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Renal ischemia/reperfusion (I/R) injury is a major cause of acute kidney

injury (AKI) by increasing oxidative stress, inflammatory responses, and tubular

cell death. Oxypurinol, an active metabolite of allopurinol, is a potent

anti-inflammatory and antioxidant agent. To investigate the therapeutic potential

and underlying mechanism of oxypurinol in ischemic AKI, C57BL/6 male mice

were intraperitoneally injected with oxypurinol and subjected to renal I/R or sham

surgery. We found that oxypurinol-treated mice had lower plasma creatinine

and blood urea nitrogen levels and tubular damage (hematoxylin-and-eosin

staining) compared to vehicle-treated mice after renal I/R injury. Furthermore,

oxypurinol treatment reduced kidney inflammation (i.e., neutrophil infiltration and

MIP-2 mRNA induction), oxidative stress (i.e., 4-HNE, heme oxygenase-1 [HO-1],

8-OHdG expression, and Catalase mRNA induction), and apoptosis (i.e., TUNEL

or cleaved caspase-3-positive renal tubular cells), compared to vehicle-treated

mice. Mechanistically, oxypurinol induced protein expressions of HO-1, which is

a critical cytoprotective enzyme during ischemic AKI, and oxypurinol-mediated

protection against ischemic AKI was completely eliminated by pretreatment with

tin protoporphyrin IX, an HO-1 inhibitor. In conclusion, oxypurinol protects against

renal I/R injury by reducing oxidative stress, inflammation, and apoptosis via HO-1

induction, suggesting its preventive potential in ischemic AKI.
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Introduction

Acute kidney injury (AKI) is significantly associated with morbidity and mortality

owing to serious complications, such as electrolyte imbalance, gastrointestinal bleeding, and

hospital-associated infections (1). Renal ischemia/reperfusion (I/R) injury, defined as the

restriction of blood supply to the kidney (ischemia) followed by blood flow restoration

and reoxygenation (reperfusion), is a major cause of perioperative AKI (2). Tubular cell

death is caused by a combination of renal tubular necrosis, which occurs because of

significant energy loss in renal tubular cells during ischemia, and apoptosis, which is

activated during reperfusion (3). Additionally, chemokines and cytokines released from

renal cells and leukocytes induce a strong inflammatory response during the reperfusion

phase, attracting the infiltration of leukocytes such as neutrophils to cause additional renal

tubular injury (4). However, the mechanisms of AKI are complex, and many of these

pathways remain unknown.
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Renal I/R injury is associated with the generation of reactive

oxygen species (ROS) that exceed defensive antioxidant systems

and consequent oxidative damage to macromolecules, such as

proteins, DNA, and lipids (2). Nuclear factor erythroid 2-related

factor 2 (Nrf2) modulates several cellular antioxidant mechanisms

that limit oxidative stress during I/R-induced kidney injury. Under

normal conditions, Nrf2 interacts with the negative regulator

Kelch-like ECH-associated protein 1 (Keap1), and is degraded by

ubiquitination. When activated, Nrf2-bound Keap1 is inactivated,

and Nrf2 proteins freely translocate into the nucleus and bind

to antioxidant response elements (ARE) encoding antioxidant

and detoxifying enzyme genes, including heme oxygenase-1 (HO-

1) (5–7). Among Nrf2 regulated genes, HO-1 has received

significant attention in treating numerous kidney diseases, owing

to its crucial cytoprotective role in various pathophysiological

conditions, including I/R injury-, LPS-, and nephrotoxin-induced

renal injury (8).

Oxypurinol is a well-known primary metabolite of allopurinol

that is specifically used to prevent gout, specific types of kidney

stones, and hyperuricemia (9). Previous studies have shown that

pretreatment of allopurinol attenuated renal I/R injury by anti-

oxidative (10), and anti-inflammatory (11) effects. In addition,

Zhou et al. demonstrated that pretreatment of allopurinol prevents

renal I/R injury by inhibiting high mobility group box 1 (HMGB1)

which is a novel marker of inflammation (12) expression in

a rat model. Compared to allopurinol, oxypurinol reportedly

has biological properties, including anti-oxidative (13, 14), anti-

inflammatory (13), and anti-cell death (15) activities, in diverse

pathological conditions. For examples, Escobar et al. (13) reported

that oxypurinol treatment protected against oxidative damage

and upregulated pro-inflammatory genes in acute pancreatitis.

