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A simulation study of in-beam
visualization system for proton
therapy by monitoring scattered
protons

Shogo Sato*, Hiromu Yokokawa, Mana Hosobuchi and

Jun Kataoka

Faculty of Science and Engineering, Waseda University, Tokyo, Japan

Recently, in-beam positron emission tomography (PET) has been actively

researched for reducing biological washout e�ects and dose monitoring during

irradiation. However, the positron distribution does not precisely reflect the dose

distribution since positron production and ionization are completely di�erent

physical processes. Thus, a novel in-beam system was proposed to determine

proton dose range by measuring scattered protons with dozens of scintillation

detectors surrounding the body surface. While previous studies conducted a

preliminary experiment with a simple phantom, we simulated more complex

situations in this paper. Especially, we conducted three stepwise simulation studies

to demonstrate the feasibility of the proposed method. First, a simple rectangular

phantom was reproduced on simulation and irradiated with protons for obtaining

current values andMonte Carlo (MC) dose. Next, we trained a deep learningmodel

to estimate 2-dimensional-dose range (2D-DL dose) from measured current

values for simulation (A). We simulated plastic scintillators as detectors to measure

the scattered protons. Second, a rectangular phantom with an air layer was used,

and 3D-DL dose was estimated in simulation (B). Finally, a cylindrical phantom

that mimics the human body was used for confirming the estimation quality of

the simulation (C). Consequently, the position of the Bragg peak was estimated

with an error of 1.0 mm in simulation (A). In addition, the position of the air layer,

as well as the verifying peak position with an error of 2.1 mm, was successfully

estimated in simulation (B). Although the estimation error of the peak position was

12.6 mm in simulation (C), the quality was successfully further improved to 9.3

mm by incorporating the mass density distribution obtained from the computed

tomography (CT). These simulation results demonstrated the potential of the as-

proposed verification system. Additionally, the e�ectiveness of CT utilization for

estimating the DL dose was also indicated.

KEYWORDS

proton therapy, dose range verification, deep learning, scattering protons, CT utilization,

scintillation detectors, current readout

1. Introduction

Proton therapy, which was proposed by Wilson (1), was first put to practical use

in 1954 for cancer treatment at Lawrence Berkeley Laboratory (2). Proton therapy has

received extensive attention in radiation oncology due to its high dose concentration, and

the increase in the number of patients being treated. However, dose range uncertainties

may cause significant damage to tumors close to critical organs because of its high dose
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concentration. Thus, a reliable in-beam monitoring system is

essential to achieve both safety of the treatment and its effectiveness

in eradicating tumor cells. Conventionally, the dose range was

verified after the irradiation, by measuring the annihilation

gamma rays from positrons with positron emission tomography

(PET) (3–11). PET monitoring is one of the most well-studied

methods for dose range verification and has already been

exploited clinically (12). Recently, in-beam PET (13–17) has been

actively researched for reducing biological washout effects and

dose monitoring during irradiation. However, the correlation

between the positron distribution and the proton dose range is

not so straightforward since positron production and ionization

are completely different physical processes. Therefore, some

researchers have attempted to verify the dose range based on the

maximum likelihood expectation maximization (MLEM) (18, 19)

or machine learning (20–22).

As with other methods, the prompt gamma rays, which

are produced by the de-excitation of the elements such as
12C∗ and 11B∗ upon being irradiated by protons, have been

measured by a Compton camera (23–25) and slit camera (26).

The prompt gamma rays are emitted immediately after irradiation,

and their distribution correctly reflects the proton dose range.

Moreover, other researchers have estimated the dose range by

observing Cherenkov light derived from secondary electrons (27–

31). Although these solutions utilizing gamma rays or Cherenkov

light have the potential to verify the dose range precisely, devices

and reconstruction processes tend to be expensive and complex.

