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Mass spectrometry (MS)-based proteomics profiling has undoubtedly

increased the knowledge about cellular processes and functions. However,

its applicability for paucicellular sample analyses is currently limited. Although

new approaches have been developed for single-cell studies, most of

them have not (yet) been standardized and/or require highly specific (often

home-built) devices, thereby limiting their broad implementation, particularly

in non-specialized settings. To select an optimal MS-oriented proteomics

approach applicable in translational research and clinical settings, we assessed

10 di�erent sample preparation procedures in paucicellular samples of

closely-related cell types. Particularly, five cell lysis protocols using di�erent

chemistries and mechanical forces were combined with two sample clean-

up techniques (C18 filter- and SP3-based), followed by tandem mass tag

(TMT)-based protein quantification. The evaluation was structured in three

phases: first, cell lines from hematopoietic (THP-1) and non-hematopoietic

(HT-29) origins were used to test the approaches showing the combination

of a urea-based lysis bu�er with the SP3 bead-based clean-up system as

the best performer. Parameters such as reproducibility, accessibility, spatial

distribution, ease of use, processing time and cost were considered. In the

second phase, the performance of the method was tested on maturation-

related cell populations: three di�erent monocyte subsets from peripheral

blood and, for the first time, macrophages/microglia (MAC) from glioblastoma

samples, together with T cells from both tissues. The analysis of 50,000
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cells down to only 2,500 cells revealed di�erent protein expression profiles

associated with the distinct cell populations. Accordingly, a closer relationship

was observed between non-classical monocytes and MAC, with the latter

showing the co-expression of M1 and M2 macrophage markers, although

pro-tumoral and anti-inflammatory proteins were more represented. In the

third phase, the results were validated by high-end spectral flow cytometry

on paired monocyte/MAC samples to further determine the sensitivity of the

MS approach selected. Finally, the feasibility of the method was proven in 194

additional samples corresponding to 38 di�erent cell types, including cells

from di�erent tissue origins, cellular lineages, maturation stages and stimuli. In

summary, we selected a reproducible, easy-to-implement sample preparation

method for MS-based proteomic characterization of paucicellular samples,

also applicable in the setting of functionally closely-related cell populations.

KEYWORDS

proteome characterization, low cell numbers, closely-related cells, monocyte,

macrophage, paucicellular clinical samples

Introduction

In the era of high-throughput cell analysis, techniques

such as RNA sequencing, flow cytometry (FC) and mass

cytometry have led to important scientific advances, not only

in basic research, but also in translational and clinical research

settings (1–4). Despite their growing role, these methods

have several limitations, e.g., RNA profiles do not necessarily

reflect the protein expression patterns and cytometry-based

approaches only evaluate a restricted number of pre-selected

proteins (up to 60), thereby providing limited and biased

information on the cell’s proteome (5, 6). Mass spectrometry

(MS) has the potential to overcome these handicaps. In fact,

MS-based studies have improved the knowledge of cellular

mechanisms and functions in e.g., rheumatoid arthritis (7),

diverse cancer types (8–10) and dementia (11). However,

translational and clinical research studies are often challenged by

limited sample availability, such as scarce patient material and

small target populations (e.g., tumor-infiltrating immune cell

populations). Moreover, investigations on closely-related cells,

such as different maturational stages within a population (e.g., in

Abbreviations: ACN, acetonitrile; cMo, classical monocytes; dTHP1, THP1

cells di�erentiated with PMA; FASP, filter-aided sample preparation;

FC, flow cytometry; FDR, false discovery rate; GBM, glioblastoma;

iMo, intermediate monocytes; MAC, macrophages/microglia isolated

from GBM samples; MS, mass spectrometry; ncMo, non-classical

monocytes; NSAF, normalized spectral abundance factor; PB, peripheral

blood; PBMCs, peripheral blood mononuclear cells; PCA, principal

component analysis; PMA, phorbol 12-myristate 13-acetate; PSM,

peptide spectrum match; RT, room temperature; SP3, single-pot,

solid phase-enhanced sample preparation; TEAB, triethylammonium

bicarbonate; TFE, trifluorethanol; TMT, tandem mass tag.

hemato-oncological disorders like myelodysplastic syndromes),

could be difficult to perform since unique identities of small cell

subsets can be due to subtle differential protein expression levels,

which might be ultimately complex to assess in paucicellular

specimens (12, 13). Furthermore, in translational research

and clinical studies, the evaluation of large sets of samples

is often required to obtain reliable conclusions for future

application in patient care, requiring rapid, cost-effective and

reproducible techniques.

While there have been advances in MS-based applications in

e.g., cancer research, standardized MS strategies for proteome

characterization of small cell populations are still lacking (12,

13). In fact, even though innovative approaches for single-

cell proteomics have been recently developed (14–18), their

application on a routine basis in a clinical setting is not

(yet) feasible. The required platforms are still in development

and need specific devices (e.g., microfluidic chips, liquid

handling systems), which are usually home-built, expensive,

and time-consuming, and include complex non-standardized

protocols which demand for extensive proteomics knowledge.

Therefore, to promote the use of MS-based techniques for

analysis of limited cell numbers in non-specialized proteomics

environments, and to improve its broader applicability, it

is necessary to select optimal approach(es) in terms of

performance, reproducibility, accessibility, throughput, ease of

use, and cost and time effectiveness.

In this regard, the definition of a simple but efficient sample

preparation protocol for MS studies, only requiring routine

laboratory equipment but allowing for highly reliable data,

could lead to a more prominent role of MS-based proteomics

in translational research with the potential of application

in patient care. The plethora of protocols available in the

literature might be too overwhelming for researchers who are

not specialized in MS-based proteomics. For instance, multiple
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different approaches are provided for cell lysis, including

the usage of different components (e.g., chaotropes as urea

or detergents as SDS) and conditions (e.g., ultrasonication,

heat shock), which finally determine the efficiency of protein

extraction (19). Likewise, removal of detergents, salts and/or

other contaminants present in the sample can be performed

in several manners, using traditional strategies such as gel

electrophoresis (20) or C18 StageTips (21), or newer methods

such as Filter-Aided Sample Preparation (FASP) (22) or single-

pot, solid phase-enhanced sample preparation (SP3) (23, 24).

Altogether, there is a need for systematic evaluation of

the performance, accessibility and user-friendliness of sample

preparation methods for MS-based analysis for application in

non-specialized settings where proteome investigations might

be highly valuable, particularly for paucicellular studies. To

this end, we selected five lysis procedures based on their

different chemistries (chaotrope, detergent, hypotonic buffer,

cosolvent) and physical-mechanical forces (ultrasonication,

heating, thawing/freezing) representing the most popular

proven methods. Also, SP3 and C18 were chosen as an example

of new, highly effective vs. traditional clean-up approaches. All

possible lysis method-clean-up approach combinations were

then evaluated to select the optimal procedure for complete

quantitative proteome profiling of low numbers of closely-

related cells (from 50,000 cells down to 2,500 cells), with

application in translational/clinical settings. Cells from different

origin (non-hematopoietic vs. hematopoietic) and different

maturational stages (monocytic cell populations) were used

as model systems. This comparative study was structured

in three phases: (i) cell lines for monocytes, macrophages

and colon adenocarcinoma cells (as non-hematopoietic cell

model) were employed to define the best strategy, (ii) small

cell numbers of the three major monocyte subsets from

PB and macrophages/microglia (MAC) from glioblastoma

(GBM) patients (together with T cells from both tissues) were

investigated in depth, and (iii) validation of the performance of

the method was done by using high-end FC and its feasibility

was proven in 38 different cell types from five human tissues.

Results confirmed the usefulness of the selectedmethod to define

the proteome landscapes and maturational relationships of the

analyzed cell subsets, being affordable and easy to implement in

a translational/clinical laboratory.

Materials and methods

Cell culture

The THP1 acute monocytic leukemia cell line (DSMZ

ACC 16) was selected as a model for monoblasts and

macrophages (after in vitro differentiation, dTHP1), whereas

the HT-29 human colon adenocarcinoma cell line (DSMZ

ACC 299) was chosen as a non-hematopoietic lineage tumor

model. THP1 and HT-29 cells were cultured in RPMI 1640

(Lonza, Basel, Switzerland) and McCoy’s medium (Sigma-

Aldrich, St. Louis, MO/US), respectively. Both media were

supplemented with 10% heat-inactivated fetal calf serum

(Sigma-Aldrich), 100 U/mL penicillin, 100µg/mL streptomycin

and 1% GlutaMAXTM Supplement (Gibco, Gaithersburg,

MD/US). To induce differentiation into macrophages, THP1

cells were treated with 200 nM phorbol 12-myristate 13-acetate

(PMA; Sigma-Aldrich) for 72 h and rested in a PMA-free

medium for 5 days as described by Daigneault et al. (25). All cell

cultures were maintained at 37◦C in a humidified atmosphere

and 5% CO2.