LoBalsamo et al. (16) also demonstrated that oxypurinol protects

the heart from I/R injury in rats. One clinical study reported that

a 6-month oxypurinol therapy reduced mortality in patients with

both high serum urate and chronic heart failure (17). However,

the effect and underlying pathogenic mechanisms of oxypurinol

on I/R-induced AKI remain to be elucidated. In this study, we

evaluated the therapeutic potential of oxypurinol for ischemic AKI

and investigated its underlying mechanism.

Materials and methods

Animal preparation

All animal surgeries were approved by the Institutional Animal

Care and Use Committee (IACUC) of Pukyong National University

and conducted in accordance with the Guide for the Care and Use

of Laboratory Animals published by the US National Institutes of

Health (NIH Publication No. 85–23, revised 2011). Eight-week-old

C57BL/6 male mice (20–25 g) were anesthetized intraperitoneally

with pentobarbital sodium (50 mg/kg; Hanlim Pharma Co., Seoul,

Korea) and subjected to left nephrectomy and 30-min right

renal ischemic periods to clearly see the protective effect of

oxypurinol on ischemic AKI (18–20). The sham-operated mice

underwent the same surgical procedure without renal ischemia

(21). Some mice were intraperitoneally injected with oxypurinol

(25 or 50 mg/kg, Sigma-Aldrich) or vehicle (DMSO, 2.5 mL/kg,

Sigma-Aldrich) at 24 and 1 h before surgery or with hemin (25

mg/kg, Sigma-Aldrich) or vehicle (12.5mM, pH 7.3, NaOH, 10

mL/kg) 24 h before surgery based on previous studies (22, 23).

Separate cohorts of mice were injected with tin protoporphyrin

IX [SnPP, a heme oxygenase-1 (HO-1) inhibitor, 25 mg/kg, Tocris

Bioscience] or vehicle (DMSO, 2.5 mL/kg, Sigma-Aldrich) 30min

before the oxypurinol first treatment (24). Hemin was dissolved

in 0.1M NaOH, titrated to pH 7.3 with 3.6% HCl, and diluted

1:8 with saline. Body temperature was maintained at 36.5–37◦C

using a surgical heating pad (FHC, Bowdoin, ME). Mice were

euthanized 24 h after renal I/R injury with an overdose (200

mg/kg) of pentobarbital sodium. Kidney tissues were harvested

24 h post-operatively, and blood samples were taken from the

vena cava.

Measurement of kidney functional and
histological damages

Twenty-four hours after surgery, we measured plasma

creatinine (PCr) and blood urea nitrogen (BUN) levels using

creatinine and urea nitrogen reagent kits (BioAssay Systems,

Hayward, CA). To assess kidney histological damage, kidney

hematoxylin-and-eosin (H&E)-stained sections after renal

I/R or sham surgeries were evaluated by a pathologist who

was blinded. The kidneys were analyzed using the following

previously reported scoring method (25): 0, no damage; 1,

mild damage with rounding of epithelial cells and dilated

tubular lumen; 2, moderate damage with flattened epithelial

cells, dilated lumen, and congestion of the lumen; and 3, severe

damage with flat epithelial cells lacking nuclear staining and

luminal congestion.

Terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) assay and
immunohistochemistry (IHC) staining

Renal tubular apoptosis was detected by TUNEL staining

using a DeadEnd Fluorometric TUNEL System Kit (Promega,

Madison, WI) according to the manufacturer’s protocol. TUNEL-

positive cells were counted in 5–8 randomly chosen 200×

microscopic fields. IHC staining was performed to confirm

neutrophil infiltration and the generation of 8-hydroxy-2’-

deoxyguanosine (8-OHdG), an oxidized nucleoside of DNA. The

primary antibodies used were lymphocyte antigen 6 complex locus

G6D (Ly6G, 1:100, eBioscience, San Diego, CA), cleaved caspase-

3 (1:400, Cell Signaling Technology, MA) and 8-OHdG (1:500,

Abcam, Cambridge, UK). The respective HRP-labeled secondary

antibodies (BETHYL-Laboratories, Montgomery, TX) were used.