To overcome such situations, there is a growing demand for

an in-beam and simple verification system to determine dose

range with fewer ambiguities. Thus, Sato et al. (32) proposed a

novel in-beam verification system to observe scattered protons

by placing dozens of scintillation detectors surrounding the body

surface. To achieve system simplicity, they integrated the output

pulses from each detector and read them as a current value.

For further improvement, the dose range was estimated by

deep learning algorithms. While previous studies conducted a

preliminary experiment using a 70 MeV proton beam irradiated

onto a simple polystyrene phantom, we simulated situations closer

to the practical application by using a water phantom irradiated

with 200MeV protons.Moreover, tomitigate the risk of over-fitting

by the machine-learning model due to overly simple phantom

geometry, we performed simulations with progressively increasing

levels of complexity.

Measurement systems with a similar concept were

proposed for heavy particle therapy (33–37), but these

systems are designed to measure secondary charged particles

produced by nuclear reactions with heavy particles. In

contrast, our system directly measures scattered protons, the

same as the injected particles. Despite their resemblance,

these systems have completely different purposes and

principles.

In this paper, we conducted three stepwise simulations to

demonstrate the feasibility of the proposed method. First, a simple

rectangular phantom was reproduced on simulation and irradiated

with protons for obtaining current values and Monte Carlo (MC)

dose. Next, we trained a deep learning model to estimate 2-

dimensional-dose range (2D-DL dose) from the output current of

the detectors placed at different positions on the phantom surface.

Second, a rectangular phantom with an air layer was used, and 3D-

DL dose was estimated. Finally, a cylinder phantomwith an internal

structure was used, and we estimated the 3D-DL dose in the same

manner as the rectangular phantom. The remainder of this article

is organized as follows: In Section 2, the verification details of the

simulation and estimating model are presented. Estimating results

of DL dose are presented in Section 3. In Section 4, we describe the

effectiveness of computed tomography (CT) utilization and system

optimization. In Section 5, the conclusions are presented.

2. Method

In this section, we firstly summarize the proton dose range

verification system. The simple flow chart of DL dose estimation

is shown in Figure 1. Secondly, the simulation setup and deep

learning models are described. In this paper, we simulated

the geometries and proton beam on Geant4 (38, 39), which

is a simulation toolkit developed by CERN, and has been

used for the dose range verification of proton therapy (40–42).

In this study, we employed "TestEM7", one of the extended

example codes, as the nuclear physics process for Geant4

simulations. In particular, we utilized three distinct physics

models, namely, PhysListEmStandard, PhysListEmStandardNR,

and PhysListEmStandardSS.

2.1. Proton dose range verification system

Sato et al.(32) proposed a novel in-beam visualization system

of 3D dose range for precision proton therapy. In this system,

particles leaked outside the human body were monitored by

dozens of scintillation detectors, e.g. 36× 12 scintillation detectors

coupled with plastic scintillator and multi-pixel photon counter

(MPPC), surrounding the body surface. The energy deposited by

the scattered particles, mainly scattered protons, was interpreted

as current by integrating the pulses for system simplification. The

cross-section of proton scattering and proton dose range follow the

Rutherford formula in Eq. 1 and Bethe-Bloch formula, respectively.

dσ

d�
= (

Ze2

4E
)2

1

sin4 θ
, (1)

where Z, e, and θ represent the atomic number of irradiated

materials, the particle charge, and the scatter angle, respectively.

Thus the number of scattered protons increases as∝ E−2, although

the average energy of each scattered proton becomes small. Since

the actual radiation dose deposited by scattered protons is a product

of the number and energy per scattered proton, it has the potential

to estimate the rough dose range in a relatively easy and cost-

effective way. For further improvement, the precise dose range

was estimated by incorporating deep learning. The previous study

was restricted to verifying their results with simple rectangular

polystyrene phantoms. In contrast, we employed a water phantom

with progressively increasing levels of complexity.
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FIGURE 1

Flowchart of dose range verification system. First, we set the phantom and place the scintillation detectors surrounding the phantom surface. Second,

we irradiate the proton beam and measure the output current from each detector. Finally, the proton dose range is estimated by deep learning.

