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Background: Chronic dermatologic disorders can cause significant emotional
distress. Sentiment analysis of disease-related tweets helps identify patients’
experiences of skin disease.

Objective: To analyze the expressed sentiments in tweets related to alopecia
areata (AA), hidradenitis suppurativa (HS), and psoriasis (PsO) in comparison to
fioromyalgia (FM).

Methods: This is a cross-sectional analysis of Twitter users’ expressed
sentiment on AA, HS, PsO, and FM. Tweets related to the diseases of interest
were identified with keywords and hashtags for one month (April, 2022) using
the Twitter standard application programming interface (API). Text, account
types, and numbers of retweets and likes were collected. The sentiment
analysis was performed by the R "tidytext” package using the AFINN lexicon.

Results: A total of 1,505 tweets were randomly extracted, of which 243
(16.15%) referred to AA, 186 (12.36%) to HS, 510 (33.89%) to PsO, and 566
(37.61%) to FM. The mean sentiment score was —0.239 + 2.90. AA, HS, and
PsO had similar sentiment scores (p = 0.482). Although all skin conditions were
associated with a negative polarity, their average was significantly less negative
than FM (p < 0.0001). Tweets from private accounts were more negative,
especially for AA (p = 0.0082). Words reflecting patients’ psychological states
varied in different diseases. "Anxiety” was observed in posts on AA and FM
but not posts on HS and PsO, while “crying” was frequently used in posts
on HS. There was no definite correlation between the sentiment score and
the number of retweets or likes, although negative AA tweets from public
accounts received more retweets (p = 0.03511) and likes (p = 0.0228).
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Conclusion: The use of Twitter sentiment analysis is a promising method to
document patients’ experience of skin diseases, which may improve patient
care through bridging misconceptions and knowledge gaps between patients
and healthcare professionals.

sentiment analysis, Twitter, alopecia areata, hidradenitis suppurativa, psoriasis,

mental health

Introduction

Twitter, with over 320 million users, allows close to real-time
exchange of ideas about current affairs through microblogging
that consists of up to 280 characters (1, 2). The use of sentiment
analysis on Twitter posts in medicine was first published in 2009
(3). This technique is a subfield of natural language processing
whose aim is to automatically classify the expressed sentiment
in texts (4). Since then, it has been widely applied to predict
disease outbreaks (5-8), prescription of drugs and adverse drug
reactions (9-13), patient satisfaction (14), public perceptions
(15), and many others (16, 17). Other features of Twitter
such as “likes” and “retweets” enable users to share, to show
appreciation, and to propagate information that can be used
to monitor trends in public perceptions. Sentiment analysis on
this large dataset can provide an overview of the moods and
emotional outcomes that are associated with specific diseases
and physiological status. This method has the advantage of
covering larger populations and geographic areas compared to
traditional questionnaire-based methods (18).

As more and more people are turning to social media
for health advice, understanding the sentiments of social
media posts has become increasingly relevant (19, 20), as
patients frequently report a lack of opportunity to express
their psychosocial needs (21, 22). However, analysis of social
media data in dermatology remains underutilized. Because
dermatologic diseases are linked to numerous mental, physical,
and emotional stressors that may not be easily captured during
clinical visits, we believe that leveraging social media posts
can help elucidate the subjective experience of dermatologic
disorders. Thus, the objectives of this study were (1) to
analyze the expressed sentiments in tweets related to alopecia
areata (AA), hidradenitis suppurativa (HS), and psoriasis
(PsO) (9-25); (2) to compare the sentiments related to skin
disorders with that related to fibromyalgia (FM), a chronic
musculoskeletal disease (26) without cutaneous manifestations;
and (3) to validate the use of social media analysis for
disease surveillance.

Abbreviations: AA, alopecia areata; HS, hidradenitis suppurativa; PsO,
psoriasis; FM, fibromyalgia; API, application programming interface.
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Materials and methods

Data collection

We used the standard Twitter application programming
interface (API) to collect tweets containing keywords or tags for
the diseases of interest. For HS, these included #Hidradenitis,
#Suppurativa,  #HidradenitisSuppurativa, ~ #HSawareness,
and “Hidradenitis Suppurativa”; for AA, “Alopecia areata”,
#AlopeciaAreata, Areata, and AAAwareness; for PsO, Psoriasis
and #Psoriasis; and for FM, Fibromyalgia, #Fibromyalgia, and
#ChronicFatigueSyndrome. Searches using the Twitter API
were case insensitive. There was a 180 requests per minute
limitation with the standard API limits, which was considered
sufficient for this study. Requests to the Twitter API were made
through the “retweet” package in R Studio. Tweets that were
publicly available and written in English were collected every
day for 1 month (from April 1st, 2022, to April 30th, 2022).
For each tweet, we obtained data on the date and time of
creation, the user’s publicly displayed name, device type, tweet
body text, and like and retweet status. A subgroup analysis
of private/individual vs. public/organizational accounts (both
types of accounts were open to public access) was carried out to
determine whether discrepancies in illness experience exist.