Human sample collection

A total of 6 fresh ethylenediamine tetraacetic acid (EDTA)-

anticoagulated human PB samples from healthy donors (4:2

female: male ratio, median age 33.5, range 27–40) and 5

tumor tissue samples from GBM patients (2:3 female: male

ratio, median age 60, range 46–70) were collected after

written informed consent was given by each donor and/or

his/her legal representative(s) according to the Declaration

of Helsinki, guidelines of the local ethics committees and

review boards (PB: LUMC Volunteer Donor Service, B18.031,

project request L18.001; GBM: Medical Ethical Committees of

Erasmus Medical Center Rotterdam, 2013-139). The processing

of PB and GBM samples is described in Supplementary

Experimental Procedures.

Sample processing for cell population
sorting

Three major monocyte subsets (i.e., CD14++, CD16−

classical monocytes, cMo; CD14++, CD16+ intermediate

monocytes, iMo; and CD14−/dim CD16hi non-classical

monocytes, ncMo) and T cells from PB, and MAC and T cells

from GBM samples were sorted (Supplementary Figure 1) with

a purity systematically higher than 98.2% ± 3.3% employing

a 4-way fluorescence-activated cell-sorter (FACSAria; Becton

Dickinson Biosciences – BDB – San Jose, CA, US), equipped

with the FACSDiva software (BDB). Before sorting, samples

were stained using a stain-wash procedure. Shortly, PB

mononuclear cells (PBMCs) and GBM cells were stained with

distinct 7-color monoclonal antibody panels (Panels A and B,

Supplementary Table 1), incubated rolling for 30min at room

temperature (RT) in the dark and washed with phosphate-

buffered saline (PBS). GBM cells were further incubated in

1:1000 viability marker (LIVE/DEADTM Fixable Aqua Dead Cell

Stain Kit, Thermo Fisher, Waltham, MA/USA) for 30min at RT

protected from light, following the manufacturer’s instructions.

Finally, both PBMCs and GBM cells were washed and

Frontiers inMedicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2022.997305
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


van der Pan et al. 10.3389/fmed.2022.997305

FIGURE 1

Experimental design. (A) Five di�erent cell lysis bu�ers were combined with C18 and SP3 clean-up approaches to define 10 procedures, which

were tested for their performance on quantity-limited samples (2,500 to 50,000 cells). (B) The combination of urea-based lysis bu�er and SP3

was applied to study di�erent monocytic subsets isolated from peripheral blood mononuclear cells (PBMCs) and macrophages from

glioblastoma. Samples were labelled with TMT16-plex tags for quantitative analysis. cMo, classical monocytes; iMo, intermediate monocytes;

LC-MS/MS, liquid chromatography-tandem mass spectrometry; ncMo, non-classical monocytes; SDS, sodium dodecyl sulfate; SP3, single-pot,

solid-phase-enhanced sample preparation method; TEAB, triethylammonium bicarbonate; TFE, 2,2,2-trifluoroethanol; TMT, tandem mass tag

[Created with BioRender.com].

resuspended in PBS for subsequent sorting. All cell populations

were sorted at 4◦C and collected in RPMI supplemented with

10% fetal calf serum and 1% protease/phosphatase inhibitor

cocktails (Sigma-Aldrich) to preserve cell viability and protein

integrity, respectively. Samples were washed three times with

ice-cold PBS supplemented with 1% protease/phosphatase

inhibitor cocktails (5min, 1,000 g, 4◦C) and cell pellets were

freeze-dried and stored at−80◦C until further processing.

Sample processing strategies for MS/MS
proteomics analysis

A total of 10 sample processing strategies, combining five

different cell lysis procedures (P1-5) with two well-described

approaches for sample clean-up and peptide recovery (SP3,

C18), were evaluated in triplicates in 50,000 (50k), 10,000 (10k),

and 2,500 (2.5k) cells (Figure 1). 106 cells were used as a

reference (Ref) sample of maximum proteome coverage.

Protein extraction procedures

Lysis buffer volume per cell number was determined

by titration (data not shown) to achieve maximum protein

extraction and minimum sample dilution. Thus, 40, 50, 70, and

100 µL of lysis buffer were used for 2.5, 10, 50k, and 106 cells,

respectively. After lysis, samples were stored at −80◦C until

further processing.

- P1: Urea-based lysis buffer [adapted from (26)]. Cell pellet

was lysed in 20mMHEPES pH 8.5, 9M urea, 1mM sodium

orthovanadate, 2.5mM sodium pyrophosphate and 1mM

ß-glycerophosphate, followed by sonication in an ice-water

bath (3 cycles, 5 s each) and centrifugation at 21,000 g at

RT for 15min. The supernatant containing the proteins

was stored.

- P2: Triethylammonium bicarbonate (TEAB)-based lysis

buffer [as described by (27)]. Briefly, cells were lysed in

TEAB lysis buffer (8M urea in 100mM TEAB pH 8.5)
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followed by freeze-drying and overnight storage at −80◦C.

Next day, samples were sonicated in an ice-water bath (30

cycles, 30 s on/30 s off) and stored.

- P3: Sodium dodecyl sulfate (SDS)-based lysis buffer

[adapted from (23)]. A lysis buffer containing 0.5%

SDS, 50mM HEPES pH 8.5, 1 µg/µL DNase and

1% protease/phosphatase inhibitor cocktails was used

for protein extraction. The mixture was heated (5min,

95◦C) and centrifuged (21,130 g, 15min, RT) to collect

the supernatant.

- P4: Trifluoroethanol (TFE)-based lysis buffer [as

described by (28)]. Briefly, cells were lysed by adding a TFE

lysis buffer (50% TFE in 50mM ammonium bicarbonate

pH 8.0) and incubated at 60◦C for 2 h, before sonication in

an ice-water bath for 2 min.

- P5: Hypotonic lysis buffer (method developed in-

house based on previous knowledge, more information

in Supplementary materials and methods). Cell lysis was

performed in 30mMHEPES, 0.5mMdithiothreitol (DTT),

0.1mM EDTA, and 1% protease/phosphatase inhibitor

cocktail. The sample was incubated at 4◦C for 5min before

undergoing four freeze-thaw cycles in dry-ice and 42◦C,

respectively. The supernatant containing the proteins was

collected after centrifugation (21,130 g, 15min, 4◦C).

All samples were quantified and silver-stained as described in

Supplementary materials and methods.

Sample clean-up and peptide recovery

Proteins were reduced with DTT and alkylated with

iodoacetamide before protein digestion was carried out with

Lys-C (4 h) and/or trypsin (overnight), applying the conditions

described by Sielaff et al. (26), Bensaddek et al. (27),

Hughes et al. (23), and Wang et al. (28) for samples lysed

with methods P1, P2, P3, and P4, respectively. For P5-

lysed samples, conditions were defined based on previous

experience and published optimizations (29). More details

in Supplementary materials and methods. Subsequently, peptide

samples were subjected to clean-up and recovery approaches

(i.e., SP3 and/or C18) for further liquid chromatography (LC)-

MS/MS analysis.

- SP3 technology. In this single-pot, solid-phase-enhanced

sample preparation method described by Hughes et al.

(23) and modified by Sielaff et al. (26) and Hughes

et al. (24), protein digestion and peptide purification

are performed on beads (Sera-Mag Carboxylate-Modified

Magnetic Particles; GE Healthcare, Chicago, IL/US).

Briefly, protein samples were incubated twice with beads

in 70% acetonitrile (ACN) for 18min. After incubation,

bead-bound proteins were retained by a DynaMagTM-PCR

Magnet (Thermo Fisher) and the supernatant containing

detergents, salts and other contaminants was discarded.

After three washing steps with 70% ethanol andACN, bead-

bound proteins were enzymatically digested. Afterwards,

peptides were eluted with 2%DMSO, lyophilized in a freeze

dryer and stored at−20◦C.