2.2. Simulated verification summary

We conducted three stepwise simulations to demonstrate the

feasibility of the proposed method. These simulated conditions

are summarized in Table 1, and the geometry in each simulation

is shown in Figure 2. First, a simple rectangular phantom, which

consists of water (1.0 g/cm3), was irradiated with protons in

simulation (A) for obtaining current values and MC dose. We

placed 24 scintillation detectors on both sides of the phantom

surface. Next, we trained a deep learning model to estimate

2D-DL dose from the output current of the detectors. Second,

a rectangular water phantom with an air layer was irradiated

with protons in simulation (B). We then placed 24 detectors on

four sides of the phantom surface and estimated a 3D-DL dose.

Third, a cylinder phantom with internal structures was used in

simulation (C). The internal structures refer to hydroxyapatites

(3.076 g/cm3) and glasses (1.8 g/cm3) of random size and were

placed in random positions of the water phantom. The 36 × 12

detectors were placed around the phantom surface as shown in

Figure 2 (Bottom). In this study, we positioned the detectors at a

distance of 1 cm from the surface of the phantom. In the z-axis

direction, the detectors were placed in rows without gaps. In the

x-y plane, the detectors were placed at 10-degree intervals from

the center. To avoid interference with the beam, detectors within

2 cm of the edge of the irradiated beam were removed. The proton

beam irradiation was performed using the wobbler method, which

involved spreading the beam perpendicularly to the direction of

irradiation. In addition, we estimated the DL dose by utilizing the

CT data as well as the readout currents. Note that, the CT data

in this study refers to the density distribution of materials defined

on Geant4. In each simulation, plastic scintillation detectors with

the size of 10 mm × 10 mm × 3 mm were used to measure

scattered particles. Plastic scintillators have a smaller reaction

cross section for prompt gamma rays generated during treatment

due to their low density. Additionally, their scalability and cost-

effectiveness make them an appropriate choice for initial concept

verification. In this paper, we defined the x-, y-, and z-axes as the

proton beam direction, horizontal direction, and vertical direction,

respectively.

2.3. Deep learning models

To estimate the DL dose, we used simple deep learning

models which consist of fully connected networks (FCNs) and

convolutional neural networks (CNNs). The models used in the

respective simulations are shown in Figure 3. As the general

generative model, the filter number was reduced along with

upsampling, and the filter number in the first layer was adjusted

to work well on our environment. A batch normalization layer

and a leaky rectified linear unit (LeakyReLU) layer with α = 0.2

were applied after each CNN layer except for the last layer. After

the last CNN, the hyperbolic tangent function (tanh) was used

as an activation function. Given the current values from plastic

scintillation detectors, our goal was to estimate the 2D- or 3D-DL

dose. In simulation (C), we also utilized CT to estimate the DL

dose. Mean squared error (MSE), which is one of the most common

losses, was used as a loss function. Furthermore, the optimization

of the model was performed using the Adam algorithm, with the

hyperparameters of 200 epochs and a batch size of 4. These models

were implemented with Pytorch (43), which is an open-source for

machine-learning frameworks. In this study, the “GeForce RTX-

2080Ti” graphics processing unit (GPU) processer was employed.

2.4. Database preparation

To estimate the DL dose by trained model, we prepared the

datasets based on Geant4 simulation. The proton beam energy,

beam center shift, and beam width were randomly determined for

collecting various samples. The range of these parameters and the

number of samples are summarized in Table 2. In simulation (B),

the size and position of the air layer were randomly determined for

each sample. Additionally, in simulation (C), hydroxyapatites and

glasses of different sizes and shapes were randomly placed in the

water phantom for each sample. Three to six internal structures

were inserted into the water phantom with their sizes randomly

determined between 5 cm and 20 cm. The shape of each internal

structure was also randomly determined from an elliptical sphere,

rectangle, or cylinder. In this study, the acquired dataset was
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TABLE 1 Summary of simulated conditions.