Sentiment analysis

To determine the expressed tones in each tweet, we used
the AFINN lexicon developed by Finn Arup Nielsen and
downloaded from the R “tidytext” package (27). The AFINN
lexicon assigned a score between —5 (e.g., “bastard” and “twat”)
and + 5 (e.g., “breathtaking” and “superb”) to each word, with
negative scores suggestive of negative sentiment.

Statistical analysis

The sentiment of each post was determined by the
summation of the sentiment score of each word in the post.
Independent t-tests were used to compare the means and
standard deviations (SD) of sentiment scores between the
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diseases of interest. A p-value less than 0.05 suggested statistical
significance. The data were collected and analyzed with RStudio
2022.07.1 + 554 for Mac (Boston, USA).

Results

We identified 243, 186, 510, and 566 tweets related to AA,
HS, PsO, and FM, respectively. The mean sentiment score was
—0.239 £ 2.90. The median and mode were 0. The average
scores [mean £ SD (range)] for AA, HS, and PsO were
—0.021 £ 3.29 (—10- + 10), —0.341 £ 2.41 (—10- + 6), and
—0.308 £ 2.86 (—17- + 14), respectively (Figure 1). There was
no significant difference among the three disorders (p = 0.482).
There were 2-3 times more tweets from private accounts
than from public accounts for all diseases. Posts from public
accounts were significantly more positive (—0.128 £ 2.95 vs.
—0.731 & 3.21, p = 0.0008), especially for AA (0.729 =% 2.50 vs.
—0.458 £ 3.61, p = 0.0082). On average, there were 0.656 % 2.26
retweets and 5.77 & 54.7 likes for each post.

Words in negative and positive tweets
on dermatologic disorders

Figure 2 displayed the most frequent positive or negative
words used in each specific disease. “Pain”, “bad”, and “hard”
were used frequently in negative posts about HS and PsO;
while “loss” was overwhelmingly presented in negative tweets
on AA. “Anxiety”, “fear”, “wrong”, and “burden” were seen
in posts on AA but not in posts on HS and PsO. Words
expressing negative internal emotions such as “crying” were
observed in posts on HS; words connoting external influence
like “contagious” and “hate” were more commonly observed in
posts on PsO than in posts on HS or AA. “Care” and “natural”
were found in positive tweets related to all three diseases.
Words describing a supportive system including “help”, “love”,
“support”, and “god” were most frequently identified in positive
posts on PsO.

The sentiment of tweets on
dermatologic disorders and
fibromyalgia

510 tweets about FM were identified. Like skin disorders,
“pain”, “bad”, and “hard” were commonly seen in negative
posts on FM. Besides, emotional terms used in AA tweets,
like “anxiety”, “suffering”, “guilt”, and “sucks”, contributed
to a significant portion of negative posts on FM. The
average sentiment score was significantly lower for FM
(=1.11 £ 33.47) than for the three skin disorders, AA,
HS, and PsO (—0.239 £ 290, p < 0.0001). Unlike skin
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disorders, tweets from public (—0.953 £ 3.70) or private
(=1.170 =+ 3.39)
sentiment (p = 0.5969).

accounts expressed similar negative

Discussion

Findings of the present study provided an effective
and efficient approach to measure sentiments surrounding
AA, HS, and PsO via analysis on tweets. Words that
have been given negative polarity, like “anxiety”, “pain”,
and “crying”, are common in tweets related to AA, HS,
and PsO. Sentiment regarding these three skin diseases is
slightly polarized to the negative side, with less negative
polarity compared to FM.