Ly6G and cleaved caspase-3 positive cells were counted in 5–

8 randomly chosen microscopic fields. The 8-OHdG densities

were measured in 5–8 randomly chosen microscopic fields using

Fiji Image J2 (NIH, Bethesda, MD), as described by Ruifrok

et al. (26).
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Western blotting

Kidney samples were homogenized with a RIPA lysis buffer

(50mM Tris-HCl [pH 8.0], 1% Triton-X 100, 0.5% sodium

deoxycholate, 0.1% SDS, 1M NaF) plus protease inhibitor

cocktail (Sigma-Aldrich, St. Louis, MO) and phosphatase inhibitor

cocktail (Sigma-Aldrich). Protein samples were separated by

SDS-PAGE and transferred to polyvinylidene difluoride (PVDF)

membranes (GVS, Bologna, Italy). After blocking with 5% bovine

serum albumin for 30min, the membranes were incubated with

antibodies against Ly6G (1:2,000, Fisher Scientific, Hampton,

NH), 4-hydroxynonenal (4-HNE, 1:2000, Abcam), HO-1 (1:2,000,

Cell Signaling Technology), and GAPDH (1:10,000, Bioworld

Technology, St. Louis Park, MN) overnight at 4◦C. The

membranes were then incubated with their respective HRP-labeled

secondary antibodies (1:3,000, BETHYL-Laboratories) for 1 h at

room temperature. Protein expression levels were normalized to

GAPDH. The protein band densities were then analyzed using

ImageJ (NIH, Bethesda, MD).

Quantitative RT-PCR

We measured HO-1 and catalase mRNA expression levels

by quantitative RT-PCR. Total RNA was extracted from the

kidney tissues using TRIzol reagent (Ambion, Austin, TX). The

extracted RNA from each sample was synthesized as cDNA

with random primers using reverse transcription PCR. cDNA

levels were measured by quantitative RT-PCR (Biorad, Hercules,

CA) using FastStart Universal SYBR Green Master Mix (Sigma-

Aldrich), catalase-specific primers (sense primer 5’-GGTACACG

CAAAAGGAGCA-3’ and anti-sense primer 5’- TCCCACAA

GATCCCAGTTACC-3’), and macrophage inflammatory protein

(MIP)-2-specific primers (sense primer 5’-CCAAGGGTTGAC

TTCAAGAAC-3’ and anti-sense primer 5’-AGCGAGGCACATCA

GGTACG-3’). To check for equal RNA input, mRNA expression

levels were normalized to GAPDH (sense primer 5’-ACCACAGTC

CATGCCATCAC-3’ and anti-sense primer 5’-CACCACCCTG

TTGCTGTAGCC-3’). Relative mRNA expression was calculated

using the 11Ct method. The specificity of the amplification was

confirmed by melting curve analysis.

Statistical analysis

Results were expressed as means± standard errors of the mean

(SEM). Data were analyzed using one-way ANOVA plus Tukey’s

post-hoc multiple comparison test and Student’s t-test. The Mann–

Whitney U test was used to analyze renal injury scores. Statistical

significance was set at P < 0.05.

Results

Oxypurinol pretreatment protects the
kidney against I/R injury via HO-1 induction

