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Acute kidney injury (AKI) is a serious clinical comorbidity with clear short-term and

long-term prognostic implications for inpatients. The diversity of risk factors for AKI

has been recognized in previous studies, and a series of predictive models have been

developed using traditional statistical methods in conjunction with its preventability,

but they have failed to meet the expectations in limited clinical applications, the

rapid spread of electronic health records and artificial intelligence machine learning

technology has brought new hope for the construction of AKI prediction models.

In this article, we systematically review the definition and classification of machine

learning methods, modeling ideas and evaluation methods, and the characteristics

and current status of modeling studies. According to the modeling objectives, we

subdivided them into critical care medical setting models, all medical environment

models, special surgery models, special disease models, and special nephrotoxin

exposure models. As the first review article to comprehensively summarize and

analyze machine learning prediction models for AKI, we aim to objectively describe

the advantages and disadvantages of machine learning approaches to modeling,

and help other researchers more quickly and intuitively understand the current

status of modeling research, inspire ideas and learn from experience, so as to guide

and stimulate more research and more in-depth exploration in the future, which

will ultimately provide greater help to improve the overall status of AKI diagnosis

and treatment.
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1. Introduction

AKI is a clinical emergency associated with a variety of acute and chronic comorbidities;

even mild AKI may lead to chronic kidney disease, and severe or recurrent events may lead to

end-stage renal disease and are strongly associated with an increased risk of death and impaired

quality of life (1). With the increasing incidence and mortality of AKI worldwide, clinicians are

paying increasing attention to AKI (2).

It is well established that AKI usually occurs in susceptible populations with high-risk factors

or following certain specific medical procedures, and several previous studies have obtained

more consistent conclusions on the evaluation of risk factors by analyzing the static and dynamic

characteristics of a large number of AKI patients (3–8). Based on the preventability of AKI and

the ease of diagnosis, increasing research is focused on the early diagnosis of AKI, with the aim

of early assessment of inpatients to determine their risk stratification, dynamic adjustment of

treatment protocols, replacement of potentially dangerous medical orders, and interventions to

avoid or reduce potential kidney injury and ultimately to achieve inpatient renal protection by

reducing the incidence of AKI, avoiding a series of subsequent adverse events.
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The construction of predictive models for AKI has been an

outstanding achievement for nephrologists in the 21st century, and

over the past 10–20 years, predictive models have been reported,

especially in recent years, the electronic medical record information

systems of different medical institutions around the world have

gradually improved, the use of electronic health records to build

models has become another breakthrough in this field, and since the

introduction of artificial intelligence, it has provided more methods

for efficient utilization of massive medical data in the age of big data,

making mining massive information and training models based on

machine learning algorithms become a frontier hotspot. It is exciting

to see that the technology has not disappointed in terms of medical

decision-making behavior; at least in current studies, suchmodels can

predict AKI with an AUC of 0.80 or more, and in some studies, the

AUC even reached 0.93. In this report, we set the search keywords as

“machine learning” and “acute kidney injury” through the pubmed

database, we screened the relevant literature by reviewing the abstract

information, after carefully reading the included literature, we focus

on reviewing recent advances in the application of machine learning

systems to predict AKI risk, providing evidence and summarizing

ideas for subsequent studies to be conducted.

2. Concept of machine learning

Machine learning is a major branch of AI technology, defined

as the study of algorithms that use computer systems to learn from

sample data and past experience (9). The popular machine learning

algorithms include supervised learning and unsupervised learning,

among which supervised learning includes decision trees, support

vector machines, naive Bayes, k-nearest neighbor, logistic regression,

random forests, gradient boosting trees, generalized additive

models, artificial neural networks, and integrated tree models;

unsupervised learning includes principal component analysis and k-

mean classification. Among them, neural networks are a new addition

to the field, and the most representative, deep learning, is considered

to be the closest to the original goal of AI, solving many complex

pattern recognition challenges. Other techniques include fully

connected neural networks, convolutional neural networks (CNNs),

recurrent neural networks (RNNs), generative adversarial networks

(GANs), and deep reinforcement learning (10–12) (Table 1).

3. Machine learning modeling ideas

The process of machine learning modeling is continuous and

consists of the following steps based on summarized research

experiences. Step 1: Data acquisition. The research team defines

the data concept according to the modeling objectives and accesses

the authorized data, including structured data or unstructured data,

using different data repositories from multiple medical institutions.

Even though EMR data are now standardized through coding

systems, this process is still tedious and time-consuming. Step 2:

Data preparation. The collected data must be cleaned, managed

and organized into a more computable format. This includes the

labeling of supervised learning data, the transformation of categorical

values, and the processing of outliers, missing values, and extremely

imbalanced data. Step 3: Feature selection. A feature is the “column

name” of the data, such as drug n, respiratory rate, or age. The

model development process relies on feature selection from a large

feature base, including LASSO or the Breiman and Cutler random

forest method, and this process is repeated until the researcher

is satisfied with the model performance. Step 4: Model training.

Based on a training dataset of fixed ratio classification according to

the model type, preselected features are used for iterative training.

This process can be performed by replacing features and model

configurations to continuously optimize model hyperparameters,

fine-tune model performance, and reduce prediction errors. Step

5: Model validation. This step includes two substeps of internal

and external verification. The preferred test method is k-fold cross-

validation, where internal validation can identify data overfitting

or underfitting during model training, while external validation

can check the model performance under real conditions. Step 6:

Model trial. The model is employed in a health care environment

with new data to test its predictive feasibility and reliability in

routine clinical work and clinician acceptability. Step 7: Model

evaluation and interpretation. Model evaluation is an important

process to judge the usability and reliability of models and provides

key metrics for parallel comparisons among models. The evaluation

of machine learning prediction models is similar to that of diagnostic

experiments in that the main reference index is the area under

the receiver operating characteristic curve (AUROC). In addition,

other indices are often cited as auxiliary evaluations in studies,

including accuracy, recall, precision, sensitivity, specificity, positive

predictive value, negative predictive value, F1-value, etc. Effective

model interpretation can help clinicians better understand the results

of the model output and the relationship between variables. At

present, the SHAP method based on the algorithmic game theory

is widely used. which can interpret the prediction results from both

global and local perspectives, and is proved to be more consistent

with human intuition than the existing methods. Step 8: Model

monitoring and updating. After the model is formally used, each

step of its operation is monitored to ensure the expected use and

prediction accuracy while continuously updating and optimizing the

model performance through new data performance. It is important to

note that the above processes and steps are not necessarily continuous

and unidirectional, allowing for feedback during the process, with the

exception of the deep learning process (Figure 1).

4. Machine learning prediction model
for AKI

4.1. AKI prediction model for critical care
settings

In 2015, the International Society of Nephrology proposed the

“AKI 0 by 25” initiative to achieve zero deaths from AKI by 2025, and

the ICU, as the most affected area with high morbidity and mortality

from AKI, is the greatest obstacle to achieving this goal (13). Against

this background, there is a general consensus to identify the risk of

AKI among critically ill patients early and to take a more proactive

role in AKI prevention and management, it is worth mentioning that

these measures are highly time dependent and time sensitive.

In recent years, there has been an abundance of research on

machine learning prediction models for AKI for critically ill patients,

and there are several features of this type of research. First, the

choice of model training data was mostly focused on three publicly
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TABLE 1 Description of machine learning algorithms.

Concept Type Description Advantages Disadvantages

Supervised
learning

Supervised learning is a computational method where we give the algorithm a dataset and given the correct answer, the
machine goes through the data to learn the correct answer.

Linear

regression

Regression The simplest regression

method that uses a linear

equation (y=m ∗ x+ b) to

model the dataset.

Fast modeling speedSimple calculation variable

interpretation can be provided based on the

coefficients

It is necessary to first determine whether the

relationship between variables is linear

Does not fit non-linear data well

Logistic

regression

Classification Logistic regression is an

algorithm that estimates the

probability of an event based

on one or more inputs and is

more commonly used in

classification problems.

Less time-consuming and faster classification

calculation

Intuitive observation sample probability scores

Not affected by multicollinearity and can be

combined with L2 regularization to solve the

problem

Low computational cost, easy to understand

and implement

Computational performance degrades when

the feature space is large

Easy to underfit, generally not very accurate

Does not handle large number of class

features well

Conversion is required for non-linear

features

Naive Bayes Classification A probabilistic classifier, which

is a classification method based

on Bayes’ theorem and the

assumption of the conditional

independence of features.