Phantom Material Proton shape Detectors Reconstruction

Simulation (A) Simple rectangular Water Pencil 24×2 2D

Simulation (B) Rectangular w/ air layer Water Pencil 24×4 3D

Simulation (C) Cylinder with internal structure Water, hydroxyapatite, glass Wobbler 36×12 3D

FIGURE 2

Geometries of three-stepwise simulation. A simple rectangular phantom in simulation (A), a rectangular phantom with an air layer in simulation (B),

and a cylinder water phantom with internal structures in simulation (C) are depicted. (A) Simulation (A), (B) simulation (B), and (C) simulation (C).

FIGURE 3

Implemented models for estimating DL dose. Models for simulation (A–C) are depicted. Additionally, the model used in simulation (D) with CT

utilization are shown. (A) Simulation (A), (B) simulation (B), (C) simulation (C), and (D) simulation (C) with CT.
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partitioned into training, validation, and testing sets, comprising

64%, 16%, and 20% of the data amount, respectively. For simulation

(A), data augmentation was performed by flipping the training and

validation data twice along the y-axis. In the case of simulations (B)

and (C), where the geometry complexity was higher, the training

and validation data were augmented by flipping them along the

y-axis and z-axis, respectively. In this study, we used the energy

deposited into each detector as the current value, as it is a simplified

model for a proof-of-principle test. Energy resolution and dark

current are required to be considered formore detailed simulations.

2.5. Quantitative evaluation indices

For evaluating the quality of the estimated DL dose, three

evaluation indices were used: errors in the peak position for

each direction (1Xpeak,1Ypeak,1Zpeak), root sum squared error

1dose, and gamma passing rate ŴEre ,Err (1D,1d). First, errors in the

peak position between the MC dose and DL dose were evaluated

quantitatively since the position of the Bragg peak is important for

verifying the effectiveness of proton therapy. Additionally to the

peak position error,1dose was evaluated.1dose represents root sum

squared error calculated in Eq. 2.

1dose =

√

6n
i=1(I

i
1 − Ii2)

2, (2)

where I1 and I2 are MC dose and DL dose, respectively. Ii denotes

the ith pixel value. The 1dose is calculated by normalizing the

absorbed dose of MC dose to 100 Gy. Finally, we computed 3D

gamma index (γ ), and evaluated the gamma passing rate. The 3D

gamma index, which combines a dose difference and a distance-to-

agreement, is calculated from the DL doseD(Ere) andMC doseD(Err)

as shown in Eq. 3 and Eq. 4.

γ (Err) = min
Ere

{ŴEre ,Err (1D,1d)}, (3)

ŴEre ,Err (1D,1d) =

√

|D(Ere)− D(Err)|2

1D2
+

|Ere − Err|2

1d2
, (4)

where 1D and 1d represent the acceptance criteria for the dose

difference and distance-to-agreement, respectively. A voxel that

satisfies γ (Err) < 1 is accepted, and the gamma passing rate

represents the acceptance rate. In this study, the criteria for the

gamma passing rate were 3 mm and 3%.

3. Results

3.1. Simulation (A): a simple rectangular
phantom

First, we evaluated the 2D-DL dose in simulation (A). Figure 4

shows three samples with different energies and irradiation

positions. The 1D projection was created by integrating the pixel

values in the sliced image. In all samples, the DL dose was estimated

with high accuracy. Quantitatively, Table 3 shows the peak position

errors between the MC dose and DL dose for simulation (A),

(B), (C), and (C) with CT utilization. The reported values include

the mean (Mean), standard deviation (Std), minimum (Min), and

maximum (Max). As shown in Table 3 (top), we estimated the

Bragg peak with an error of about 1.0 mm in the depth direction

(X-axis) and 0.4 mm in the vertical direction (Y-axis). In addition,

Table 4 show the evaluation result based on the 1dose and the

gamma passing rate. 1dose equals 0.34 Gy for a total absorbed

dose of 100 Gy, and the gamma passing rate was 99.7 %. In a

simple situation, we successfully estimated the DL dose with the

verification system.