First, we assessed whether oxypurinol treatment protects

against ischemic AKI in mice. Plasma creatinine (PCr) and blood

urea nitrogen (BUN) levels were similar between vehicle- and

oxypurinol-treated mice subjected to the sham operation

(Figures 1A, B). As expected, PCr and BUN levels increased 24 h

after renal I/R injury in the vehicle-treated mice. However, both 25

and 50 mg/kg oxypurinol or 25 mg/kg hemin-treated mice were

significantly protected against kidney injury, as indicated by lower

PCr and BUN levels. Since HO-1 plays a critical protective role

in ischemic AKI by modulating kidney responses to injury (27)

and since we found that oxypurinol significantly induced HO-1

protein expression in the kidneys (Figures 1C, D), we investigated

whether oxypurinol protects the kidney against ischemic AKI via

HO-1 induction. However, we couldn’t find significant difference

between vehicle RIR and oxypurinol RIR group. For this, we

injected mice with tin protoporphyrin IX (SnPP), a selective

HO-1 inhibitor, before oxypurinol treatment and found that

pretreatment with SnPP significantly attenuated the protective

effect of oxypurinol on renal I/R injury, as evaluated by PCr and

BUN levels (Figures 1A, B).

Next, we assessed whether oxypurinol treatment protected

kidney tubular cells from death after renal I/R injury. Vehicle-

treated mice subjected to renal I/R showed severe loss of tubular

nuclei (necrosis), and increased tubular congestion and dilatation.

In contrast, oxypurinol treatment decreased renal tubular necrosis,

congestion, and dilatation compared with vehicle treatment

after renal I/R injury. However, pretreatment with SnPP before

oxypurinol administration significantly offset the oxypurinol-

mediated protective effect against histological renal tubular damage

after I/R injury (Figures 1E, F).

Oxypurinol pretreatment protects against
apoptotic tubular cell death after renal I/R
injury

Next, we evaluated apoptotic cell death, which is another

major tubular cell death mechanism by TUNEL assay (Figures 2A,

B), which is a method for detecting DNA fragmentation (28)

and by immunohistochemistry staining (Figures 2C, D) using

the antibody against cleaved caspase-3 which is a reliable

marker for apoptosis as well as the final enzymatic cascade of

apoptosis. Vehicle-treated mice subjected to renal I/R showed

severe renal tubular apoptosis; however, oxypurinol treatment

decreased this. SnPP pretreatment significantly prevented the

oxypurinol-mediated protective effects against apoptosis after renal

I/R injury.

Oxypurinol pretreatment attenuates kidney
neutrophil infiltration after renal I/R injury

Next, we assessed whether oxypurinol treatment protects

neutrophil infiltration by immunohistochemistry staining using

the Ly6G antibody. Vehicle-treated mice subjected to renal I/R

showed markedly increased neutrophil infiltration near the outer

stripe of the outer medulla, and was decreased by oxypurinol

treatment (Figures 3A, B). Similarly, the protein expression of

Ly6G (Figures 3C, D), as evaluated by Western blotting, and the

mRNA expression of MIP-2 (Figure 3E), as evaluated by RT-PCR,
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FIGURE 1

Oxypurinol protects against renal ischemia/reperfusion injury via heme oxygenase-1 (HO-1) induction. C57BL/6 male mice were subjected to sham

or 30min of renal ischemia surgeries. Some mice were pretreated with 25 or 50 mg/kg of oxypurinol at 24h and 1h preoperatively. To test whether

HO-1 induction is critical for oxypurinol-mediated renal protection against renal I/R injury, we injected an HO-1 inhibitor [25 mg/kg, tin

protoporphyrin IX (SnPP)] before oxypurinol first treatment. Some mice were pretreated with 25 mg/kg of hemin at 24 hours preoperatively. (A, B)

Twenty-four hours after surgeries, plasma creatinine (PCr) and blood urea nitrogen (BUN) levels were measured. (C) Kidney samples were subjected

to Western blotting using an anti-HO-1 antibody. GAPDH was used as a loading control. (D) Band intensities were measured using ImageJ. (E)

Representative images (magnification, 200×) of kidney sections subjected to hematoxylin and eosin (H&E) are shown. (F) Histological damages were

analyzed as described in the Materials and Methods section. Results are expressed as means ± standard errors of the mean (SEM) (vehicle or

oxypurinol [oxy] sham n = 4; vehicle, oxypurinol, SnPP, or SnPP + oxypurinol renal ischemia/reperfusion (RIR) n = 6). *P < 0.05 vs. vehicle sham; †P <

0.05 vs. vehicle RIR; #P < 0.05 vs. oxypurinol RIR.

increased in renal I/R injury; however, oxypurinol pretreatment

reduced the protein expression of Ly6G and the mRNA expression

of MIP-2 after renal I/R injury. However, pretreatment with

SnPP before oxypurinol administration significantly offset the

oxypurinol-mediated protective effect against upregulation of

Ly6G protein and MIP-2 mRNA expressions after I/R injury

(Figure 3).