- C18 column-based approach. This method only concerns

the peptide clean-up and recovery, as protein digestion

must be performed before in a tube. C18 StageTips were

prepared by driving a needle through an EmporeTM C18

Extraction Disk and inserting the membrane cut-out inside

a tip, as described by Rappsilber et al. (30). Columns

were activated with 100% methanol, 50% ACN and 0.1%

trifluoroacetic acid (TFA). Acidified peptide samples were

loaded onto the column and after washing with 0.1% TFA,

peptides were eluted with 0.1% TFA/70% ACN, lyophilized

and stored at−20◦C.

Tandem mass tag (TMT) labeling

Lyophilized peptides from 2.5 and 50k cMo, ncMo, iMo

and T cells from PB and MAC and T cells from GBM samples

were directly labeled for 1 h at RT with 10 and 20 µg of TMT

reagents (TMTproTM 16plex experiment, Thermo Scientific),

respectively, after resuspension in 40mM HEPES pH 8.4. The

reaction was quenched with 5% hydroxylamine for 15min.

TMTpro labeled samples were randomly pooled in 5 different

TMT sets (each containing 54 µg protein) and lyophilized. A

mix of PBMC and GBM proteins was used as a bridge sample

(TMTpro-134N tag) to normalize the data across TMT sets.

MS/MS data analysis

Sample processing for LC-MS/MS analysis is described in

Supplementary materials and methods.

Raw data files from the technical evaluation analysis with

cell lines were converted to mgf using the msConvert tool

(ProteoWizard toolkit, v3.0.20157) (31). Peak lists obtained from

MS/MS spectra were identified using X!Tandem Vengeance

v2015.12.15.2 on SearchGUI v3.3.5 (32). Protein identification

was conducted on PeptideShaker v1.16.31 (33) against a

concatenated target/decoy UniProtKB database [release Oct

2018, 42,517 (target) sequences], including the cRAP database

(common Repository of Adventitious Proteins, v2012.01.01;

The Global Proteome Machine). Search parameters were set as

follows: fully tryptic digestion (no P rule) with up to 3 missed

cleavages; 10 ppm and 0.02 Da as the precursor and fragment

mass tolerances, respectively; and carbamidomethylation of Cys

and acetylation of protein N-term and oxidation of Met as fixed

and variable modifications, respectively.
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For TMT analysis on PB and GBM cell populations, raw

data were first converted to peak lists using ProteomeDiscoverer

v2.4 (Thermo Electron) and submitted to the UniProtKB

database (Homo sapiens minimal, 20,596 entries), using Mascot

v2.2.07 for protein identification. Search parameters were set

as follows: 10 ppm and 0.02 Da as the precursor and fragment

mass tolerances, respectively; fully tryptic digestion (no P rule)

with up to 2 missed cleavages; oxidation of Met was set as

variable modification and carbamidomethylation of Cys, and

TMT16plex on N-term and Lys were set as fixed modifications.

The 5 TMT-16plex analyses were normalized to each other by

the bridge sample.

In both data analyses, a 1% false discovery rate (FDR) was

set for peptide spectrum matches (PSM), peptides and proteins.

Moreover, only proteins with at least 2 unique peptides identified

in all technical and/or biological replicates were considered in

the analysis, unless otherwise indicated.

The MS data along with the identification results have

been deposited to the ProteomeXchange Consortium (34) via

the PRIDE partner repository (35) with the dataset identifiers

PXD018872 (cell lines) and PXD026604 (PB and GBM).

Sample processing for
immunophenotypic studies

Two FC combinations of 17 and 13 fluorochrome-

conjugated antibodies (Panels C and D, Supplementary Table 1)

were designed to validate the MS-based characterization

performed on both sorted PB and GBM subpopulations.

Markers were selected based on their high protein coverage by

MS and their varying expression levels across subsets. Proteins

including isoforms were not considered. Both antibody panels C

andD included a common backbone of 6markers for population

immunophenotypic identification (i.e., CD45 for leukocytes,

CD33 for myeloid cells, HLA-DR for total antigen-presenting

cells (APC), CD14 and CD16 for monocyte subsetting

and CD64 for microglia/macrophages). These 6 markers

were also combined in panel E (Supplementary Table 1) to

determine background staining and determine presence/absence

of a protein.

Samples were processed according to the sample

preparation and staining standard procedures described at

www.EuroFlow.org. All incubations were performed at RT in

the dark. Briefly, a total of three tubes per sample (containing 10

× 106 PBMCs or 0.5 × 106 GBM cells/tube) were stained with

antibody panels C, D, and E, respectively, for 30min, washed

with PBS and incubated with a viability marker (Zombie NIR,

Biolegend, San Diego, CA/USA) for 30min. Cells were washed

once and subsequently incubated with 100 µL of reagent A

of the Fix&PermTM Cell Permeabilization Kit (Sanbio, Uden,

The Netherlands) for 15min. After a washing step with PBS

containing 0.5% bovine serum albumin, 0.1% sodium azide

and 2mM EDTA (pH 7.4), cells were resuspended in 100 µL

of reagent B (Fix&PermTM Cell Permeabilization Kit) and

incubated again with antibody panels C and D for 15min to

allow intracellular staining. Finally, cells were washed once

and resuspended in 500 µL of PBS for acquisition using a

three laser (405, 488, 640 nm) Aurora spectral flow cytometer

(Cytek Biosciences, Fremont, CA, US). Data analysis was

performed with InfinicytTM software v2.0.2.d.000 (Cytognos

S.L., Salamanca, Spain).

Ethics approval

All procedures were performed in accordance with the

ethical standards of the responsible committee on human

experimentation (institutional and national) and with the

Helsinki Declaration of 1964, as revised in 2013. Informed

consent was obtained from all patients included in the study.

Experimental design and statistical
rationale

For all MS-based experiments with cell lines, three technical

replicates were used. MS-based and FC experiments with

biological samples were performed with at least 5 donors.

Biological samples collected for MS experiments were labeled

with TMT separately and combined. Additional details can be

found in the text above. For continuous variables, mean and

standard deviation (SD) were calculated. For non-continuous

variables, median and range were determined and statistical

significance (p-value < 0.05) was calculated by the non-

parametric Kruskal-Wallis and Mann-Whitney U tests with

Dunns’ and Bonferroni’s test, respectively, to correct for multiple

comparisons. The degree of correlation between two different

cell conditions was determined by the Spearman correlation.

All statistical analyses were performed using GraphPad Prism

8.0 software (GraphPad Prism, San Diego, CA, USA). Proteome

Discoverer v2.4 (Thermo Fisher) was employed for principal

component analysis (PCA), hierarchical clustering analysis and

Volcano plots.

Results

Performance of cell lysis procedures
combined with SP3 and C18 sample
clean-up methods

Firstly, we assessed five cell lysis protocols (P1–P5) in THP1,

dTHP1 and HT-29 cell lines by determining the extracted

protein amount (Supplementary Figure 2). Quantification of
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50k cells revealed that P5/hypotonic was the least efficient

method (in dTHP1 and HT-29 cells), whereas P3/SDS reported

the highest protein yield in the three cell lines. Also, silver

staining of P1-to-P5-lysed samples (Supplementary Figure 3)

showed highly similar protein distribution profiles for the same

cell types. Since enough protein was obtained in all cases, only

dTHP1 cells were used to evaluate the performance of all lysis

methods combined with SP3 and C18 clean-up strategies to

reduce the technical complexity of the study. For the same

purpose, we compared two different LC gradient times (60 and

160min) (Supplementary Figure 4 and Supplementary Tables 2,

3) in five randomly selected protocol combinations seeking to

reduce the total LC-MS/MS measurement time. A significant

improvement (2- to 10-fold; p-value < 0.05) in protein

identification was observed when using the longer gradient. The

analysis of the SP3- vs. C18-combined procedures (Figure 2A

and Supplementary Table 3) reported better performance of the

bead-based system, with significant differences in terms of

identified proteins, peptides and PSMs between both sample

clean-up strategies when coupled to P1–P4. Although the same

pattern was shown for peptides and PSMs for P5-SP3 vs. P5-C18,

total protein identifications did not significantly differ between

the clean-up approaches. Of note, P3-C18 only revealed a dozen

of proteins. Finally, processing cost and time and throughput

parameters were also evaluated (Supplementary Tables 4A,B)

indicating comparable pricing for both alternatives and a shorter

processing time for the C18 method vs. SP3 when only assaying

one sample at a time (10–30min vs. >60min). However, the

throughput of the bead-based system is superior leading to

higher time efficiency. Based on these results, only SP3-coupled

methods were further assessed.