3.2. Simulation (B): a rectangular water
phantom with an air layer

As part of simulation (B), a water phantom with an air layer

was used and the 3D-DL dose was estimated. Figure 5 shows an

example of the estimating result. Most samples accurately estimated

the location of the Bragg peak and the air layer such as Figure 5.

Meanwhile, the width of the air layer gets slightly mis-predicted

in some cases due to the statistical noise of output current. As

shown in Table 3 (second row), we estimated the Bragg peak with

an error of about 2.1 mm in the depth direction. 1dose and the

gamma passing rate were 0.31 Gy and 98.0 %, respectively. These

evaluation results indicate that the estimation quality was sufficient

for elementary situations such as simulation (B). Compared to

simulation (A), with the increase in phantom complexity, it became

more difficult to estimate the position of the Bragg peak. In

simulation (B), the standard deviation of 1Xpeak was larger than

simulation (A). This was attributed to the presence of an air layer

intersecting the Bragg peak, leading to a notable increase in error

resembling an outlier. Notably, Table 3 presents the average error

to be a few mm, whereas the maximum error reached up to 135

mm.

3.3. Simulation (C): a cylindrically shaped
water phantom comprising of internal
structures

A cylinder phantom with an internal structure was used and

the 3D-DL dose was estimated in simulation (C). Two verification

examples are shown in Figures 6, 7. The MC dose and DL dose

were overlaid on the corresponding CT. Figure 6 shows an example

where the internal structure did not exist between the incident and

the target area. Thus, the 1D projection of MC dose had a shape

similar to the irradiation of a water phantom without an internal

structure. On the other hand, Figure 7 shows an example where the

proton beam directly irradiates the internal structures. The proton

beam range was shortened as a consequence of reacting with a

material that was denser than water. In the MC dose, the dose

exhibited sharp changes at the edges of the internal structure. In

the current simulation, we considered multiple scattering effects,

but the sharp appearance was mainly due to the relatively coarse

resolution of 5.0 mm/pixel. As a result of the estimation, the

DL dose was roughly estimated in both samples. However, the

density information was crucial to estimate the details of the DL
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TABLE 2 Details of database preparation.

Parameter ranges of proton beam Sample number

Energy (MeV) Beam center shift (y,z) Beam width Train Validation Test

Simulation(A) 180–220 (Center± 4cm, No shift) 1cmφ 1,747 437 273

Simulation(B) 180–220 (Center± 4cm, No shift) 1cmφ 4,448 1,112 348

Simulation(C) 120–180 (Center± 16cm, Center± 16cm) 1–4cmφ 3,888 976 305

Parameter ranges of proton beam on simulation and the number of samples are listed.

FIGURE 4

Verification result for three examples in simulation (A). MC dose (Top), DL dose (Middle) and 1D projections of these dose ranges are depicted

(Bottom), respectively.

TABLE 3 Errors in the peak position between the MC dose and DL dose.

Simulation 1Xpeak(mm) 1Ypeak(mm) 1Zpeak(mm)

Mean Std Min Max Mean Std Min Max Mean Std Min Max

(A) 1.04 1.24 0.00 9.38 0.38 0.76 0.00 1.88 - - - -

(B) 2.07 11.3 0.00 135 1.79 1.88 0.00 3.75 0.44 1.21 0.00 3.75

(C) 12.6 12.3 0.00 85.0 5.31 5.54 0.00 25.0 3.70 4.30 0.00 20.0

(C) with CT 9.30 12.6 0.00 95.0 5.54 5.48 0.00 35.0 3.52 3.97 0.00 20.0

TABLE 4 Summation of dose error (1dose) between the MC dose and DL dose, and Gamma passing rate based on gamma analysis Ŵ(3mm,3%) of these

dose range.