Stable classification efficiency

Fast speed for large volume training and queries

Performs well on small data sizes, can handle

multiple classification tasks, and is suitable for

incremental training

Less sensitive to missing data and simpler

algorithms

Need to calculate the probability prior

High error rate in classification decisions

Sensitive to the form of expression of the

input data

Decision trees Classification An algorithm for solving

classification problems. The

decision tree algorithm uses a

tree structure and uses layers of

inference to achieve the final

classification.

Decision trees are easy to understand and

interpret and can be analyzed visually

Can handle both nominal and numeric data

More suitable for handling samples with

missing attributes

Able to handle unrelated features

Runs relatively fast when testing datasets

Provides reliable and effective results for large

data sources in a relatively short period of time

Prone to overfitting

Easy to ignore the interconnectedness of

attributes in a dataset

For data with inconsistent sample sizes in

each category, different decision criteria lead

to different attribute selection tendencies

when attribute classification is performed by

decision trees

Random forest Classification The random forest method is

an integrated learning method

containing multiple decision

trees for classification,

regression and other tasks.

High-dimensional (many features) data can be

computed without dimensionality reduction

and without feature selection

The importance of features can be judged

The interaction between different features can

be judged

Not easily overfitted

Training is faster, and it is easy to use parallel

methods

Can balance the error of unbalanced datasets

Accuracy can be maintained if a large portion

of the features are missing

Overfitting on some noisy classification or

regression problems

For data with attributes that have different

values, attributes with more value divisions

will have a greater impact on the random

forest

Support vector

machines

Classification Support vector machines is a

class of generalized linear

classifiers that perform binary

classification of data in a

supervised learning manner,

and whose decision boundary

is the maximummargin

hyperplane solved for the

learned samples.

Can solve high-dimensional problems, i.e.,

large feature spaces

Able to handle interactions of non-linear

features

No local minimal value problem

Stronger generalization ability

Not very efficient when the observation

sample is large

There is no universal solution for non-linear

problems, and sometimes it is difficult to find

a suitable kernel function

Weak explanatory power for high-

dimensional mapping of kernel functions,

especially radial basis functions

Conventional algorithms only support

binary classification

Gradient

boosting

decision tree

Classification Boosted trees use additive

models and forward stepwise

algorithms to implement the

optimization process of

learning, which is also one of

the integrated learning

methods.

High accuracy can be obtained with relatively

little tuning time

Flexible handling of various types of data,

including continuous and discrete values, for a

wide range of uses

Some robust loss functions can be used, which

are more robust to outliers

Dependencies between weak learners make

it difficult to train data in parallel

Adaptive

boosting

Classification Adaptive boosting (AdaBoost)

belongs to one of the boosting

categories in the ensemble

method. It is a binary

classification model. As an

iterative algorithm, the core

idea is to train different

classifiers (weak classifiers) for

the same

Flexible in the use of various regression

classification models to build weak learners

The implementation of AdaBoost in Sklearn is

based on a weighted learning perspective,

which is simple and easy to understand

Controls the number of iterations to prevent

overfitting to some extent

Sensitive to anomalous samples, which may

receive higher weights in the iterations,

affecting the final prediction accuracy

(Continued)
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TABLE 1 (Continued)

Concept Type Description Advantages Disadvantages

training set, and then aggregate

these weak classifiers to form a

stronger final classifier (strong

classifier).

Extreme

gradient

boosting

Classification/

Regression

Extreme gradient boosting

(XGBoost) is also a type of

integration algorithm as a

boosted tree model, which is a

combination of many tree

models together to form a very

strong classifier. In addition,

the tree model used is the

CART regression tree model.

Compared to other machine learning libraries,

users can easily use XGBoost and obtain

satisfactory results

Fast and effective in processing large-scale

datasets and does not require large amounts of

hardware resources such as memory

Compared to deep learning models, the effect is

similar without fine-tuning parameters

XGBoost internally implements a boosted tree

model, which can automatically handle missing

values

Compared with the deep learning model, it

is unable to model spatiotemporal location

and capture high-dimensional data such as

image, voice and text well

Deep learning is far more accurate than

XGBoost when it has a large amount of

training data and can find a suitable deep

learning model

Light gradient

boosting

machine

Classification/

Regression

Light gradient boosting

machine (LightGBM) is a fast,

distributed, high-performance

gradient boosting framework

based on decision tree

algorithms. It can be used for

sorting, classification,

regression and many other

machine learning tasks.

Faster training speed and higher efficiency

Lower memory footprint

Higher accuracy than any other enhancement

algorithm

Compared to XGBoost, it is also capable of

handling big data due to its reduced training

time

Supports parallel learning

The computation process may grow deeper

decision trees, thus creating overfitting

Since LightGBM is a bias-based algorithm, it

is more sensitive to noise

In finding the optimal solution, it is based

on the optimal cut variables and does not

take into account the idea that the optimal

solution is a combination of all features

Categorical

boosting

Classification/

Regression

Categorical boosting

(CatBoost) is a GBDT

framework with fewer

parameters, support for

categorical variables and high

accuracy based on oblivious

trees as the base learner

implementation.

Can rival any advanced machine learning

algorithm in terms of performance

Reduces the need for much hyperparameter

tuning and reduces the chance of overfitting,

which also makes the model more generalizable

Can handle categorical and numerical features

and supports custom loss functions

The processing of category-based features

requires a great deal of memory and time

The setting of different random numbers

has certain influences on the prediction

results of the model

Generalized

additive model

Classification The generalized additive model

is an interpretable model that

uses the sum of the unary and

binary shape functions of the

predictor variables to explain

the response variables.

Non-linear functions can be introduced

Because it is “additive”, the hypothesis testing

method of the linear model can still be used

Because of the “additive” assumption,

important interactions may be missing from

the model and can only be compensated for

by manually adding interaction terms

K-nearest

neighbor

Classification/

Regression

The core idea of the algorithm

is that if a sample belongs to a

class in which most of the k

most adjacent samples in the

feature space belong to that

class, then that sample also

belongs to that class and has

the characteristics of the

samples in that class.

The theory is mature and the idea is simple and

can be used for both classification and

regression

Can be used for non-linear classification

No assumptions about the data, has high

accuracy, and

is an online technique where new data can be

added directly to the dataset without retraining

The treatment of unbalanced samples is less

effective, and the prediction bias is relatively

large

Requires a lot of memory

More computationally intensive for datasets

with large sample sizes

Each time the classification is performed

again, a global operation is performed, which

is computationally intensive

There is no theory for the choice of k-value

size, which is often chosen in conjunction

with k-fold cross-validation to obtain the

optimal k-value

Artificial neural

networks

Classification/

Regression

Artificial neural networks are

broadly similar to unusually

complex networks composed of

neurons, which are individual

units connected to each other,

and each unit has a numerical

amount of inputs and outputs,

which can be in the form of real

numbers or linear

combinatorial functions.

High accuracy of classification

High parallel distribution processing capability

Distributed storage and high learning capacity

Strong robustness and fault tolerance to noisy

nerves

Able to fully approximate complex non-linear

relationships with associative memory function

Neural networks require a large number of

parameters, such as network topology, initial

values of weights and thresholds

The inability to observe the internal learning

process and the difficulty in interpreting

the output can affect the credibility and

acceptability of the results

The study time is too long and may not even

achieve the purpose of learning

Unsupervised
learning

In unsupervised learning, there is no “right answer” for a given dataset, all data are the same. The task of unsupervised
learning is to uncover the underlying structure from a given dataset.

Principal

component

analysis

Classification A set of potentially correlated

variables is transformed into a

set of linearly uncorrelated

Reduces the computational overhead of the

algorithm

Eigenvalue decomposition has some

limitations, e.g., the transformed matrix

must be a square matrix

(Continued)
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TABLE 1 (Continued)

Concept Type Description Advantages Disadvantages

variables by an orthogonal

transformation, and the

transformed set of variables is

called the principal component.

Noise removal

Makes the results easy to understand

Completely parameter free

In the case of a non-Gaussian distribution,

the resulting principal element may not be

optimal

K-means

clustering

Classification K-means clustering is a

technique for clustering data

into a specified number of

classes to reveal the intrinsic

properties and patterns of the

data.