Selection of the best lysis protocol-SP3
combination for the analysis of small
clinical samples

Overall, SP3-combinations performed similarly concerning

the total proteins identified regardless the P-cell lysis used

(Figure 2A), except for P5 (∼1,000 fewer proteins detected).

On average, ∼3,500 proteins (with ≥2 unique peptides),

48,000 peptides and 77,000 PSMs were identified per protocol

for dTHP1 cells, with a total of 5,975 distinct proteins

detected throughout the five procedures. When considering

the maximum proteome coverage by protocol (i.e., all proteins

identified in any of the replicated experiments), an overlap

of 40% (2,398/5,975) proteins among the five combinations

was observed (Figure 2B), and one-fifth (1,208/5,975) of

all proteins were exclusively identified by any of the five

procedures (Supplementary Table 5), with P1-, P3- and P4-

SP3 showing the highest recoveries (262, 264, and 306 unique

proteins, respectively).

To further select SP3 combinations for subsequent

evaluation in small inputs, and in addition to proteome

coverage, several parameters were considered: (i) technical

reproducibility, (ii) spatial distribution, (iii) functional

annotation per protocol, (iv) processing time, (v) cost, (vi)

accessibility, and (vii) ease of use (Supplementary Table 4).

(i) To assess the data quality and the reproducibility of the

protocols, correlations were calculated for the technical

replicates using the relative normalized spectral abundance

factor (NSAF) values (Supplementary Figure 5A). P1-, P3-

and P4-SP3 procedures were the best performers, whereas

P2-SP3 showed poor correlations for 2 out of 3 replicates (r2 =

0,44). (ii) As for the spatial distribution analysis (Figure 2C),

the expected proportion of proteins per subcellular location

(according to the database) was used as a reference to determine

which method better reflects the spatial composition. Deviation

vs. the reference distribution was calculated for each subcellular

compartment (Supplementary Table 5). Overall, the P1/urea

method better reflected the actual protein distribution across

subcellular locations (approach showing the lowest variation,

average: 12.8%), closely followed by P4/TFE and P3/SDS, and

with P5/hypotonic depicting the highest variation (average:

17.6%). When taking a closer look at the data, it was observed

that the cell membrane and nucleus compartments were

better represented by P1 compared to other methods and

that there was no compartment where it performed the

worst. P2/TEAB was better at isolating cytoplasmic proteins

(as P4 also was), whereas P3 worked well for the nuclear

subfraction. (iii) Extracted proteins were annotated to their

function using the Reactome pathway database (36). Overall,

no significant differences were observed between the protocols

(Supplementary Figure 6A and Supplementary Table 6), with

most of the pathways less represented by proteins identified by

P5-SP3. (iv) Average processing time was 19 h, with P3 being

the shortest (caused by elimination of the Lys-C digestion

step) and P2 the longest (almost 30 h). (v) Pricing varied from

e1.60/sample for P3 and P5 to e2.60 for P2 and P4 methods.

P1 had an intermediate cost of e2.04 per sample. (vi) All tested

protocols were accessible and (vii) easy to use, however, P2 was

the most tedious due to the 30 cycles of on/off sonication (if

using a non-programmable ultrasonic bath).

Based on the lower total number of proteins, peptides

and PSMs identified, P5-SP3 was excluded for further analysis.

Since the assessment of the technical reproducibility reported

poor correlations for P2-SP3, this combination was also

discarded. As for the other three approaches, the data

quality evaluation (Supplementary Figure 5A) reported a better

correlation between P1–P3 than P1–P4 and P3–P4. Aiming at

selecting the best combination, further testing of P1/urea- and

P3/SDS-SP3 strategies on other cell models (i.e., THP1 and HT-

29) (Supplementary Figure 7 and Supplementary Table 7) was

performed. Overall, no significant differences were observed

between the two approaches. Hence, considering the preference
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FIGURE 2

Performance of P1-P5 cell lysis protocols combined with SP3 or C18 clean-up methods in 50,000 dTHP1 cells. Experiments were run in

triplicate and depicted proteins were identified with at least 2 unique peptides. (A) Number of proteins (left panel), peptides (total and unique)

and validated peptide spectrum matches (PSMs) (right panel) identified per procedure. (B) Attribute plot displaying the qualitative proteomic

analysis of P1–P5 combined with SP3. Here, maximum proteome coverage (i.e., all proteins identified by any of the three replicates per protocol)

was considered in the analysis. Each vertical bar shows unique protein numbers and corresponds to either a unique procedure (white-, light

grey-, medium grey-, dark grey- and black-filled dots for P1-, P2-, P3-, P4-, and P5-SP3 combinations, respectively) or a set of procedures

(black dots interconnected by lines). The bar chart on the bottom left side plots the total number of proteins identified per protocol. (C)

Subcellular location distribution of proteins identified per protocol and expected spatial distribution for dTHP1 proteome (based on all protein

datasets for this cell model). Protein numbers are expressed in relative percentages (%). The main subcellular location per protein was assigned

according to UniProt database. Data used for the graph is collected in Supplementary Table 5. P1, urea-; P2, TEAB-; P3, SDS-; P4, TFE-; and P5,

hypotonic-based cell lysis. *p-value <0.05 and 10% FDR; ns, not significant. Significant di�erences were calculated using the Mann Whitney test.

for non-detergent based methods for downstream steps (due

to potential issues of detergents during MS analysis), and

considering the high number of proteins, peptides and

PSMs obtained, the greater reproducibility, the unbiased

representation of proteins isolated from the different cell

compartments (with a very good performance for membrane

and nuclear proteins), its ease of use, required processing

time, affordable cost and required equipment, P1/urea-SP3 was

selected as the optimal procedure to investigate the proteome of

low numbers of closely-related cells.

Performance of P1/urea-SP3 procedure
in low cell numbers

For the evaluation of the P1-SP3 approach on small

inputs, 2.5 and 10k cells from dTHP1, THP1 and HT-29

cell models were used. Additionally, a 20 µg-sample per cell

line was also evaluated as a reference (Ref) for the complete

proteome coverage. As observed in Supplementary Figure 2,

very limited amount of protein was quantified and/or detected

by silver staining (Supplementary Figure 3) in any of the cell

lines at low cell numbers. However, the MS analysis of these

samples (Figures 3A,B) reported 1,308 ± 141, 156 ± 45, and

266 ± 51 proteins (≥2 unique peptides) from 2.5k dTHP1,

THP1 and HT-29 cells, respectively. The number of proteins

identified increased 1.5–1.7x (1,962 ± 192, 265 ± 77, and

411 ± 49, respectively) (Supplementary Tables 3, 6) when no

peptide/protein limit was set. In the same conditions, for 10k

cells, almost 2x (for dTHP1) and 8x (for THP1 and HT-29)

more proteins were detected (i.e., 3,478 ± 571, 2,019 ± 177,

and 3,127± 164 proteins, respectively). Nevertheless, even when

using a more stringent criterion for protein assignment (i.e.,

≥2 unique peptides/protein), no significant differences were

observed for 10 and 50k cells vs. Ref in all cases, and also

for 2.5k vs. Ref for dTHP1 cells. Of note, proteome coverages

from 50k cells and Ref sample were highly similar in terms

of proteins identified. Correlation assessment among replicates

(Supplementary Figure 5) reported a good reproducibility level

(0.81–0.95, 0.84–0.94, and 0.86–0.94 ranges for dTHP1, THP1,

and HT-29 cells, respectively) even at low cell numbers.

The distinctive proteins detected were assigned to their

main subcellular location according to the UniProt database
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FIGURE 3

Performance of P1/urea-SP3 protocol in di�erent low numbers of dTHP1, THP1, and HT-29 cells. (A) Proteins identified per condition and cell

type, with at least 2 unique peptides. (B) Peptides (unique and total) and peptide spectrum matches (PSMs) per condition. (C) Subcellular

location distribution calculated as relative percentage (%) per total proteins. Protein locations were annotated according to UniProt database.