Oxypurinol pretreatment attenuates
oxidative damage after renal I/R injury

Figures 4A, B show representative immunohistochemistry

images for 8-OHdG, a marker of oxidative stress to DNA, and the

density of 8-OHdG in the kidneys of each group of mice. Vehicle-

treated mice subjected to renal I/R had a markedly increased

density of 8-OHdG near the outer stripe of the outer medulla,

but oxypurinol treatment decreased the density of 8-OHdG after

renal I/R injury (Figures 4A, B). In contrast, SnPP pretreatment

significantly prevented the oxypurinol-mediated protective effects

against oxidative DNA damage after renal I/R injury (Figures 4A,

B). Furthermore, we evaluated the fold-change in the mRNA

expression of catalase, an antioxidant enzyme, using quantitative

RT-PCR. Catalase mRNA expression decreased after renal I/R

injury, but oxypurinol treatment prevented the decrease in mRNA

expression of catalase in the kidneys (Figure 4C). In contrast, SnPP

pretreatment significantly prevented the oxypurinol-mediated

protective effects against mRNA expression of catalase after

renal I/R injury. Additionally, Figures 4D, E show that the

expression of 4-HNE which is an indicator of lipid peroxidation

and 4-HNE modification occurs at several amino acids side

chains in a variety of proteins during oxidative stress (29), was

significantly increased in the I/R-injured kidneys, and oxypurinol-

treated mice subjected to I/R had decreased lipid peroxidation.

In contrast, SnPP pretreatment significantly prevented the

oxypurinol-mediated protective effects against lipid peroxidation

after renal I/R injury.
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FIGURE 2

Oxypurinol protects renal tubular apoptotic cell death after renal ischemia/reperfusion injury. C57BL/6 male mice were subjected to sham or 30min

of renal ischemia surgeries. Some mice were pretreated with 25 mg/kg of oxypurinol 24h and 1h before surgeries. Separate cohorts of mice were

injected with tin protoporphyrin IX [SnPP, a heme oxygenase-1 (HO-1) inhibitor, 25 mg/kg, Tocris Bioscience] 30min before oxypurinol first

treatment. (A) Representative images (magnification, 200×) of post-operative TUNEL staining in the kidneys are shown, and (B) the TUNEL-positive

cells were counted. (C) Representative images (magnification, 400×) of immunohistochemistry staining using anti-cleaved-caspase 3 (Cl-caspase 3)

antibody, and (D) the Cl-caspase 3-positive cells were counted. Results are expressed as means ± SEM (vehicle or oxypurinol [oxy] sham n = 4;

vehicle, oxypurinol, SnPP, or SnPP + oxypurinol RIR n = 6). *P < 0.05 vs. vehicle sham; †P < 0.05 vs. vehicle RIR; #P < 0.05 vs. oxypurinol RIR.

Discussion

Oxidative stress is one major pathogenic mechanism of

AKI, and occurs when the level of reactive oxygen species

(ROS) exceeds that of defensive antioxidant systems. ROS

produced by several sources, including mitochondria, xanthine

oxidase, and NADPH oxidase (30) causes renal dysfunction,

tubular necrosis, and apoptosis (31, 32). Oxidative stress

biomarkers include 4-hydroxynonenal (4-HNE) and 8-hydroxy-

2’-deoxyguanosine (8-OHdG). 4-HNE is an important marker

of lipid peroxidation that is produced under oxidative stress

(33). Additionally, 8-OHdG is a marker of oxidative DNA

damage, including nucleic and mitochondrial DNA (34).

