidance, improve efficacy and safety

and reduce the failure rate.

Computer vision is one of the most promising areas of

application of AI in medicine. Deep learning may hold the

highest potential to advance image interpretation in UGRA but

a high amount of images would be required for its training,

followed by validation prior to its implementation into clinical

practice. Therefore, a close collaboration of clinicians and

engineers is crucial. Clinicians should play a more active role

in these collaborations, since they are instrumental in image

acquisition, conducting clinical trials, advising, and overall

moving this field forward.

Conclusion

Since sonographic visualization is commonly used in

regional anesthesia, AI solutions might be useful in anatomical

landmark identification, reducing or even avoiding possible

complications (such as injury to the anatomical structures

and local anesthetic systemic toxicity. AI-guided solutions can

improve the optimization and interpretation of the sonographic

image, visualization of needle advancement, and injection of

local anesthetic. AI-guided solutions might improve the training

process in UGRA. Although significant progress has been made

in the application of AI-guided UGRA, randomized control

trials are still missing. More high-quality studies are warranted
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to generate evidence application of AI-guidedUGRA in different

patient populations, such as pediatric, and geriatric patients, and

in different anatomical regions, nerve blocks, and surgeries. This

SR could potentially be used as a basis for future clinical trials

and systematic reviews and enable future researchers to identify

the directions for applications of AI in regional anesthesia. This

review can also enable researchers to avoid the limitations of

previous studies, which will be suitable for future systematic

reviews and meta-analyses.
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