Lists of proteins can be found in Supplementary Table 3 (dTHP1) and Supplementary Table 7 (THP1 and HT-29). In all panels, a reference (Ref)

sample containing 20 µg of protein of each cell line was used as a control for maximum proteome coverage. P-values: * <0.05; ** ≤0.01; ns,

not significant. For (B): *, unique peptides; #, total peptides; $, validated PSMs. Significant di�erences were calculated using Kruskal-Wallis with

Dunns’ test for correcting for multiple comparisons.

(Figure 3C). Overall, highly similar distributions were observed

among the distinct dTHP1 cell numbers analyzed. Likewise,

no significant differences were detected for THP1 and HT-

29 cells, showing an almost identical layout for the 50k and

Ref conditions. Despite the significant decrease in identified

proteins when analyzing 2.5k cells, only minor differences

related to nuclear (increased) and Golgi/mitochondria proteins

(decreased) were observed compared to larger numbers of cells.

Furthermore, the functional annotation of small inputs

(down to 10k) revealed no selective loss for any of the function

groups, regardless of the cell type (Supplementary Figures 6B–

D and Supplementary Table 6). Although THP1 and HT-29
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showed a clear decrease in enriched pathways in 2.5k, this was

not observed for dTHP1. Interestingly, the functional differences

between cell lines were still observed from paucicellular samples,

e.g., in HT-29, a relative increase in proteins involved in

disorders of signal transduction, apoptosis and DNA repair was

observed, whereas cell cycle functions were enriched in THP1,

but not in dTHP1.

Proteomic characterization of
quantity-limited closely-related cells (PB
monocyte populations and GBM MAC)

Monocytic populations (cMo, iMo and ncMo from six PB

donors andMAC fromfiveGBMpatients), as well as T cells from

both tissues as non-monocytic lineage models, were profiled at

protein level on limited cell numbers (2.5 and 50k) by using the

selected P1/urea-SP3 protocol.

Up to ∼4,000 proteins (with at least 1 unique peptide) were

quantified across all samples (∼3,200 proteins if ≥2 unique

peptides/protein) (Table 1). However, to reliably characterize

the monocytic populations, only proteins present in all donors

and with at least 2 unique peptides were further considered

(Supplementary Table 8). Data analysis of 2.5k vs. 50k cells

(Figure 4A) uncovered a high overlap in identified proteins

(average of 81.0% ± 5.8%), reaching 2,105/2,339 (90%) proteins

in common for both cell numbers of GBM MAC. Furthermore,

a similar protein abundance distribution was observed for

both 2.5 and 50k cell conditions, with generally slightly more

uniform data for 50k cells (Figure 4A, bottom graphs). When

studying the protein distribution across monocytic subsets,

81.2% (1,823/2,246) proteins were commonly expressed in the

major monocyte populations (Figure 4B), also showing a close

cMo-iMo-ncMo connection in the PCA (Figure 4C). Moreover,

although GBM MAC and monocytes shared a significant

proteome (1,823/2,494; 73%) (Figure 4B), a clear separation

between these cells was observed in the graph. Interestingly,

cMo and GBM MAC shared the expression of 106 proteins,

41 of which were also expressed by ncMo (Figure 4B). Despite

the abovementioned high overlap between the proteomes of

monocytic subsets, protein expression levels differed among

cell populations (Figure 4D) reflecting the dynamic regulation

at the protein level within these cells. In particular, significant

differences in protein expression (2-fold change) were observed

for cMo vs. ncMo (56 proteins) and vs. GBM MAC (160

proteins) (Figure 4E). On the other hand, iMo and cMo

appeared to be more similar, with only 2 proteins (TNSP3

and HMGN5) differentially expressed; whereas this number

increased to 38 when iMo vs. ncMo were compared (Figure 4E).

The functional analysis of common proteins for monocytes

and macrophages revealed the enrichment of regular cell

functions, such as metabolism, protein translation and cell

cycle, and other cell-specific activities such as signaling by

interleukins and NOTCH4, membrane trafficking, antigen

processing, MHC-I andMHC-II antigen presentations and Toll-

like receptor cascades (Supplementary Table 9). Remarkably, a

good correlation (rs = 0.98) was found for all these pathways

when comparing 2.5k- vs. 50k-cells-derived data (Figure 5A).

On the other hand, the analysis of the distinctive proteins

per population uncovered a diverse distribution of functions

(Figure 5B). Metabolic pathways were represented within the

four myeloid subsets, with higher coverage in iMo and GBM

MAC. Conversely, signal transduction functions were further

depicted in cMo and ncMo. Figure 5C shows a deeper analysis

of the pathways, number of distinctive proteins and enrichment

scores per population.

As for T cells (data not shown), more than three-quarters

of total T cell proteins (1,863/2,441; 76%) were in common

regardless of the tissue origin (i.e., PB or GBM), grouping

close to each other in the PCA (Figure 4C) and depicting

similar protein expression levels. However, differences were also

observed as 231 and 347 proteins were expressed by T cells

from PB and GBM, respectively, but not by their corresponding

counterpart. A functional enrichment analysis of these proteins

revealed that T cells infiltrating GBM are involved in multiple

signal transduction pathways (e.g., PI3K/AKT, VEGF, PDGF,

FGFR1, MAPK), whereas those from healthy PB are engaged

in more steady-state functions such as mRNA splicing, showing

the influence of the (tumoral) microenvironment in their

cell proteomes.

Comparison of the selected P1/urea-SP3
method with other studies

To demonstrate the relevance of our data, we compared the

obtained results with those from other studies. For instance,

Ravenhill et al. (37) recently reported the surface proteome

of cMo by biotinylating the membrane of 107 cells to further

perform TMT-based MS proteomics. A total of 373 proteins

were identified, with 22 contributing to almost 70% of the

surface proteome. In our study, using 4,000x fewer cells and

without any enrichment step, 82% (18/22) of these proteins

were identified (100% when using 50k cells). Likewise, Soday

et al. (38) defined 593 plasma-membrane annotated proteins

in cMo by following an analogous biotinylating-based strategy,

of which 347 (contributing to 88% of cMo surface proteome)

were detected from 2,500 cells in our report. Interestingly, Zeng

et al. (39) claimed to have profiled the monocyte proteome

knowledge base; however, monocyte samples only consisted

of cMo contaminated with basophils and dendritic cells, and

relaxed criteria were used for protein selection (i.e., 4% FDR, 1

peptide/protein). Their results reported 2,237 proteins, but only

1,461 (39%, 1,461/3,737) matched our data from FACS-purified
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TABLE 1 Number of proteins identified per condition (2.5 and 50k) and cell type (cMo, iMo, ncMo, MAC, PB T cells, GBM T cells).

Cell population

(cell number)

Number of identified proteins

Maximum In all donors

At least 1

unique

pp/protein

≥2 unique

pp/protein

At least 1

unique

pp/protein

≥2 unique

pp/protein

cMo (2.5k) 3,881 3,211 1,930 1,861

cMo (50k) 3,737 3,163 2,109 2,015

iMo (2.5k) 3,915 3,229 2,046 1,972

iMo (50k) 3,995 3,288 2,069 2,069

ncMo (2.5k) 3,903 3,224 1,758 1,695

ncMo (50k) 3,902 3,225 2,198 2,095

MAC (2.5k) 3,599 3,076 2,481 2,332

MAC (50k) 3,842 3,210 2,218 2,112

PB T cell (2.5k) 3,837 3,208 2,078 1,998

PB T cell (50k) 3,902 3,225 2,198 2,095

GBM T cell (2.5k) 3,600 3,075 2,430 2,293

GBM T cell (50k) 3,934 3,239 2,351 2,211

Maximum refers to proteins identified in any biological replicate, whereas In all donors refers to those proteins systematically detected in all biological replicates.

cMo, classical monocyte; iMo, intermediate monocyte; ncMo, non-classical monocyte;MAC, glioma macrophage/microglia; PB, peripheral blood; GBM, glioblastoma; pp, peptide.

cMo (purity>96.4%; 2 pp/protein, 1% FDR, proteins present

in all donors) highlighting the importance of high-quality

samples and strict selection criteria to define cell reference

maps. As for studies on minute amounts of macrophages,

our study outperformed the results of Sielaff et al. (26) who

evaluated and modified the SP3 methodology in bone marrow-

derived macrophages from mouse. Whereas, they identified

3,152 proteins from 25,000 cells, our study reported a similar

number (i.e., 3,076 proteins) from 10x fewer macrophages.