For large datasets, k-means clustering is

efficient

The computational complexity is close to linear

The algorithm is affected by the initial

values and outlier points, and the results are

unstable every time; usually the results are

not the global optimal solution but the local

optimal solution

Cannot solve the case of relatively large

differences in data cluster distribution very

well

Not truly applicable to discrete data

K-value based on artificial selection lacks

objectivity

Other
special
learning
algorithms

Reinforcement learning is closer to the nature of biological learning and therefore promises higher intelligence. It is
concerned with how an intelligent body can adopt a set of behaviors in its environment in order to obtain the
maximum cumulative reward.

Deep learning is the process of learning the intrinsic laws and levels of the representation of sample data, and the
information obtained from these learning processes can be of great help in the interpretation of data such as text,
images and sound.

Reinforcement

learning

Classification Reinforcement learning is used

to describe and address the

problem of learning strategies

by which an intelligent body

learns to maximize reward or

achieve a specific goal during

its interaction with the

environment.

Ability to model sequential decision problems

Training does not require labeled data

There are good theoretical guarantees, and the

main algorithms have corresponding

convergence proofs

Feedback is delayed, not generated

immediately

Delayed reward

Deep learning Classification The concept of deep learning

originates from the study of

artificial neural networks, and a

multilayer perceptron with

multiple hidden layers is a deep

learning structure that mainly

includes convolutional neural

networks, deep neural

networks and recurrent neural

networks.

Strong learning ability

Wide coverage and good adaptability

Data-driven, high ceiling

Excellent portability

Application scenarios that can only provide

a limited amount of data do not allow deep

learning algorithms to provide an unbiased

estimation of the patterns of the data

To achieve good accuracy, big data support is

needed

As the complexity of graph models in deep

learning leads to a dramatic increase in the

time complexity of the algorithm, higher

parallel programming skills and more and

better hardware support are needed to

ensure the real-time performance of the

algorithm

available databases, MIMIC-III, AmsterdamUMCdb and eICU (14–

25). The use of local databases is not common, and only information

from the Mayo Clinic and SHZJU-ICU can be retrieved (21, 26,

27). Public databases are highly integrated and easy to access, but

it is inevitable that some of the missing information affects the

authenticity of the data; for example, the variables with a large

proportion of missing values in the MIMIC-III database include the

lowest albumin level (74.1%), the highest bilirubin level (67.2%),

the highest lactate level (55.8%), the highest C-reactive protein

level (99.0%), the highest aspartate aminotransferase level (66.8%),

the highest pH level (36.6%) and the lowest base excess level

(64.8%) (14). Moreover, these studies mainly included European

and American populations, and the generalizability of the models is

doubtful for Asian populations. In addition, the differences in data

extraction criteria settings or data preprocessing methods lead to

a certain degree of incomparability among studies from the same

database sources. Second, of the 14 studies we retrieved, only 3

studies conducted external validation of the model (20, 21, 26).

While this is crucial for model generalization and relies on external

validation for optimization of model hyperparameters, which is

well understood by researchers, there are various constraints to

external validation, including non-uniformity of case data formats

across centers, self-protection of some medical structures for data

security, or difficulty in matching predictions from other centers

due to the complexity of the model. Third, all models were able to

achieve the above moderate discrimination of AKI events with AUC

values ranging from 0.69 to 0.926, incorporating both traditional

modeling methods, such as logistic regression, in individual studies

(14–16, 18, 20–24). In some studies that also incorporated traditional

modeling methods, such as logistic regression, or compared with

physicians’ subjective diagnoses, machine learning modeling was also

simultaneously superior. Fourth, interpretability is very important in

the medical field, and a medically assisted diagnostic system must

be understandable and interpretable; ideally, it should be able to

explain the complete logic of providing corresponding decisions to

all relevant parties to gain the trust of physicians, but the process

of achieving model interpretation in the construction of predictive

models regarding AKI for critically ill patients is rare, which
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FIGURE 1

The modeling idea and flow chart of machine learning prediction model. Including the preparation work before modeling, the specific process of model

training, and the applicability of the final model to the patient population.

somehow has led to a disconnect between modeling and analysis,

forgoing additional analysis of AKI characteristics and risk factors

and wasting the potential for the effective use of large amounts of

information (19, 22, 26). Fifth, while variable screening for modeling

is necessary and critical, the inclusion of static and dynamic variables

reflects different modeling objectives. Most models include both at

the same time so that patients with high dimensional variables can

reference foundation conditions, such as demographic information

and the basic state of complications. It is also possible to take into

account objective indicators such as vital signs and laboratory tests in

real time and to dynamically track the risk trajectory, which can be

combined with the gradual or sudden onset of AKI to better predict

AKI reliably. On the other hand, 57% of patients meet AKI criteria

on the first day of ICU admission, according to the study results

(27). Therefore, some studies have included only prehospital data,

including basic information and admission diagnosis, to achieve early

prediction of early-onset AKI (Table 2).

4.2. AKI prediction model for all care settings

Although it is very beneficial to build predictive models for

critically ill patients, the risk of AKI among general inpatients

should not be taken lightly. Since the beginning of machine learning

modeling research, researchers have been diligently trying to build

a predictive model for the entire inpatient population to achieve

large predictive coverage once and for all to maximize the benefits of

research. Subsequent studies have proven that these ideas are feasible,

and the results were also reliable.

At present, this kind of model is mainly divided into two

types, namely, “one-time” predictionmodels and real-time prediction

Models. In 2015, Cronin et al. (28) included more than 1.6 million

hospitalization data points of veterans for model training, and the

results suggested that the AUC values of the three models for

predicting AKI during 1–3 periods were 0.746–0.785, 0.714–0.720,

and 0.823–0.825, respectively, but surprisingly, the traditional logistic

regression and LASSO regression models performed slightly better

than the random forest model, this may be due to the variable

selection function of LASSO regression model, which can reduce

overfitting by eliminating unimportant interfering variables, thus

effectively improving model performance. In the 2018 study by

Koyner et al. (29), which included ICU, general ward and emergency

patients, care instruments such as the Morse fall scale were included

in the analysis of variables for the first time, and the study focused

on reflecting longitudinal data over time using a discrete time

survival analysis framework, with the final gradient boosting model

predicting AUC values of 0.9 and 0.87 for AKI 24 and 48 h in

advance, respectively. In addition, the authors explored the creation

of an algorithmic model that did not include changes in creatinine,

suggesting that excluding this factor did not affect the model’s ability

to differentiate AKI independent of baseline renal function levels. In

2019, Tomasev et al.’s (30) team conducted a collaborative study with

Deepmind, a Google company, whose inclusion of source data was

consistent with earlier studies by Cronin et al. (28) with similarly

large amounts of data (more than 700,000 adult case data, about 6
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TABLE 2 AKI prediction model for critical care settings.

References Modeling
data sources

Data
volume

Model
performance AUC

value

External verification Machine learning
methods

Model
explanation

Diagnostic
criteria

Data source Data
volume

Model
performance
AUC values

Shawwa et al. (26) Mayo Clinic 98,472 0.69 MIMIC-III 51,801 0.656 Gradient boosting model Yes KDIGO:

Creatinine and

urine volume

Li et al. (16) MIMIC-III 14,470 0.779 None Naive Bayes

Support vector machines

Logistic regression

Random forest

Gradient boosting decision tree

None KDIGO:

Creatinine and

urine volume

Zimmerman et al.