Oxypurinol has a potential antioxidant effect to remove both

hydroxyl radicals and hypochlorous acid (35, 36). Indeed,

oxypurinol is well-known an inhibitor of xanthine oxidase

which generate ROS such as hydrogen peroxide and superoxide

during oxidation of xanthine, hypoxanthine and other purines

(36). Because one of the principal mechanisms of renal I/R

injury is an excessive production of ROS, and the protective

effect of xanthine oxidase inhibitors such as febuxostat and

allopurinol on ischemic AKI have been reported (11, 37), it is

possible that oxypurinol protects ischemic AKI via xanthine

oxidase inhibition.

Together with oxidative stress, inflammation is also a

critical pathogenic mechanism of ischemic AKI, and oxidative

stress and inflammation are tightly interrelated during AKI

development because ROS-induced oxidative damage recruits

inflammatory cells, such as neutrophils and macrophages, leading

to additional renal damage, cell death, and dysfunction (38). In

contrast, anti-inflammatory drugs also reduce oxidative stress

because leukocytes induce kidney injury by releasing ROS,

Frontiers inMedicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2023.1030577
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Kang et al. 10.3389/fmed.2023.1030577

FIGURE 3

Oxypurinol reduces neutrophil infiltration and Ly6G protein expression after renal ischemia/reperfusion injury. C57BL/6 male mice were subjected to

sham or 30min of renal ischemia surgeries. Some mice were pretreated with 25 mg/kg of oxypurinol 24h and 1h before surgeries. Separate cohorts

of mice were injected with tin protoporphyrin IX [SnPP, a heme oxygenase-1 (HO-1) inhibitor, 25 mg/kg, Tocris Bioscience] 30min before oxypurinol

first treatment. (A) Representative images (magnification, 200×) of immunohistochemistry staining in the post-operative kidneys show infiltrated

neutrophils (dark brown), and (B) the Ly6G-positive cells were counted. (C) Kidney samples were subjected to Western blotting using an anti-Ly6G

antibody. GAPDH was used as a loading control. (D) Band intensities were measured using ImageJ. (E) With quantitative RT-PCR, we measured the

mRNA expression of MIP-2, which was normalized to GAPDH mRNA expression. Results are expressed as means ± SEM (vehicle or oxypurinol [oxy]

sham n = 4; vehicle, oxypurinol, SnPP, or SnPP + oxypurinol RIR n = 6). *P < 0.05 vs. vehicle sham; †P < 0.05 vs. vehicle RIR; #P < 0.05 vs.

oxypurinol RIR.

myeloperoxidase, proteinases, elastases, and cationic peptides,

which can induce oxidative damage directly or indirectly (39).

Among the inflammatory cells, neutrophils are the earliest

to accumulate in the kidney and are crucial mediators in the

development of ischemic AKI (39). In several AKI models,

including I/R and cisplatin, neutrophil accumulation is reduced by

anti-inflammatory drugs, and prevention of neutrophil tracking

to the kidney lowers renal damage (40, 41). Indeed, blocking

neutrophils alleviated the severity and duration of AKI. In

this study, we found that oxypurinol significantly decreased

8-OHdG, 4-HNE expression and catalase mRNA expression, as

well as tubular cell apoptosis and necrosis in renal I/R models.

Furthermore, oxypurinol-treated mice showed significantly

decreased neutrophil infiltration, protein expression of Ly6G, a

neutrophil marker, and mRNA expression of MIP-2, also known

as CXC ligand (CXCL)2 which recruits polymorphonuclear

neutrophils which are the earliest to accumulate in the kidney

and are crucial mediators in the development of ischemic

AKI (39) after renal I/R compared with vehicle-treated mice.

These results demonstrated that oxypurinol treatment has

a protective effect against kidney damage by reducing the

oxidative stress, inflammation, and cell death during renal

I/R injury.

HO-1 is a major cytoprotective enzyme that generates oxidative

cleavage of heme groups, leading to carbon monoxide, biliverdin,

and iron (42). HO-1 has received significant attention in treating

numerous human diseases, including AKI. HO-1 exerts protective

effects in AKI animal models induced by renal I/R (43, 44),

ureteral obstruction (45), cisplatin (46, 47), and LPS (48). For

example, Chen et al. demonstrated that HO-1 activation by

hemin pretreatment prevents renal I/R injury through ERK 1/2-

enhanced tubular epithelium proliferation (8). Rossi et al. (49)

and Correa-Costa (50) also demonstrated that pretreatment of

hemin mitigates renal I/R injury induced acute kidney injury.