Considering the SP3 sample clean-up strategy and the data

analysis parameters were highly similar, the usage of a different

lysis buffer and mass spectrometer certainly influenced the

performance. Muller and colleagues (40) used a protocol similar

to our P3/SDS-SP3 coupled to a liquid handling robot (autoSP3)

reporting 500–1,000 proteins from 100 to 1,000 HeLa cells,

supporting once more the good functioning of the bead-based

system. When referring to studies oriented toward single-

cell analysis, technologies such as SCoPE2 (15) allowed for

quantification of 3,042 proteins from 1,490 monocytes and

macrophages, which outperformed our method; however, 10

days of instrument time were required for such analysis, whereas

in our case only 12 h were needed. Similarly, Budnik et al. (14)

used the SCoPE-MS system to quantify 767 proteins from single

cells; however, 200 cells were added as carriers for each cell

of interest to be measured (introducing potential noise) and

thousands of single cells had to be measured to obtain reliable

results (with a cost of $15–30 per cell). Remarkably, another

study based on SCoPE-MS (15) reported comparable results

to our data, as 2,700 proteins were identified from only 1,018

cells (in our study 3,881 proteins were detected from 2,500

cells). Similar results were also obtained with the SOPs-MS

(surfactant-assisted one-pot sample processing at the standard

volume coupled with MS) method (41).

Proteomics validation by high-end
spectral flow cytometry

To further validate the MS/MS data, a highly sensitive

antibody-based method (i.e., FC) was applied in paired samples

of the five evaluated populations (cMo, iMo, ncMo, MAC

from GBM, T cells from PB and GBM) to determine the

expression of 23 markers (15 membrane and 8 cytoplasmic

proteins, Supplementary Figure 8 and Supplementary Table 1).

First, FC data was compared vs. 50k-derived MS data

(Supplementary Table 10) uncovering a good concordance

(>75%) in protein detection (presence/absence) for tested

replicates across populations between both techniques for 16/23

(70%) markers. Seven markers (CD9, CD11c, CD18, CD45,

CALR, MPO, S100A9) even showed a 100% concordance

between FC and MS. Additionally, expression ratios (vs. cMo)

calculated either using the mean fluorescence intensity for

FC and the normalized abundance values for TMT-based MS

(Figure 6) reported a moderate (rS: 0.49) average correlation

for all evaluated markers, with 11/23 (48%) proteins depicting
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FIGURE 4

Quantitative proteomics analysis of the three major monocytic populations from peripheral blood of healthy donors and

macrophages/microglia from glioblastoma patients. (A) Proteins systematically identified and quantified in all biological replicates in 2.5k (grey)

and 50k (dark pink) cells. Venn diagrams (upper figure) display the overlapped proteins between the evaluated cell numbers, whereas the violin

plots (lower figure) show the distribution of the quantitative data. (B) Venn diagrams of proteins identified and quantified in all donors, indicating

common and distinctive proteins per population. (C) Principal component analysis (PCA) plot displaying the clustering of sample populations

based on abundances of all proteins identified and quantified (n = 3,455) with at least two unique peptides and 1% FDR. (D) Hierarchical

clustering analysis (using Pearson’s correlation distance/complete linkage method) and heatmap comparing Z-scores from normalized

expression values of proteins commonly expressed by monocytic populations (major populations and MAC). (E) Volcano plots showing log2

ratios of measured proteins in ncMo, iMo and MAC vs. cMo, iMo vs. ncMo, and T cells from GBM vs. T cells from PB. Green dots correspond to

significantly (p-value < 0.05) downregulated proteins (ratio < 0.5), whereas red dots represent significantly upregulated proteins (ratio > 2).

Numbers in the upper-right corner depict the total number of up- (red) and down-(green) regulated proteins per plot. cMo, classical monocytes;

iMo, intermediate monocytes; ncMo, non-classical monocytes; MAC, macrophage/microglia; GBM, glioblastoma; PB, peripheral blood.

strong (rS: 0.60–0.79) to very strong (rS: 0.80–1.00) correlations.

Moreover, the two -omics techniques performed quite similarly

for cytoplasmic and membrane proteins (average rS 0.47 ± 0.27

vs. 0.50± 0.25, respectively); however, somemembrane markers

(CD33, CD55, CD64, CD157) showed poor results as they were

not consistently identified by MS and two proteins (CD68 and

CD282) did not pass the signal-to-noise threshold of the mass

spectrometer equipment. Remarkably, the presence/absence

concordance for FC vs. MS was maintained when evaluating

2.5k cells, also including seven markers with 100% agreement

between both -omics. Conversely, overall correlation values were

weak (average rS: 0.30), although 4markers (CD31, CD157, LYZ,

MPO) presented strong to very strong correlations.

Confirmation of broad applicability of
P1/urea-SP3 method in other cell types

To prove the broad applicability of the method, we

applied the P1/urea-SP3 procedure for the analysis of

38 different cell types (n = 194 samples) with different

tissue origins (PB, bone marrow, skin, colon, peritoneal
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FIGURE 5

Functional enrichment analysis of the three major monocytic populations from peripheral blood of healthy donors and macrophages/microglia

from glioblastoma patients. (A) Scatter plot showing the correlation between significantly enriched (p-value < 0.05) functional pathways in 50

and 2.5k cells from all studied populations, based on found entities/total defined ratios calculated from proteins in common for all populations.

Spearman correlation coe�cient (rs) and p-value (p) are indicated. (B) Main groups of functional pathways defined by unique proteins per

population. (C) Selection of functional pathways determined by distinctive proteins per population. Bubble size is proportional to number of

proteins, and bubble color indicates the normalized enrichment score (NES) calculated based on the protein expression data. cMo, classical

monocytes; iMo, intermediate monocytes; ncMo, non-classical monocytes; MAC, macrophage/microglia.

dialysate), phenotypes (normal, tumoral), lineages (myeloid,

lymphoid, epithelial), pre-processing (sorting, no sorting),

experimental (in vitro, ex vivo) and stimulation (viral, bacterial,

unstimulated) conditions (Supplementary Table 11 and

Supplementary materials and methods). First, the P1/urea lysis

protocol was tested showing a good performance across all

cell types, regardless of the sample size and even at very low

cell numbers (down to 263 cells). Protein amounts per cell

were donor- and cell type-dependent (e.g., in bone marrow,

monoblasts expressed more protein amount vs. mature cMo).

Twenty-four of these populations (n = 112 samples) were

further processed with the SP3 approach for MS analysis (using

4 µg of protein per sample) reporting excellent results (3,700

± 359 proteins) and confirming the broad applicability of the

selected method.

Discussion

In the era of single-cell studies, new proteomics approaches

have been developed allowing e.g., profiling of the phenotypic

heterogeneity within the same cell population. However, these

single-cell-oriented strategies require highly (often home-built)

costly special devices and complex non-standardized protocols,

hampering their routine application in translational research

and clinical settings, which require high-throughput, easily

applicable and reproducible approaches. Profiling of individual

cells has obvious benefits, but it will be advantageous to have a

more affordable method, that is standardized, easy-to-use and

widely applicable in non-specialized proteomics environments

and that can reliably characterize paucicellular (closely-related)

samples. With this goal in mind, we assessed 10 combinations of
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FIGURE 6

Correlation between abundance ratios (vs. classical monocytes,

cMo) of selected proteins from paired samples in flow

cytometry (FCM) and mass spectrometry (MS). Each bubble

includes data for each protein and cell number (2.5 or 50k) from

cMo, non-classical monocytes, intermediate monocytes,

glioblastoma macrophages/microglia and T cells from

peripheral blood. Bubble colors indicate the Spearman

correlation value and bubble size is proportional to -log10

(p-value) as indicated below the panel. CD68 and CD282

proteins were not included as no quantification values were

calculated by MS. MPO, myeloperoxidase; LYZ, lysozyme C;

CTSB, cathepsin B; CALR, calreticulin.

five lysis buffers (P1–P5) with two sample clean-up techniques

[SP3 and C18 (23, 24, 30)] via a stepwise approach structured

in three phases. In the technical assessment stage, cell lines

for monocytes, macrophages and colon cancer cells were

processed to define the best procedure in a quantity-limited

setting. In the application stage, the three major monocyte

populations from PB and MAC from GBM (and T cells from

both tissues) were used as models to in-depth evaluate the

usefulness of the method for determining differences between

closely maturational-related cells. In the validation phase, the

feasibility of the selected method was proven in 38 different cell

types, and its performance was tested by high-end spectral FC.