(14)

MIMIC-III 23,950 0.783 None Logistic regression

Random forest

Artificial neural networks

None KDIGO:

Creatinine

Zhang et al. (20) MIMIC-III 2,395 0.88 The First Affiliated

Hospital of Fujian

Medical University,

China

499 0.78 Extreme gradient boosting

Adaptive boosting

Random forest

Logistic regression

Multilayer perceptron

None KDIGO:

Creatinine

Liang et al. (21) SHZJU- ICU and

MIMIC-III

58,492 0.86 AmsterdamUMCdb 15,341 0.86 Multiple logistic regression

Random forest

Extreme gradient boosting

Adaptive boosting

Light gradient boosting machine

Gradient boosting decision tree

None KDIGO:

Creatinine and

urine volume

Sun et al. (15) MIMIC-III 14,469 0.83 None Logistic regression

Random forest

Naive Bayes

Support vector machines

None KDIGO:

Creatinine

Alfieri et al. (23) eICU and

MIMIC-III

35,573 0.89 None Deep learning

Logistic regression

None AKIN: Creatinine

and urine output

Qian et al. (18) MIMIC-III 17,205 0.905 None Logistic regression

Support vector machines

Random forest

Extreme gradient boosting

Light gradient boosting machine

Convolutional neural networks

None KDIGO:

Creatinine and

urine output

Wei et al. (19) MIMIC-III 25,711 0.926 None Extreme gradient boosting

Logistic regression

Yes KDIGO:

Creatinine and

urine output

Fujarski et al. (22) AmsterdamUMCdb 23,106 0.883 None Categorical boosting

Support vector machines

KDIGO:

Creatinine and

urine output
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billion data points and 600,000 record features) and whose model

developed using deep learning recurrent neural networks predicted

AUC values over 0.9 for AKI events 48 h in advance, this algorithms

has been proved to be very suitable for processing high-frequency

time series data. In addition, researchers used ablation analysis to

identify many factors related to the risk of AKI, which may explain

why it was difficult for researchers to analyze this risk in the past.

Some studies have also restricted the age of the included subjects;

for example, Kate et al. (31) developed a model for older adults over

60 years of age with a high incidence of AKI, in which four methods

were utilized to model both AKI prediction and detection analysis,

and the results suggested that the AUC values for both were 0.621–

0.644 and 0.692–0.743, respectively, indicating that the detection

of AKI is easier than the prediction. In addition, comorbidities

were found to be more significant in predicting AKI in ablation

experiments, including previous history of AKI and respiratory

failure (Table 3).

Building continuous real-time prediction models is also a goal

pursued by researchers, and in a study by Kim et al. (35) in 2021,

a continuous prediction model was developed for general inpatients

based on various dynamic and static clinical features using recurrent

neural network algorithms, in order to achieve real-time prediction

of AKI risk. Its applicability to support clinical decision-making

was demonstrated by external validation, with internal and external

validation AUC values of 0.88 and 0.84 for any stage of AKI and

0.93 and 0.90 for patients with stage 2 AKI or higher, respectively,

both of which were better than XGBoost model, again proving the

effectiveness of recurrent neural network algorithm in processing

sequence data (Table 3).

The applicability of models that are constructed based on all

inpatients to critically ill patients, such as ICU inpatients, is an

important criterion for evaluating the performance of the model and

one of the objectives for the construction of this kind of model. In

2018, a study by Mohamadlou et al. (32) that relied on Stanford

local data modeled using the boosting decision tree method set and

externally validated with the MIMIC-III database suggested that the

model showed higher prediction values across different datasets in

different windows (at AKI onset and 12, 24, 48, and 72 h before onset)

and showed higher AUC values than SOFA scores. In another study

by Churpek et al. (34) in which the above Koyner et al. (29) model was

simplified by reducing the number of preselected variables, followed

by a large multicenter study of nearly 500,000 inpatients in three

health systems and six hospitals, the AUC value for predicting at least

stage 2 AKI within 48 h was 0.86 in the internal validation cohort,

while in the two external validation cohorts, the values were 0.85 and

0.86 (Table 3).

Some researchers have doubts about several modeling strategies

mentioned above, mainly in the setting of the time range of data

collection and using this to conduct a multiclinical perspective study

in the hope of reflecting the clinical application of the models more

realistically. He et al. (33) focused on answering this question in

their study in 2019, which evaluated the performance of the models

in differentiating AKI by setting different prediction time windows,

and found that the AUC values for all models ranged from 0.720

to 0.764, which first confirmed the advantages of the strategy based

on machine learning methods for modeling, and that the best model

performance was achieved by predicting AKI one day in advance,

which is precisely the most commonly used modeling strategy today.

A similar study by Cheng et al. (36) was conducted to address
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TABLE 3 AKI prediction model for all care settings.

Reference Modeling data
sources

Data
volume

Model performance AUC value External verification Machine learning
methods

Diagnostic
criteria

Data source Data
volume

Model
performance
(AUROC)

Koyner et al. (29) University of Chicago

Hospital, US

121,158 24 h in advance 0.90 No Gradient boosting machine KDIGO:

Creatinine
48 h in advance 0.87

Dialysis 48 h in

advance

0.96

Mohamadlou et al.

(32)

Stanford Medical

Center, US

48,582 Onset of illness 0.872 MIMIC-III 19,737 Onset of illness 0.841 Boosting decision trees NHS-AKI:

Creatinine
12 h in advance 0.800 12 h in advance 0.749

24 h in advance 0.795 24 h in advance 0.758

48 h in advance 0.761 48 h in advance 0.707

72 h in advance 0.728 72 h in advance 0.674

He et al. (33) University of Kansas

Health

System—KUHS

96,590 24 h in advance 0.744 No Logistic regression Random

forest

KDIGO:

Creatinine

Any time 0.734

Day 1 after

admission

0.764

Day 2 after

admission

0.764

Kate et al. (31) Aurora Health Care

(15) hospitals

25,521 0.743 No Logistic regression

Support vector machines

Decision trees

Naive Bayes

AKIN:

Creatinine

Cronin et al. (28) US Department of

Veterans Affairs

1,620,898 AKI I 0.746–0.758 No Logistc regression LASSO

regression Random forest

KDIGO:

Creatinine
AKI II 0.714–0.720

Dialysis 0.823–0.825

Churpek et al. (34) University of Chicago

(UC)

48,463 48 h in advance

AKI II

0.86 NorthShore

University Health

System (NUS)

246,895 0.86 Gradient boosting machine KDIGO:

Creatinine

Loyola University

Medical Center

(LUMC)

200,613 0.85

Kim et al. (35) Seoul National

University Bundang

Hospital, South Korea

69,081 AKI I 0.88 Seoul National

University Hospital,

South Korea

72,352 AKI I 0.84 Recurrent neural network

Extreme gradient boosting

KDIGO:

Creatinine

AKI II 0.93 AKI II 0.90

(Continued)
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the same two questions: how to predict the development of AKI

in hospitalized patients early and accurately, and how to assess

whether preadmission data enhanced model performance. The study

used different data collection time windows for multiple datasets

with three kinds of modeling methods for comparison. The results

suggested that the AUC values of the random forest model with

the best performance that predicted AKI 1–3 days in advance were

0.765, 0.733, and 0.709, respectively, and that the AUC values did not

change significantly after adding preadmission data compared with

post-admission data only (Table 3).

4.3. Special surgery-related AKI prediction
model

Given this background, there is an increasing amount of research

on cardiac surgery-associated AKI (CSA-AKI) machine learning

prediction models, which are able to capture AKI signals flexibly

and effectively compared with traditional risk scoring methods while

revealing more clearly the complex interconnections between CSA-

AKI and its associated factors and are more applicable to the

multifactorial pathogenic hypothesis of CSA-AKI. In the first CSA-

AKI machine learning modeling study carried out by Lee et al. (37) in

2018, multiple machine learning approaches had stronger predictive

efficacy than the previous eight risk scoring models (risk scoring

system AUC values clustered at 0.55), and their poor performance

may be due to the low number of predictors and the lack of

intraoperative non-linear variables, such as transfusion volume or

hemodynamic changes, which often represent acute intraoperative

responses. Regarding the analysis of the contribution of variables at

different stages of the perioperative period, in the study by Tseng

et al. (38) in 2020, the importance matrix and SHAP summary plots

of the random forest were used to provide double the evidence;

that is, more than half of the top 20 important features were

intraoperative features, which meant that intraoperative variables

were the main influence on early renal function decline after cardiac

surgery, which proved the value of intraoperative data. These data

reflect the intraoperative acute physiological reactions associated with

the prediction of CSA-AKI, whereas prediction models reported

in previous studies have placed more emphasis on preoperative

status. However, this has also been questioned by studies such as

the most recent study by Petrosyan et al. (39) in 2022, in which

a hybrid machine learning approach was used for the first time

to derive and validate a model to predict CSA-AKI of any stage

using only preoperative variables, which not only had outstanding

performance compared to traditional logistic regression and other

single machine learning approaches to modeling but was also able

to adapt to the correlation between multiple variables and prevent

overfitting of the data. In the study by Zhang et al. (40) in

2022, the types of procedures included were consistent with Lee

and Tseng’s study, both including patients undergoing coronary

artery bypass grafting and valve replacement, and the modeling

methods also overlapped; however, the modeling variables included

preoperative, intraoperative, and early post-operative variables, such

as early post-operative intubation, PaO2/FiO2 ratio, hemoglobin,

serum potassium, and lactate dehydrogenase, and the AUC values of

the models of these various machine learning methods were 0.857–

0.881. Similarly, in another study conducted by Li et al. (41) in 2020,
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TABLE 4 Special surgery-related AKI prediction model.