Simulation 1dose Gamma passing rate

Mean (Gy) Std (Gy) Min (Gy) Max (Gy) Mean (%) Std (%) Min (%) Max (%)

(A) 0.34 0.16 0.11 1.37 99.7 0.60 92.4 99.9

(B) 0.31 0.18 0.11 1.64 98.0 3.59 72.4 100

(C) 2.66 1.60 0.69 9.46 32.5 15.9 0.00 82.8

(C) with CT 2.26 1.23 0.65 8.67 39.5 19.1 0.65 83.7

dose as described in Section 3.5. Quantitatively, we estimated the

Bragg peak with an error of about 12.6 mm in the depth direction

as described in Table 3 (third row). In general, even for rough

monitoring, the dose range error is required to be improved by

better than 10 mm. In the following section, we utilized the CT data

as well as the output current to reduce the error.
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FIGURE 5

An example of verification result in simulation (B). (A) MC dose (slice), (B) DL dose (slice), and (C) 1D projection of these doses.

FIGURE 6

An example of verification result in simulation (C). (A) MC dose (slice), (B) DL dose (slice), and (C) 1D projection of these doses.

3.4. Simulation (C) with CT data

In this section, we estimated the DL dose with the density

distribution as well as the current values from detectors in

simulation (C). Figure 8 shows the results of utilizing CT data

for the same sample as in Figure 7. Compared with Figure 7, the

estimation quality of DL dose was improved. Quantitatively, we

estimated the Bragg peak with an error of about 9.3 mm in the

depth direction as shown in Table 3 (bottom row). Additionally, the

1dose values and the peak position error in depth were improved by

utilizing CT data.

3.5. E�ectiveness of CT utilization

In the verification system, we measured the scattered protons

from a phantom. The distribution of scattered protons roughly

reflects the MC dose. However, measured values do not reflect the

MC dose around the Bragg peak since the protons we observe are

mainly scattered in the front part of the phantom. For confirming

the effect, we substituted a part of the phantom for another material

(air and Pb) in experiment (A). The area surrounded by the square

was replaced with other materials and the measured current values

were compared in Figure 9. The shape of the observed currents

differed significantly in the case where the material of the front

part of the phantom was substituted as shown in Figure 9 (top).

However, the current values were consistent within the error range

as shown in Figure 9 (bottom right), while the shape and position

of the Bragg peak vary with the substitution of materials. Since the

protons near the Bragg peak has only small energy and thus can

be easily absorbed, these protons do not affect the current values.

Therefore, to verify the precise dose range, especially around the

Bragg peak, density information such as CT is necessary to be used

as a prior. For verifying the effectiveness of CT utilization, a dataset

was prepared with a part of the water phantom replaced by air or Pb

and was used for training the deep learning model. Figure 10 shows

the estimated result with and without CT utilization. Without CT,

the DL dose for the air part has a significant error. Meanwhile, the

use of CT improved the estimation results.

3.6. System optimization

As shown in Figure 2 (bottom), we temporarily placed 36× 12

detectors surrounding the phantom in simulation (C). To optimize

the system, a similar simulation was performed in this section with

a reduced number of detectors. The details of the used detector

ID are described in the Supplementary material. For simplicity, the

current encoded part of the model in Figure 3 (bottom right) was

replaced by FCN. Figure 11A shows the result for reducing the

number of detectors in the horizontal direction (x-y plane). Peak

position errors in all directions deteriorated while reducing the
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FIGURE 7

Another example of verification result in simulation (C). (A) MC dose (slice), (B) DL dose (slice), and (C) 1D projection of these doses.

FIGURE 8

An example of verification result in simulation (C) with CT. (A) MC dose (slice), (B) DL dose (slice), and (C) 1D projection of these doses.

number of detectors in the horizontal direction. Also, the 1Xpeak

and 1Ypeak were worsened as the number of detectors in the

vertical direction (z-axis) was reduced as shown in Figure 11B. The

vertical peak position is considered to be calculated from the ratio

of the current values in each row. Therefore, the impact of reducing

the number of rows may be small when the number of detectors per

row is sufficient. To summarize the results, reducing the number of

detectors from 36 to 18 in the horizontal direction and from 12 to

6 in the vertical direction was not considered to have a significant

impact.