Cell type features determine lysis efficiency and lysis reagents

might affect MS analysis (42). Therefore, the choice of the lysis

method is crucial to achieve optimal outcomes and must be

evaluated case-by-case. In this study, five lysis buffers were

selected based on their known performance and mechanism

for extraction of proteins. Overall, the methods employed

included urea as a denaturant reagent [P1 (26), P2 (27)], which

disrupts hydrogen bonding between amino acids weakening

the protein hydrophobicity; SDS as a detergent [P3 (23)]

that establishes hydrophobic interactions with proteins and

hydrophilic links with water; TFE as organic cosolvent [P4 (28)]

which destroys tertiary structures by weakening hydrophobic

interactions and disrupting water networks; and a hypotonic

solution (P5), which causes cells to swell as a result of osmotic

diffusion, leading it to burst, and therefore releasing the

protein content. Assessment of the abovementioned approaches

revealed different performances depending on the cell type

and number. Overall, P2–P4 cell lysis generally resulted in

better protein extractions when compared to P1 (up to 3

folds), suggesting that the usage of detergents and cosolvents

allows for better protein solubilizations and recovery as

demonstrated by Ashraf Kharaz et al. (43) and Proc et al.

(44), respectively. Furthermore, even though both P1 and P2

lysis solutions contained urea as main component, the amount

of extracted protein differed 2x for THP1 cells, corroborating

that the selection of the buffer (HEPES vs. TEAB, for P1

and P2, respectively) and the addition of protease/phosphatase

inhibitors (45, 46) are also relevant for the lysis. Remarkably,

P5/hypotonic performed the worst on 50k cells but could extract

quantifiable protein amounts in lower cell numbers (together

with P4/TFE) suggesting that more complex lysis buffers might

either be ineffective in low ranges due to sample losses and/or

could affect protein quantification (28, 47). Silver staining

and MS analysis confirmed the presence of proteins in non-

quantifiable samples, supporting the latter hypothesis.

As for clean-up methods, SP3 outperformed C18 in all

studied cases, regardless of the lysis buffer used, depicting the

advantages of this single-vessel paramagnetic bead-based system

where the hydrophilic interaction between carboxylate-coated
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beads and proteins (via ethanol-driven solvation capture on

the bead surface) permits removal of contaminants without

compromising the peptide purification in limited samples by

elution in aqueous conditions (24). Surprisingly, despite the

quantification differences observed for P1 vs. P2–P4 methods,

similar numbers of identified proteins were detected. This was

probably due to impurities from buffers P2–P4 still present in

the final sample to be measured and/or specific lysis buffer-

dependent proteins that were highly represented in those

mixtures. Also, notwithstanding the good performance of P2

in dTHP1 cells, a poor inter-replicate correlation (r2 = 0.44)

after MS analysis was observed presumably due to buffer

variation over time caused by the volatile nature of TEAB

(48). For P5/hypotonic method, no significant improvement

was observed, further highlighting the need to include a strong

molecule to enhance protein extraction. Of note, the poor

performance of P3/SDS-C18 in low cell numbers was most likely

due to filter clogging (49) caused by the high SDS percentage

and the fact that this detergent can elute with peptides affecting

the MS analysis. The addition of extra clean-up steps as those

of the FASP procedure (22) to eliminate the SDS might result

in better outcomes; however, this approach is time-consuming

and requires sample transfer steps [even in its micro version

developed by (50)], which can potentially affect the recovery of

the peptides.

Even though each P1–P4 SP3 combination identified a

similar number of proteins in dTHP1 cells, only 40% of the

total proteome (5,975 proteins) was detected in common to

these approaches, reflecting the different protein selectivity

per method. Therefore, to reliably select the best approach

for paucicellular samples, not only raw protein identification

numbers must be considered, but also protein types based

on their subcellular location and function. As for the former,

it was shown that the P1/urea method better reflected the

overall actual spatial distribution of the proteins, not enriching

for any particular compartment and with a clear better

representation of membrane and nuclear proteins as compared

with other protocols. As for the protein functions, themonocytic

model cells used here are known for their phagocytic and

antigen presentation activities (51), being the detection of

related proteins key to characterize them. In this sense, the

P1/urea approach allowed for the identification of relevant

membrane macrophage proteins, such as chemokine receptor 1

(CCR1) (52) and HLA-E molecule (53) whose expressions have

been described to be increased in the monocyte-macrophage

differentiation, and IL-6 receptor (54), restricted tomacrophages

vs. monocytes (not detected in THP1 cells). Thus, considering

the high identification efficiency for 50k macrophage-like cells

(similar proteome coverage as 20 µg-reference sample), the

correspondence with actual subcellular location distribution, the

great reproducibility, ease of use, the time needed and cost

per sample, the combination P1/urea-SP3 was selected as the

best approach.

Aiming at testing the performance of this method at

even smaller inputs, 2.5 and 10k cell samples were processed.

Although an expected decrease in identified proteins was

observed when lowering the cell numbers, up to 1,308 and

2,281 proteins (1,962 and 3,478 when >1 unique peptide) were

detected on average for 2.5 and 10k cells, respectively. Also, a

high inter-replicate correlation was observed in these samples.

The functional cell characterization and protein subcellular

location distribution remained unchanged, indicating the

P1/urea-SP3 method does not introduce bias in paucicellular

samples. Interestingly, differences between cell types could still

be determined in lower cell numbers. Thus, dTHP1 showed

more enriched pathways related to immune system-related

functions, transport and trafficking compared to THP1, in

line with the more mature maturational stage of dTHP1

(i.e., macrophages) and the immune-activated status of mature

monocytes (55–58). Conversely, THP1 cells (i.e., monoblasts)

were enriched in proteins for cell cycle division, typically

associated with more immature cells (58).

Despite major monocytic populations and GBM

macrophages have been extensively studied by different

approaches (51, 59–64), including MS-based proteomics

strategies (37, 39, 65–69), none of these analyses has been

performed in a quantity-restricted setting. Therefore, a 2.5k-cell

number lower limit was set for investigating the cMo, iMo,

and ncMo subsets from PB and MAC from GBM samples,

together with T cells from both tissues as an internal control.

Interestingly, the P1/urea-SP3 methodology performed better

in the ex vivo samples compared to the cell line assessment,

showing an 80% average overlap between 2.5 and 50k conditions

for all populations. Hence, biological analysis was based on 50k

cell-derived data.

The monocyte-macrophage protein signature was defined

by 1,823 proteins (detected with ≥2 unique proteins, in

all donors). Their expression modulated between populations

clearly distinguishing three groups: (i) GBM MAC, distinct

from the other monocytes, (ii) ncMo, and (iii) cMo+iMo.

Of note, ncMo appeared as the closest cell subset to GBM

MAC suggesting a cMo-iMo-ncMo-macrophage maturation

trajectory. The functional analysis of the commonly expressed

proteins revealed the involvement of monocytic cells in 479

enriched pathways (p-value< 0.05), including not only standard

cell functions (e.g., cell cycle, translation initiation) but also

cell-specific pathways. Among them, the NLRP3 inflammasome,

involved in the release of pro-inflammatory cytokines IL1β

and IL18 and whose expression in immune cells is limited to

the myeloid compartment (70, 71); and the IL-12 signaling,

triggered by monocytes/macrophages in response to pathogens

via Toll-like receptors inducing the adaptive immune response

(72). As for the Integrin signaling enriched cascade, it is well-

known that monocytes express these proteins favoring cell

adhesion, migration through the endothelium, phagocytosis

and proliferation (73). However, their expression levels differ
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between subsets as it has also been shown in this study

for CD11a, CD11b, CD11c, and CD18, with lower levels at

GBM MAC than monocytes. On the contrary, CD11d, whose

mRNA levels have been reported in monocytes by Villani et al.

(51), has not been detected in our study at the protein level.

These observations were confirmed by previous proteomics

reports on monocytes employing higher cell numbers (10-

66x more cells) (74). Also, Lysosome vesicle biogenesis and

other related pathways (ER to Golgi transport, ER-Phagosome

pathway, lysosome transport) were enriched in monocytes/MAC

depicting the role of the secretory cascade and the enzyme

production for further protein digestion of pathogens/damaged

cells in phagolysosomes.