Reference Modeling
data
sources

Data
volume

Model
performance
AUC value

Type of
surgery

Machine
learning
methods

Model
explanation

Diagnostic
criteria

Lei et al. (42) Fuwai Hospital in

Beijing, China

897 0.80 Aortic surgery Logistic regression

Support vector

machines

Random forest

Gradient boosting

None KDIGO:

Creatinine

Penny-Dimri

et al. (43)

The Australian

and New Zealand

Society of Cardiac

and Thoracic

Surgeons

(ANZSCTS)

database

97,964 0.77–0.78 Aortic surgery,

cardiopulmonary

diversion surgery,

valve surgery,

constrictive

pericarditis surgery

Logistic regression

Gradient boosted

machine

K-nearest neighbor

L neural networks

Yes Improvement

criteria

Zhang et al.

(40)

Nanjing First

Hospital, China

1,457 0.857–0.881 Coronary artery

bypass grafting, valve

surgery

Extreme gradient

boosting

Random forest

Deep forest

Logistic regression

Yes KDIGO:

Creatinine

Li et al. (41) Zhongshan

Hospital, Fudan

University,

Shanghai, China

3,639 AKI 0.755 Valve surgery

Coronary artery

bypass grafting aorta

+ valve+ CABG,

valve+ great

vessel

Bayesian networks None KDIGO:

Creatinine and

urine volumeSevere

AKI

0.845

Lee et al. (44) Seoul National

University

Hospital

2010 0.78 Coronary artery

bypass grafting valve

surgery

Decision trees

Random forest

Extreme gradient

boosting

Support vector

machines

Neural networks

Deep learning

None KDIGO:

Creatinine

Tseng et al. (38) Far Eastern

Memorial

Hospital

(FEMH), New

Taipei City

671 0.839 Coronary artery

bypass grafting valve

surgery,

combination of both

treatments

Logistic regression

Support vector

machines

Random forest

Extreme gradient

boosting

Integration algorithm

(RF+ XGBoost)

Yes KDIGO:

Creatinine

Petrosyan et al.

(39)

Cardiocore,

University of

Ottawa Heart

Institute

6,522 0.74 Cardiopulmonary

diversion surgery

Hybrid algorithm

(Random forest+

logistic regression)

Logistic regression

Enhanced logistic

regression

None KDIGO:

Creatinine

Lee et al. (45) Seoul National

University

Bundang Hospital

4,104 0.81 Unilateral partial or

total nephrectomy

Support vector

machines

Random forest

Extreme gradient

boosting

Light gradient

boosting machine

None KDIGO:

Creatinine

Lazebnik et al.

(46)

Cancer Institute,

University

College London,

UK

723 0.75 Open partial

nephrectomy

Random forest None RIFLE and

AKIN:

Creatinine

Zhu et al. (47) Peking University

First Hospital,

China

87 0.749 Isolated partial

nephrectomy

Decision trees

Random forest

Logistic regression

Support vector

machines

Extreme gradient

boosting

None KDIGO:

Creatinine

(Continued)
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TABLE 4 (Continued)

Reference Modeling
data
sources

Data
volume

Model
performance
AUC value

Type of
surgery

Machine
learning
methods

Model
explanation

Diagnostic
criteria

Bredt et al. (48) 145 0.81 Deceased donor liver

transplantation

Logistic regression

Artificial neural

networks

None KDIGO:

Creatinine

Lee et al. (44) Seoul National

University

Hospital, South

Korea

1,211 0.90 Deceased

donor/living donor

liver transplantation

Decision trees

Random forest

Gradient boosted

machine

Support vector

machines

Naive Bayes

Multilayer perceptron

Deep belief networks

None AKIN:

Creatinine

Dong et al. (49) Changzheng

Hospital,

Shanghai, China

2,450 0.92 Liver cancer

resection

Logistic regression

Support vector

machines

Random forest

Extreme gradient

boosting

Decision trees

None KDIGO:

Creatinine

He et al. (50) The First

Affiliated

Hospital of

Zhejiang

University School

of Medicine,

China

493 0.85 Cardiac death donor

liver transplantation

Random forest

Support vector

machines

Decision trees

Conditional

reasoning tree

Logistic regression

None KDIGO:

Creatinine and

urine volume

Lei et al. (42) The First

Affiliated

Hospital of

Zhengzhou

University,

Zhengzhou,

China

1,173 0.772 Liver cancer

resection

Gradient boosting

decision tree

Random forest

Decision trees

None KDIGO:

Creatinine

Ko et al. (51) Seoul National

University

College of

Medicine, Seoul

National

University

Bundang

Hospital, South

Korea

5,302 0.78 Knee arthroplasty Gradient

enhancement

None KDIGO:

Creatinine

Nikkinen et al.

(52)

Oulu University

Hospital, Oulu,

Finland

648 0.91/0.98 Knee arthroplasty,

hip arthroplasty

RUSBoost

Naive Bayes

Support vector

machines

None KDIGO:

Creatinine and

urine output

KDIGO, Kidney Disease: Improving Global Outcomes; AKIN, Acute Kidney Injury Network; RIFLE, Risk, Injury, Failure, Loss of renal function and End-stage renal disease.

patients undergoing cardiac aortic surgery were added to the training

set, and the variables included preoperative and intraoperative factors

as well as post-operative central venous pressure, resulting in an AUC

value of 0.845 for the prediction of severe AKI by the Bayes network

model (Table 4).

The incidence of CSA-AKI also varies by type of cardiac

surgery, and it is currently believed that cardiac major vascular

surgery leads to a higher rate due to extracorporeal circulation.

For example, Lei et al. (42) reported in their study on CSA-AKI

modeling of patients undergoing major vascular surgery in 2020

that up to 72.6% of patients in the training cohort developed

varying degrees of CSA-AKI. Based on this cohort modeling,

the random forest method also achieved an AUC value of 0.8,

much higher than logistic regression and other models. In the

Penny-Dimri et al. (43) 2021 study, not only was the data

volume of the training cohort large but the included objects were

also more abundant, except for aortic surgery, valve surgery and

cardiopulmonary bypass surgery, and included some patients with

constrictive pericarditis surgery. Based on gradient boosting, k-

nearest neighbor and neural network methods, the AUC values

of multiple models ranged from 0.77 to 0.78, although they were

lower than in previous study results; considering the heterogeneity

of the training objects, there is even more reason to believe that

the models are generalizable. The introduction of Shapley values for

model interpretation is rare and critical in all studies, as it more

intuitively illustrates the details of the contribution of the model

variables and is more likely to gain the confidence of clinicians

(Table 4).
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Over the past few decades, liver transplantation has become the

treatment of choice for patients with end-stage liver disease (ESLD),

and advances in organ preservation, surgical approaches, anesthetic

techniques, and immunosuppressive therapy have substantially

improved expected outcomes, but recent data still report a 4–94%

incidence of AKI after liver transplantation from both living and

deceased donors, with 8–17% of patients requiring renal replacement

therapy (53). In the few studies currently available, the authors used

multiple machine learning methods for modeling comparisons, with

optimal AUC values of 0.81, 0.85, and 0.90 in a single study, which

were all superior to the values of logistic regression models for

same-group comparisons (44, 48, 50). However, due to differences

in modeling ideas, there are also differences in the categories of

preselected variables and variable contribution characteristics of

models, as in the latest study by Luis Cesar Bredt et al. (48) in

2022, where the main included variables in the modeling study

with an artificial neural network approach were CKD, MELD

score, intraoperative arterial hypotension, massive blood transfusion

and extended criteria donor. In the study by Lee et al. (44)

in 2018, it was proven that the XGBoost model had the best

performance, and the top five variables that were ultimately included

were cold ischemia time, mean venous oxygen saturation, mean

cardiac index, urine output, and preoperative blood glucose. Both

of the abovementioned models were dominated by preoperative and

intraoperative variables, but there was almost no overlap in the

comparison of variable importance. On the one hand, this may be

related to the modeling sample size and functional adaptability of

different machine learning algorithms; on the other hand, it may be

associated with the source of the liver donor, such as in the latter study

of simultaneous living and deceased donor transplantation patients.