This study utilizes posts from popular social media to
understand sentiments related to dermatologic disorders. The
results seem to correlate well with previously documented
psychiatric comorbidities. “Anxiety” was the most common
emotional word in posts on AA. Patients with AA are
particularly susceptible to generalized anxiety disorder (GAD)
(28). A systematic review reported a 39-62% lifetime prevalence
of GAD in patients with AA, giving an odds ratio (OR) of
7.28 compared to the general population. The ratio was higher
than that for major depressive disorder (MDD) (OR = 5.87-
6.77), social phobia (OR = 1.59-3.89), and paranoid disorder
(OR = 4.4) (28). In contrast, for HS, words like “crying,” as
well as aggressive words like “fuck” were commonly seen in
tweets on HS, possibly reflecting the prevalence of bipolar
disorders and MDD in this population. One meta-analysis on
the psychiatric comorbidities of HS concluded that among the
investigated psychiatric disorders, bipolar disorders (OR = 1.96)
and MDD (OR = 1.75) were the most significantly increased
comorbidities in patients with HS. Also in contrast to AA,
for posts on PsO, we did not identify “anxiety” nor “bad” in
the top 10 negative words. A recent meta-analysis reported
a hazard ratio (HR) of 1.29-1.31 for anxiety in patients with
PsO; on the contrary, the ratios were slightly lower than
those found for AA and HS (29). The same study found
that the OR for depression was 1.57 in patients with PsO
(29). For comparison with all three skin disorders, tweets
on FM were also examined. “Anxiety” and “guilt” were
commonly used in negative posts on FM, for which patients
with FM display a higher prevalence of GAD (20-80%) and
MDD (13-63.8%) (30, 31). Thus, the approach adopted in
the present study may be a powerful tool to conceptualize
real-time emotional experience of dermatologic disorders,
which may be used to predict or reflect their psychiatric
comorbidities. Analyzing the psychological foundations of
the affective lexicon allows for a better understanding of
the emotional impact of diseases from patients perspectives
and direct psychosocial interventions (32-34). Interestingly,
the overall sentiment scores were neutral for the three
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AFINN sentiment scores of tweets on different diseases.
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FIGURE 2
AFINN lexicon-graded positive and negative words commonly used in tweets about different diseases.
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dermatologic diseases and did not differ from one another.
Despite their various health impact, previous studies suggested
that the quality of life in dermatologic diseases was the
most affected by the severity of diseases rather than the
type of diseases (35-37). Our data may support this finding
although we were not able to stratify sentiment scores by
disease severity.

Besides emotional words, the dataset provided insight into
other patient priorities. “Natural” and “care” were recurrent
themes in all three diseases, suggesting growing interest
in non-pharmacologic options. Words like “contagious”
in tweets on PsO hinted at common misconceptions and
could guide the development of future campaigns. Finally,
a sentiment gap appeared between public and private
accounts in tweets about skin disorders but not about
FM. While a strong association between FM, depression,
and anxiety is widely reported by lay media, many skin
diseases were considered largely “cosmetic” and ignored
for their emotional impact. Thus, this gap may reflect a
failure of physicians and public organizations to identify
occult emotional burdens. An empathetic and systematic
approach may be beneficial and should be encouraged
when caring for patients with dermatologic diseases.
Furthermore, a previous study on tweets related to HS
concluded that the analysis on social media data allowed the
identification of some treatment beliefs not easily detected
by traditional surveys (38). Collectively, these findings
necessitated the presence of medical professionals and
institutions to monitor and validate educational information
on social media (39).

Despite continuous data collection for one month, the
sample sizes were still small. In addition, we only analyzed
one social media platform (i.e., Twitter), and therefore its
external validity might be limited. A limitation specifically
of Twitter API

of tweets (set by users) during a period of time (set

is the random selection of a number

by users) from the pool of tweets using the specified
hashtags/keywords. Twitter does not allow access to all
qualified tweets with one search. Second, microbloggings on
social media are usually used to express temporary emotions
and may not adequately reflect long-term psychological
status; and patients may be reluctant to publicly share
either negative or positive experiences. Sentiment classification
might fail when negation or irony are used. For example,
profanity words can be used to modify a positive term,
reversing their original polarity (14). Although irony may
be indicated by emojis, previous studies did not show
a significant improvement in sentiment classification with
emoticons (40). Therefore, we did not include emojis in
the analysis. Some people may use text embedded in
images to trespass the 280-word limitation. These longer
posts, which may be more personal, may be missed in
the algorithm. Lastly, different sentiment lexicons can result
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in different results based on individual sensitivity and
specificity. SentiStrength is another lexicon commonly used
in health-related sentiment analysis (41, 42). That said,
since AFINN was shown to have a similar or higher
accuracy than SentiStrength, thus was preferred in this
study (41).

Conclusion

The use of sentiment analysis on tweets is a promising
method  that
illness experience,
with
the
misconceptions and knowledge gaps between patients and

can reflect psychological comorbidities,
and public perceptions
This

patient

of patients
has
by bridging

dermatologic  disorders. technique

potential to improve care

medical professionals.
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