Despite the high proteome overlap (73%), each monocytic

cell population exclusively expressed several distinctive

proteins. For cMo, 14 proteins were found (TAF10, CLC,

UGDH, PAK1, UBFD1, CAVIN1, TBCD, P3H1, CHKB,

ZMYND8, ACTR5, RANBP3, HMBS, VPS26C), mainly

involved in signal transduction and metabolism processes.

Of note, CLC (a.k.a. galectin-10), which regulates immune

responses via surface glycan recognition and is essential for the

anergy and suppressive function of CD25+ regulatory T cells,

has been reported to be exclusively expressed by eosinophils

and basophils in other studies (75–77). However, we have

demonstrated its presence in monocytes. Importantly, the

detection of Ser/Thr kinase PAK1 that relates to cytoskeleton

dynamics, cell adhesion, migration, proliferation and vesicle-

mediated transport, together with the overexpression of

cell motility-related molecules (PDLIM1, VCAN, PXN,

ITGAM, VCL, CTTN, NEXN, ILK, MAPRE2), supported

the canonical role of phagocytosis assigned to cMo. Also,

microbicidal enzymes such as MPO, CTSG and LYZ were

remarkably overexpressed compared to ncMo and GBM

MAC. Likewise, expression of pro-coagulation- (MMRN1,

THBS1, ITGB2/ITGA2B, SELP, GP6, F11R, GP5, FGA/B,

HPSE, VWF, VASP) and pro-inflammatory-related (S100A8,

S100A9) proteins was enhanced in these cells (vs. ncMo

and/or macrophages). C-lectin receptors, such as ficolin-1

which recognizes pathogen-associated molecular patterns

(PAMPs) and may also induce the secretion of IL-8, and the

CD36 scavenger receptor, were found overexpressed vs. GBM

MAC. Conversely, CTSB expression was higher in the latter

subset. Interestingly, cMo also showed patrolling capabilities

by the expression of transendothelial migration-related F11R

and PECAM1 proteins (at higher and similar levels vs.

ncMo, respectively).

On the other hand, iMo showed upregulation of metabolic,

gene expression, cell cycle, and DNA repair processes, depicting

the metabolic active behavior of these cells. Moreover, only

two proteins showed significantly different expression levels

vs. cMo, while 38 markers were distinctly expressed between

iMo and ncMo displaying a more similar phenotype to the

former subset. Considering previous suggestions that iMo

might not comprise a fully independent cell subset but a

continuation of the cMo to ncMo differentiation (78, 79), it

appears logical that these cells present heterogeneous profiles.

That is the case for inflammation processes since overexpression

(S100A12, CD36) and underexpression (S100A6, ALOX5) of

several pro-inflammatory markers was observed. Unlike ncMo,

iMo overexpress CTSB, LYZ, CD14 and PXN. Also, while

iMo have been classically described to have increased T-cell

stimulation function, HOMER3 protein, a negative regulator

of T-cell activation, was highly present in this subset, whereas

SPN, AIF1 and ADA (related to positive regulation of T-cell

coactivation and/or proliferation) were downregulated.

The ncMo subset displayed the distinctive expression

of 50 proteins involved in homeostasis (OTULIN), signal

transduction (ERBIN, NMI, CFP), DNA repair (BRD2, SDE2),

metabolism of proteins (MCCC2, CUL3, PPIL2, GZMM) and

RNA (RAB44, ISY1), and vesicle-mediated transport (STX4,

CHMP5, GAS2L1, MAP1A, RUFY3). The detection of SKAP1,

which regulates the T cell-APC conjugation, and RPS6KA5,

usually expressed inmacrophages to limit the production of pro-

inflammatory cytokines, supported the abovementioned closer

profile of ncMo to macrophages. Also, overexpression vs. cMo

of proteins related to apoptosis (ANP32A, CPPED1, ASAH1),

cell migration (MARCKSL1, ALOX5, MTSS1, S100A6, TPPP3),

anti-viral responses (ISG15, GBP1) and T-cell stimulation

(LCP1, ADA, AIF1) was previously shown (40, 80). Special

attention requires AIF1, a calcium-binding protein expressed in

macrophages, microglia and DCs, and involved in phagocytosis,

inflammation, antigen presentation and T-cell polarization

(81). AIF1 is important for monocyte conversion into pro-

inflammatory macrophages; however, little is known about

its expression within the monocyte subsets. Previous analyses

(82) have shown higher RNA levels in iMo>ncMo>cMo.

Although the lowest protein levels of AIF1 were also detected

in cMo, an opposite pattern was found for iMo and ncMo,

with the latter showing an identical pattern to GBM MAC.

The same profile was observed for the pro-inflammatory

immunoregulatory amidase NAAA. Expression of S100A6, a

calcium sensor/modulator, uncovered controversial outcomes

since previous transcriptomics and proteomics studies (74)

indicated higher levels in cMo vs. ncMo, whereas our data clearly

showed the opposite result, suggesting that their transcript and

protein levels do not correlate.

In GBM, there is a mix of mononuclear antigen-presenting

phagocytes, sharing functional profiles and large sets of

proteins. Also, marker co-expression in the same cells has

been previously observed, supporting the idea that they might

comprise a mixed population (83). In this study, three out

of five GBM MAC samples consisted of >96% microglia

cells. The GBM MAC proteome, profiled for the first time

in this study, reported the clustering of these samples based

on the abovementioned cell composition, being the highly

pure microglia samples closer to ncMo. Overall, GBM MAC

were significantly enriched in functions as vesicle-mediated

transport, scavenging by class A/H receptors, IFN and PD-1
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signaling, and integrin cell surface interactions. A deeper

analysis revealed a mixed proteomics M1/M2 profile [previously

observed at RNA level (84, 85)], with a higher representation of

proteins associated with M2 macrophages showing a more pro-

tumoral and anti-inflammatory phenotype. Although some M1

(CCL5, CD64, HLA-II molecules) and anti-tumoral (ADAM10,

ADAM17, SCIN) markers were detected, the majority of GBM

MAC expressed M2-linked proteins as CD14, CD36, CD163,

CD204, CD206, TGFβ and HLA-II molecules (HLA-DBQ1, -

DPA1, -DPB1, -DRB1, DRB3, -DRB5, CD74), together with

other anti-inflammatory (FCER1G, TYROBP, SIGLEC9/10)

and angiogenesis-stimulating/pro-tumoral surviving (SPP1)

markers. Other M2-related functions (83, 86) were annotated,

e.g., phagocytosis/digestion (CD11b, CPVL, RAB32, CTSB,

CPQ), degradation (GAA, GLA, GUSB, BLAT1, HSPA5, VPS4A,

PPT1) and homeostasis restoration (AQP4, FTH1, FTL).

Finally, we validated 15 membrane and 8 cytoplasmic

proteins by FC reporting an overall optimal identification

performance of MS on paucicellular samples, except for a few

membrane markers (i.e., CD33, CD55, CD64, CD157) that were

not systematically detected in all donors. As expected, several

membrane-bound proteins were more difficult to extract and,

therefore, to identify by MS (87); however, by using membrane-

targeted lysis methods, this correlation might significantly

improve. As for the expression quantification, even though

an increased sensitivity was observed for FC (due to better

performance of antibodies vs. mass tags), strong-to-very strong

correlations between both -omics were defined for almost half of

the tested proteins.

Nevertheless, the advantages of MS-based methods for

comprehensive proteome characterization are undeniable. In

this particular study, we have demonstrated the reproducibility,

high performance, cost and time effectiveness, ease of use

and broad applicability of combining a urea-based lysis

buffer with the SP3 sample clean-up method for the reliable

profiling of paucicellular closely-related populations. Our results

demonstrate complete proteome landscapes, even for 2.5k

cells, allowing the evaluation of protein expression modulation

between monocytes and macrophages and definition of

functional features per cell type. Additionally, GBM-purified

MAC and T cells have been characterized at the protein level for

the first time, and a demonstration of the broad applicability of

the method was conducted in 38 different cell types across 194

donor samples. Even though other MS-based approaches might

enable working at a single-cell level (14, 15), these methods are

still highly variable, time-consuming (88), expensive, require

complex devices and/or do not offer complete proteome

coverages, hampering their application in translational research

and clinical settings (46) (Supplementary Table 4). By contrast,

the here proposed method offers the possibility of further

developing the clinical MS field for studying e.g., the immune

system, since limitations in sample material and access to the

required MS equipment are no longer a barrier.
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