Certainly, current modeling studies are not interested in post-

operative data to achieve early prediction and to prevent implications

for post-operative interventions and prevention, even though some

studies have confirmed that certain post-operative factors are equally

risk factors for AKI, including immunosuppressive drugs, infectious

agents, antibiotics, sepsis, long-term hypotension, and the use of

radiographic contrast agents (54) (Table 4).

Hepatectomy is one of themost important treatments for primary

liver cancer, and the incidence of AKI after hepatectomy (LSA-AKI)

has been reported to be 0.9–17.9% (53), but AKI events are often

underestimated in clinical practice. Many studies have investigated

the risk factors associated with LSA-AKI, and several classical AKI

scoring systems, such as the Kalisvaart score and Park score, have

been established; however, due to the multifactorial nature of LSA-

AKI, such risk scores are inefficient in predicting the occurrence of

AKI (55, 56). There are few studies on machine learning modeling

of LSA-AKI. In the study by Dong et al. (49), clinical data from

2,450 patients were retrospectively analyzed to compare the model

performance of multiple machine learning algorithms, and by

incorporating preoperative and intraoperative data, including age,

cholesterol, time of surgery, serum creatinine and platelet count, the

random forest model had an AUC value of 0.92. Another study by

Lei et al. (57) also included preoperative and intraoperative data,

and the results suggested that the decision tree model performed

even better, with an AUC of 0.722. Unlike a previous study, this

study also confirmed that tumor size was a significant predictor.

Although the results of these two studies are different, the model

performance of the latter study is significantly inferior to that of

the former by parallel comparison, and the machine learning model

performs significantly better than the traditional logistic regression

model. However, the current study still has room for improvement;

borrowing from Dong et al. (49), the model development should be

more focused on the combination of novel biomarkers and model

interpretation and should also consider the accuracy and recall rate

to ensure model reliability (Table 4).

Previous studies have focused on long-term changes in renal

function after nephrectomy, andmodels for predicting post-operative

AKI are rare, especially in modeling studies using machine learning

methods. In 2021, in a study by Lee et al. (45), a variety of machine

learning methods were used for modeling comparison, and the

results showed that the LightGBM model had the best predictive

performance, with an AUC value of 0.81, much higher than that

of the logistic regression model. Similarly, in a study by Lazebnik

et al. (46) in 2022, the random forest model also showed better

predictive performance with an AUC value of 0.75. However, in

another study performed in 2020 by Zhu et al. (47), by incorporating

preoperative, intraoperative and post-operative variables and using

multiple methods to learn and train information on 87 patients, the

results showed that the best performing XGBoost model had an AUC

value of 0.749, which was lower than that of the classical logistic

regression model of 0.826. It may be difficult to conduct parallel

comparisons among the only three studies at present because of

the degree of variation in the between-group design; for example,

there was a certain proportion of RN patients among the 4,104

patients included in the first study (45), whereas the third study

included all patients with isolated kidney (47). In addition, in a

single study, differences in operator and surgical approaches (manual

or robotic, laparoscopic or open) may also lead to confounding

bias, making the accurate prediction of outcomes complex and

difficult. However, there is relative consistency in the evidence

of similar studies, including the inclusion analysis of modeling

variables more in favor of type of surgery, male sex, tumor size, age,

operation time, intraoperative ischemia time, and renal score, which

is generally consistent with the results of previous risk factor studies.

Additionally, the evaluation of the efficacy of the machine learning

methods was positive, even though the results of the third study

were slightly different. However, the reasons for this were related

to the small amount of modeling data, which did not ensure that

the machine learning method could fully exploit the information

to establish the relationship between variables (47). In conclusion,

similar to other types of AKI, the application of large-scale data

information and machine learning algorithms for the prediction

of AKI after nephrectomy has been shown to be feasible, even

though none of the findings can be directly generalized across centers

(Table 4).

Although there has been little previous interest in AKI after

orthopedic surgery, studies have suggested that the incidence of

AKI after undergoing hip and knee arthroplasty ranges from 0.5 to

24.0% (58–60), therefore post-arthroplasty AKI can be considered

another example of a clinical prediction that could benefit from

machine learning. In 2022, Ko et al. (51) used gradient boosting

modeling to obtain internally and externally validated AUC values

of 0.78 and 0.89 in a modeling study of patients undergoing total

knee arthroplasty. In the same year, Nikkinen et al. (52) included

patients undergoing knee and hip replacement and compared the

models based on creatinine and urine volume, respectively, and the
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results suggested that the AUC values of the two models were 0.91

and 0.98, respectively. Although there were differences in sample size,

machine learning methods, and case characteristics between the two

studies, both obtained acceptable results, while in terms of variable

selection, both agreed that preoperative creatinine level, male sex,

ASA classification, and age were important risk factors for AKI, and

this result was largely consistent with previous studies. However, the

greatest contribution of similar studies is likely to be the emphasis

on post-operative AKI in orthopedic surgery and the introduction of

machine learning methods to provide new ideas for AKI prediction

studies after orthopedic surgery, especially arthroplasty (Table 4).

4.4. Specific disease-related AKI prediction
models

Sepsis is the most common cause of AKI in critically ill patients,

and its incidence increases with the severity of sepsis, while mortality

is significantly higher among SA-AKI patients than among non-AKI

patients (61), therefore, identifying patients at risk for AKI is crucial

for the management of patients with sepsis. Based on the complexity

of the pathogenesis of SA-AKI, it is difficult to realize the early

prediction of SA-AKI in clinical work. Currently, the performance of

new biomarkers and some AKI scoring systems is not satisfactory.

Similarly, the utilization of machine learning methods for SA-AKI

is extremely rare, and there was only one relevant study by Yue

et al. (62). In this study, data from 3,176 patients were included for

model training, and the results showed that the AUC value of the

XGBoost model was 0.817, which showed good predictive accuracy

in terms of discrimination and calibration while outperforming

previous scoring systems and traditional modeling methods. Even

though the results do not equate to usefulness in clinical practice

as stated by the authors, this study is the first of its kind in SA-

AKI research, and while promising for the early prediction of SA-

AKI, it is also worthwhile to attribute risk factors for morbidity by

ranking the importance of variables such as urine volume,mechanical

ventilation, body mass index, eGFR, lowest sCr, and minimum

BUN. The study is also meaningful to future parallel studies. The

focus remains on increasing the dimensionality of variables and

screening for variable characteristics that contribute more to model

performance, including comorbidities such as diabetes, hypertension

and cardiovascular disease, information on the source of infection

such as abdominal infection, the nature of pathogens such as

Gram-negative bacteria, invasive operations such as mechanical

ventilation, and pharmacological interventions such as diuretics and

ACEIs/ARBs (Table 5).

AKI is a common complication in patients with severe burns,

with a reported morbidity of ∼40% and a mortality rate of 73–

100% (73). There are few studies on burn-associated AKI modeling

using classical machine learning methods, and the representative

study was completed by Tang et al. (70) in 2018, which used the

XGBoost method for model training and validation and compared

it with the traditional logistic regression model. The results suggested

that by including the APACHE II score, percentage of third-degree

burn area, 24-h post-admission rehydration, sepsis, first 24-h urine

volume, SOFA score, and 48-h post-admission rehydration, the AUC

value of the model constructed by the machine learning algorithm

was 0.92, which was significantly higher than that of the logistic

regression model of 0.875, but the limitations of the study were

also obvious. Because the included patients were survivors of a dust

explosion accident, the diagnosis was mainly severe burns combined

with inhalation injury, so the adaptability of external promotion

could not be confirmed (Table 5).

Research on the construction of machine learning prediction

models for AKI in burn patients has been equally pioneering, with a

different emphasis and utilization of novel biomarkers than previous

modeling ideas. In a study by Rashidi et al. (72) in 2020, it was first

hypothesized that machine learning approaches could enhance the

predictive potential of AKI biomarkers in critical care populations

such as individuals with severe burns, and the results confirmed

that when used in combination with other known biomarkers

such as NT-probNP or sCr, machine learning could enhance the

predictive ability and clinical sensitivity of NGAL, especially deep

neural networks combined with NGAL; this would provide the

best model sensitivity, specificity and AUC values, achieving a

prediction 68.1 h in advance according to the KDIGO standard.