4. Discussion

4.1. Estimation quality limitation

In this chapter, we discuss the limitation of estimation quality in

simulation (C). In simulation (C), which differed from simulations

(A) and (B), protons were irradiated from the short-axis side

of the ellipsoidal phantom. This arrangement resulted in a long

distance between the irradiated area and the detector, making it

challenging to detect scattered protons. Furthermore, there are

a few internal structures in the phantom. Thus, simulation (C)

exhibited inferior performance compared to simulations (A) and

(B). As demonstrated in Section 3.5, the measured currents did

not reflect the dose range around the Bragg peak since the protons

we observe are mainly scattered in the front part of the phantom.

Without CT utilization, it is difficult to estimate the exact Bragg

peak position. Therefore, the model was trained to produce a

blurred image so that the average dose range was obtained. As

a result, the DL dose exhibited blurriness even in cases such as

Figure 6, where the proton beam did not traverse the internal

structure.

The estimation performance of our system was constrained by

factors including the deep learning model, the training dataset,

and the characteristics of the imaging system. In the current

simulation, the estimation performance was partially compensated

for the unavailability of dose information near the Bragg peak,

owing to the accurate geometry acquisition. Consequently, the

estimation performance in this paper was primarily limited

by the training data and model. To mitigate computational

costs, 1.0 × 107 protons, equivalent to a 0.1-second irradiation

of a clinical beam, were irradiated in this study, resulting

in statistical errors. Moreover, the simplicity and compactness

of the model further restrict the accuracy of estimating the

3D-DL dose.
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FIGURE 9

Change in current value with substitution of phantom material. The MC dose in (a) without replacing, (b) replacing to air, and (c) replacing to Pb.

Output currents are summarized (right). (A) Substitution of phantom material in front of the Bragg peak. (B) Substitution of phantom material around

the Bragg peak.

In this study, we implemented deep learning models that

combined CNN and FCN. Nonetheless, under challenging

conditions such as simulation (C), a simplistic CNN model

exhibited limited estimation performance. The present model

performed convolutions on the current values in two dimensions,

disregarding the three-dimensional detector position. As a future

prospect, we are considering the incorporation of a module to

estimate the Bragg peak position based on the three-dimensional

detector position using a centroid method. Furthermore, we

anticipate that further improvements in estimation performance

can be achieved by augmenting the dataset size and constructing

a large-scale model utilizing residual networks (ResNet) (44).

4.2. Comparison with other methods

In this section, we compared the proposed verification

system with conventional methods: annihilation gamma rays

measurement by an in-beam PET (16), prompt gamma rays

measurement by a Compton camera (25), luminescence imaging

by a charge-coupled device (CCD) (31), and secondary-electron-

bremsstrahlung (SEB) imaging by a pinhole gamma camera (45).

First, according to the in-beam PET, the image was reconstructed

within 6 seconds of beam irradiation, and the range agreement

was within 1 mm. While possessing sufficient estimation quality,

the PET system tends to be expensive and large. Regarding a

Compton camera, prompt gamma rays have been measured by a

set of scintillation detectors. The average peak position error was

6.2 mm for a simple poly methyl methacrylate (PMMA) phantom.

While a Compton camera has the potential to verify the dose

range in real-time due to the prompt gamma rays measurement,

the reconstructed image had significant artifacts. Concerning the

luminescence image by a cooled CCD camera, the image was

reconstructed within 1 second by U-net, and the range agreement

was about 0.35 mm. Additionally to the high speed and accurate

reconstruction, a CCD camera has a simple configuration and
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FIGURE 10

An example of verification results with and without CT utilization. (A) MC dose (3D), (B) CT image, (C) DL dose without CT, (D) DL dose with CT, and

(E) 1D projection of MC dose and DL dose.