Consistent with those previous studies, we confirmed that the

HO-1 activation by hemin pretreatment protected ischemic kidney

injury (Figures 1A, B). The hmox1 gene encoding HO-1 is

regulated by several transcription factors, including heat shock
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FIGURE 4

Oxypurinol reduces oxidative damage after renal ischemia/reperfusion injury. C57BL/6 male mice were subjected to sham or 30min of renal

ischemia surgeries. Some mice were pretreated with 25 mg/kg of oxypurinol 24h and 1h preoperatively. Separate cohorts of mice were injected

with tin protoporphyrin IX [SnPP, a heme oxygenase-1 (HO-1) inhibitor, 25 mg/kg, Tocris Bioscience] 30min before oxypurinol treatment. (A)

Representative images (magnification, 400×) of 8-OHdG (dark brown) show immunohistochemistry staining in the post-operative kidneys. (B)

Densities of 8-OHdG staining were measured using the Fiji Image J2 software as described. (C) With quantitative RT-PCR, we measured the mRNA

expression of catalase, an antioxidant enzyme. Catalase mRNA expression was normalized to GAPDH mRNA expression. (D) Kidney samples were

subjected to Western blotting using an anti-4-Hydroxynonenal (4-HNE) antibody. GAPDH was used as a loading control. (E) Band intensities were

measured using the ImageJ software. Results are expressed as means ± SEM (vehicle or oxypurinol [oxy] sham n = 4; vehicle, oxypurinol, SnPP, or

SnPP + oxypurinol RIR n = 6). *P < 0.05 vs. vehicle sham; †P < 0.05 vs. vehicle RIR; #P < 0.05 vs. oxypurinol RIR.

factor (HSF), NF-κB, nuclear factor erythroid 2-related factor 2

(Nrf2) and activator protein−1 (AP-1) families, and mitogen-

activated protein kinases (p38, ERK, and JNK) (51). Of these

hmox1 transcription factors, oxypurinol was reported to induce

HO-1 via p38 phosphorylation in cultured THP-1 cells (52), but

we failed to detect p38 phosphorylation by oxypurinol treatment

in both our in vivo and in vitro experiment settings (data

not shown). Allopurinol, a precursor of oxypurinol, activates

Nrf2, a major transcription factor of antioxidants, including

HO-1, NAD(P)H quinone oxidoreductase 1, and glutathione S-

transferase. In this study, we found that oxypurinol significantly

induced HO-1 protein expression in the sham kidneys, but

we couldn’t find significant difference between vehicle RIR

and oxypurinol RIR groups. Because we and other researchers

confirmed that renal I/R injury itself can induce HO-1 expression

as a protective mechanism (8, 53), we speculate that the sum

of increase in HO-1 expression by mild renal IR injury and

HO-1 induction by oxypurinol would be similar to the increase

in HO-1 expression by severe renal I/R injury. However, we

demonstrate that direct HO-1 suppression by tin protoporphyrin

IX administration entirely eliminated the oxypurinol-mediated

protection against ischemic AKI, suggesting that the renal

protective effects of oxypurinol are at least in part mediated by

HO-1 induction.

Our renal I/R model is a leading cause of perioperative

AKI in various clinical settings such as major vascular, cardiac

and hepatic surgeries, and kidney transplantation (2). So, it

is possible to adapt kidneys to renal I/R injury before those

clinical surgeries by preconditioning such as short ischemia,

remote organ ischemia, and treatment of pharmacological drug

including HO-1 activators. Therefore, our findings suggest

that oxypurinol-mediated preconditioning via HO-1 induction
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protects ischemic AKI rather than recovers from ischemic

AKI by attenuating necrosis, apoptosis, inflammation, and

oxidative damage after I/R, suggesting that oxypurinol and its

underlying mechanism may be potential preventive drug for

ischemic AKI.
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