More importantly, acceptable results have also been obtained for

the external validation of diagnostically heterogeneous cohorts such

as trauma patients. Another study conducted by Nam et al. (71)

in 2019 published similar findings that the use of the k-nearest

neighbor method increases the identification of AKI in burn patients

based on sCr, NGAL, UOP, and NT-proBNP. In previous studies,

there was concern that preexisting inflammation confounded the

performance of biomarkers such as NGAL, thus limiting their role

in AKI diagnosis, but machine learning methods can effectively

overcome this problem by identifying complex diagnostic patterns

masked by confounding factors, further proving and enhancing the

performance of novel markers such as NGAL and providing hope

for clinicians. In future research, the concept of modeling by this

type of machine learning method may be given more attention, and

the validation and utilization of other markers may bring us more

surprises (Table 5).

AKI has long been considered a common and serious

complication of acute pancreatitis (AP), with a prevalence of ∼10–

42% and a poor prognosis and mortality rate of 25–75% among

patients with AP-AKI (74). In recent years, research on machine

learning modeling of AP-AKI has been conducted. With the first

relevant study conducted by Qu et al. (63) in 2020, after modeling

by multiple methods, it was found that XGBoost achieved the best

performance with the highest AUC value of 0.9193, in addition to

excellent performance in terms of sensitivity and specificity, while

screening based on modeled variables further complemented risk

factors such as the APACHE II score and C-reactive protein and

total bilirubin Levels. In addition, in recent years, there has been a

deeper understanding of the possible mechanisms of AP-AKI, and

an increasing number of basic experimental and clinical studies have

shown that the inflammatory response plays a unique role in the

pathophysiology of AKI. Based on this background, the modeling

study by Yang et al. (64) in 2022 focused on the inclusion of cytokine

variables, and the results suggested that by introducing C-reactive

protein, platelet/lymphocyte percentages neutrophil/lymphocyte

percentages, cystatin C and other inflammatory indicators, random

forest and other learning methods achieved AUC values of 0.725–

0.902, which not only proved the reliability of the model but also

further verified the possible association of inflammatory responses
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TABLE 5 Specific disease-related AKI prediction models.

Reference Modeling
data
sources

Data
volume

Model
performance
AUC value

Comorbidity
type

Machine
learning
methods

Model
explanation

Diagnostic
criteria

Yue et al. (62) MIMIC-III 3,176 0.817 Sepsis Logistic regression

K-nearest neighbor

Support vector

machines

Decision trees

Random forest

Extreme gradient

boosting

Artificial neural

networks

None KDIGO:

Creatinine and

urine volume

Qu et al. (63) Jinling Hospital,

Nanjing, China

324 0.919 Acute pancreatitis Support vector

machines

Random forest

Classification

regression tree

Extreme gradient

boosting

Logistic regression

None KDIGO:

Creatinine and

urine volume

Yang et al. (64) Gezhouba Central

Hospital of

Sinopharm and

Xianning Central

Hospital, China

424 0.902 Acute pancreatitis Random forest

Support vector

machines

Extreme gradient

boosting

Artificial neural

networks

Decision trees

None KDIGO:

Creatinine and

urine volume

Zhang et al.

(65)

Zhongshan

Hospital, Fudan

University,

Shanghai,

China

6,846 0.822/0.850 Liver cancer

Gallbladder cancer

Extreme gradient

boosting

LASSO regression

None KDIGO:

Creatinine

Scanlon et al.

(66)

The Christie NHS

Foundation

Trust, UK

48,865 30 days in

advance

0.881 All types of solid

tumors

Random forest None NHS-AKI:

Creatinine

1 day in

advance

0.947

Park et al. (67) Korea Central

Cancer Registry

(KCCR) in Seoul

National

University

Hospital

21,022 Precision 0.7892 Respiratory tract

cancer

Gastrointestinal tract

cancer

Thymus cancer

Hematologic

malignancy

Breast cancer

Female genitourinary

organ cancer,

etc.

Linear regression

Ridge regression

LASSO regression

Least-angle regression

Stochastic gradient

descent Random

forest Multivariate

adaptive regression

splines

None KDIGO:

Creatinine
Recall 0.7506

F value 0.7576

Li et al. (68) Zhongshan

Hospital, Fudan

University,

Shanghai, China

6,459 0.823 Esophageal

cancer/Stomach

cancer/Intestinal

cancer

Bayesian network

Naive Bayes

Decision trees

Logistic regression

Random forest

Support vector

machines

Yes KDIGO:

Creatinine

Li et al. (69) Zhongshan

Hospital, Fudan

University,

Shanghai,

China

2,395 0.835 Lymphoma/

Leukemia/Multiple

myeloma

Bayesian network

Logistic regression

Yes KDIGO:

Creatinine

Tang et al. (70) Severely burned

patients from the

Kunshan factory

explosion in

China on 8.2

157 0.920 Burns Extreme gradient

boosting

Logistic regression

None KDIGO:

Creatinine and

urine output

(Continued)
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TABLE 5 (Continued)

Reference Modeling
data
sources

Data
volume

Model
performance
AUC value

Comorbidity
type

Machine
learning
methods

Model
explanation

Diagnostic
criteria

Tran et al. (71) University of

California, Davis,

US

50 Accuracy 0.80–

0.90

Burns K-nearest neighbor None KDIGO:

Creatinine and

urine volume

Rashidi et al.

(72)

University of

California, Davis,

US

50 0.87–0.92 Burns Logistic regression

K-nearest neighbor

Support vector

machine

Random forest

Deep neural networks

None KDIGO:

Creatinine and

urine volume

KDIGO, Kidney Disease: Improving Global Outcomes; AKIN, Acute Kidney Injury Network; MIMIC-III, Medical Information Mart for Intensive Care III; NHS, National Health Service.

with AP-AKI and simultaneously provided ideas and optimization

directions for subsequent studies, namely, with the in-depth study

of more biomarkers. Exploring the correlation between these

biomarkers and the occurrence and development of AP-AKI by using

machine learning or removing confounding factors and analyzing

the connection between them and other inflammatory or non-

inflammatory variables is very important for improving the treatment

status of AP and strengthening the primary prevention of AP-AKI

(Table 5).

AKI is a common complication in patients with malignancies,

with an incidence of ∼7.5–9.5% (75, 76). AKI associated with

malignancy (MR-AKI) not only affects ongoing treatment but is also

associated with lower tumor remission rates and higher mortality

rates (77). MR-AKI is associated not only with advanced age and

chronic comorbidities but also with tumor-specific factors such as

malignant infiltration, tumor lysis syndrome, nephrotoxic drugs

and contrast therapy (78, 79). In a study by Zhang et al. (65) in

2021, data from 6,846 patients with liver and gallbladder cancer

were collected, and the XGBoost method was used for modeling.

In internal validation, the AUC values of the liver cancer and

gallbladder cancer models were 0.822 and 0.850, respectively. In the

screening of modeling variables, it was found that both sCr and

eGFR contributed more than 20% to the model gain, while liver

cancer treatment was found to rank third in the ability of modeling

predictors of liver cancer, which further supports the impact of partial

hepatectomy or liver transplantation on AKI. In the study by Li

et al. (68) in 2020, 6,459 participants with gastrointestinal cancers

with a high incidence in the Chinese cancer spectrum, including

esophageal, gastric and colon cancers, were recruited. Variable

selection was first conducted by the GLASSO method to simplify the

complexity of variables and avoid overfitting and misclassification,

and then modeling was performed using various methods. Finally,

the efficiency of the Bayesian network was proven to be the best, with

AUC values of 0.823 and 0.790 in internal and external validation,

respectively. Meanwhile, the Bayesian network gave explanations

for the probabilistic dependencies among the modeled variables

according to the characteristics of its own algorithms; however, this

relationship did not represent a causal relationship. In addition, the

study did not include recognized important clinical variables, such

as infection and nephrotoxic drugs, which obscured the relationship

between unknown variables and AKI to some extent. In the same

year, Li et al. (69) also conducted a similar study on patients with

hematologic neoplasms, covering lymphoma, leukemia, and multiple

myeloma among 2,395 patients, again using the GLASSOmethod for

variable selection and subsequently achieving an AUC value of 0.835

using the Bayesian network method. The shortcomings of the two

studies are consistent, but the insights for the diagnosis and treatment

of oncological diseases are profound, the models in the studies not

only achieved clinical detection of MR-AKI earlier than the KDIGO

criteria by machine learning methods but also further elaborated

the advantages of the Bayesian network to visualize and graphically

display and explain complex dependencies between variables, using

solid tumors or hematologic tumors as representatives (Table 5).