FIGURE 11

E�ect of the reduced number of detectors on the estimation results. The result of a decrease in the horizontal direction (A), and vertical direction (B).

The error range was defined by a standard deviation of 10 times estimation result in each condition. (A) Reducing the number of detectors in the

horizontal direction. (B) Reducing the number of detectors in the vertical detector.

cost-effectiveness. However, it is difficult to verify the proton dose

range in the human body as the luminescence is faint. Finally, SEB

imaging based on a pinhole gamma camera also has the potential

of luminescence imaging. The spatial resolution (FWHM) 11.0 cm

apart from the camera was 3.23 mm in simple geometry. Although

the SEBs easily leak outside the body due to their relatively higher

energy than visible light, there is a challenge with statistics owing

to the collimation of the pinhole gamma camera. On the other

hand, the proposed verification system measures the scattered

protons by scintillation detectors. The image was reconstructed in

3.1 ms, and the average peak position error was 1.0 mm for the

simple situation. However, the dose range error deteriorated to 9.3
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mm for the complex phantom. To summarize then, the proposed

verification system is suitable for confirming the proton irradiation

region in real-time with a simple and small setup. In addition, flash

therapy (46–48), in which protons are irradiated with very high

intensity for a short period, has attracted attention in recent years.

Since high-rate tolerance is required to observe the dose range in

flash therapy, the proposed verification system based on the current

readout will be more in demand hereafter due to its high flux rate

tolerance.

Fast dose calculation (49, 50) refers to a technique that

utilizes CT to expedite MC simulations for accurate treatment

planning. While it enables efficient calculation of the treatment

effect, it remains a theoretical estimation. Therefore, it is crucial to

incorporate monitoringmethods such as our proposed approach or

PET, to validate the alignment between the administered beam and

the intended treatment.

4.3. Challenges for practical use

There are some challenges to our system for practical use.

First, deviation in particle process between actual measurement

and simulation may deteriorate the estimation quality. This matter

is resolved by increasing the accuracy of simulation and/or fine-

tuning using actual measured data. In the case of fine-tuning, a

model that has already been trained based on simulation data is

additionally trained with a small amount of measured data. Second,

it is necessary to consider that each patient has a different body

size and shape. Although the phantom size and shape are fixed

in the simulations of this paper, we should prepare a variety of

phantoms on Geant4 for practical use. Third, a system designed

to cover the entire human body may result in beam inhibition.

To address this issue, we propose utilizing a stretchable band and

fixing the detectors by attaching them to the band. As discussed in

Sec. 3.6, the estimation performance could bemaintained even with

a quarter of the number of detectors. Thus, we expect the detectors

to be placed sparsely so that monitoring will not interfere with the

beam. In addition, the scattered protons we measure lose most of

their energy while leaking out of the body. Since the statistically

low percentage of scattered protons, we have chosen to place the

detector as close to the body surface as possible. However, we

acknowledge that the detector setup may be challenging, and we

will explore the possibility of placing the detector at a distance from

the body surface through simulations. Finally, while the geometry

is measured prior to treatment, the distribution within the body

undergoes changes during actual irradiation due to factors like

breathing-induced body movements. Consequently, the imaging

system imposes limitations on the actual measurement. To enhance

estimation accuracy, the strategy described in Section 4.1 will be

implemented.

5. Conclusion

We conducted three stepwise simulations to demonstrate the

feasibility of the as-proposed verification system by estimating the

DL dose. As shown in simulations (A) and (B), we successfully

estimated the DL dose under the simple situation within a 2 mm

peak position error. In simulation (C), the position error of the

Bragg peak was 12.6 mm for a cylinder phantom with internal

structures. By utilizing CT, the peak position error was improved

to 9.3 mm. These simulation results suggest the feasibility of the

proposed verification system. In the future, we plan to conduct the

experimental verification for human body phantom to optimize the

geometry as well Additionally, to contribute a flash therapy, we will

quantitatively evaluate the flux rate tolerance.
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