The model type of the above three studies was classical, but

similar studies have improved the model type. For example, Scanlon

et al. (66) in 2020 only predicted the risk of AKI in the next 30 days

based on the blood results of tumor patients, and the random forest

method predicted AKI 30 days and 1 day earlier with AUC values

of 0.881 and 0.947, respectively. Moreover, a prospective study found

that∼60% of AKI cases can be detected 30 days before the onset of the

disease. The study was characterized by an extended prediction range

and the discarding of a large amount of non-therapeutic information

to ensure that the model could be used in outpatient clinics. During

the 7–28 day-chemotherapy cycle of tumor patients, clinicians have

more opportunities to receive predictive alerts based on routine blood

test results. Another study conducted by Park et al. (67) in 2018

developed a more applicable AKI prediction model, which relaxed

the limitations of existing methods and made full use of irregular and

heterogeneous data to learn and train the model. The study included

a total dataset of 21,422 cancer patients. Multiple modeling methods

were used to predict AKI events within 14 days with an accuracy of

0.7892, a recall rate of 0.7506, and an F value of 0.7576. The purpose

of this study was to construct a machine learning model using non-

intensive or irregular measurement results of non-ICU patients. First,

the maximum SCr value within 14 days was predicted and then

used to predict the occurrence and severity of AKI. This extended

model can be applied to different clinical populations, enabling AKI

prevention and better clinical decision-making for cancer patients in

more diverse environments (Table 5).

4.5. Predictive models for AKI associated
with specific nephrotoxin exposures

Contrast-related operations are currently an important approach

to clinical diagnosis and treatment, including imaging enhancement

examination, arteriovenous embolization, and cardiovascular

intervention treatment, and AKI, one of its major comorbidities, has
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TABLE 6 Prediction model for AKI associated with specific nephrotoxin exposure.

Reference Modeling data
sources

Data
volume

Model
performance
AUC value

Type of
exposure

Machine
learning
methods

Model
explanation

Diagnostic
criteria

Huang et al.

(80)

American College of

Cardiology (ACC)

National Cardiovascular

Data Registry (NCDR)

947,091 0.752 Contrast

agents

Extreme gradient

boosting

None AKIN:

Creatinine

Sun et al. (82) Changzhou No. 2 People’s

Hospital of Nanjing

Medical University, China

1,459 0.85 Contrast

agents

Decision tree

Support vector

machines

Random forest

nearest neighbor

Naive Bayes

Gradient boosting

machine

None KDIGO:

Creatinine

and urine

volume

Niimi et al. (81) Japan Cardiovascular

Database-Keio

Interhospital

Cardiovascular Studies

(JCD-KiCS)

22,958 0.838 Logistic regression

Extreme gradient

boosting

None KDIGO:

Creatinine

Huang et al.

(83)

American College of

Cardiology (ACC)

National Cardiovascular

Data Registry (NCDR)

2,076,694 Contrast

agent 0.3mg

0.777 Contrast

agents

Generalized

additive model

None Modified

definition

Contrast

agent 0.5mg

0.839

Contrast

agent 1.0mg

0.870

Ibrahim et al.

(84)

Massachusetts General

Hospital in Boston,

Massachusetts, USA

889 0.79 Contrast

agents

LASSO regression None KDIGO:

Creatinine

Okawa et al.

(85)

Fujita Health University

Hospital, Japan

1,014 0.76 Cisplatin Neural networks

Gradient boosting

decision tree

None KDIGO:

Creatinine

Yang et al. (86) Center for Medicare and

Medicaid Services, US

17,694 0.72 SGLT2

inhibitors

Random forest

Resilient network

LASSO regression

None Unknown

KDIGO, Kidney Disease: Improving Global Outcomes; AKIN, Acute Kidney Injury Network; SGLT2, sodium-dependent glucose transporters 2.

been receiving much attention, especially regarding the construction

of machine learning prediction models for AKI associated with

percutaneous coronary intervention (PCI). In 2018, Huang et al.

(80) conducted the first machine learning modeling study, whose

included case information was the original data developed by

the NCDR-CathPCI scoring system, and multiple models were

constructed and comparatively evaluated by using the same amount

of data and original variables, different variable selection patterns,

different candidate variable preprocessing strategies, and different

modeling methods. The results suggested that the best model

was constructed by using all available candidate variables in their

original form, alignment-based variable selection, and XGBoost

computational methods, with a wider prediction range and stronger

risk stratification than the currently widely accepted NCDR-CathPCI

scoring system; this comparison had a statistically significant

difference, although the performance improvement was weak. In

the latest study by Niimi et al. (81) in 2022, their modeling data

sources were consistent with those of Huang et al. (80). They also

used XGBoost and logistic regression methods to model separately.

In addition to AKI events, bleeding and in-hospital mortality

were also included in the endpoint results. The results suggested

that the XGBoost model modestly improved the discrimination

of AKI events with an AUC value of 0.84, which was significantly

higher than that of the traditional logistic regression model, further

supporting the conclusion of Huang et al. (80). However, the optimal

modeling method is not fixed, and it is related to a variety of factors.

For example, in a study by Sun et al. (82) in 2020 comparing the

model performance of decision trees, support vector machines, and

random forests, the results suggested that random forests eventually

achieved an AUC value of 0.82 by using variables such as neutrophil

percentage, age, and free triiodothyronine (Table 6).

In addition to these three classic machine learning approach

modeling studies, some investigators have continued to expand their

modeling ideas. For example, in the follow-up study by Huang

et al. (83) in 2019, which aimed to develop a model to assess the

relationship between the volume of contrast agents received by PCI

patients and the risk of AKI, the results suggested that this correlation

was non-linear and heterogeneous across patients with different

baseline risks, which is difficult to achieve for traditional regression

methods. With the introduction of machine learning methods, based

on data from more than 1 million patients covering a wide range

of baseline risks, the construction of this correlation was effectively

completed using a generalized additive model by quantifying the

contrast agent solvent during PCI in patients with different baseline

risks to enable personalized treatment. In addition, the choice of

candidate variables for modeling is not invariable; for example, all
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modeling studies have a bias toward static or dynamic variables.

Ibrahim et al. (84) did not borrow the characteristics of the variables

from the former study but focused on clinical and proteomicmarkers,

including diabetes history, urea nitrogen/creatinine ratio, C-reactive

protein and bone bridging protein, which were positively correlated

with AKI risk, and CD5 and VII factors that were negatively

correlated. The results of the machine learning model were equally

reliable, with AUC values of 0.79–0.82 obtained after modeling

with data from 889 patients. In conclusion, the current research on

constructing a PCI-AKI prediction model based on machine learning

methods is promising, but given the widespread implementation of

PCI worldwide, contrast-inducedAKI remains an inescapable clinical

challenge; therefore, additional research is needed to develop a model

that can achieve the widespread acceptance of the NCDR-CathPCI

scoring system and can truly replace the system to achieve accurate

and personalized treatment to reduce the medical and economic

burdens on patients with cardiovascular disease (Table 6).

Cisplatin-based chemotherapy is the first-line treatment for

solid tumors such as non-small cell lung cancer, but it can easily

cause renal tubular damage during excretion, leading to cisplatin-

related AKI (Cis-AKI) (87, 88). To prevent Cis-AKI, aggressive

or short-term hydration therapy with magnesium supplementation

is clinically recommended (89). However, the incidence of Cis-

AKI remains high, so early detection and prediction of Cis-AKI is

essential for the management of patients treated with cisplatin for

chemotherapy. According to our database search, there is only one

report published by Okawa in 2021 that introduced the efficacy of the

Cis-AKI machine learning prediction model, which included 1,014

oncology patients receiving cisplatin as first-line chemotherapy and

excluded cases treated with angiography or intra-arterial injection

of cisplatin during chemotherapy. Two methods, a neural network

and gradient boosting decision tree, were used to establish models by

age group. The results suggested that the models showed the highest

performance among patients aged ≥75 years with an AUC value of

0.78, while in the ranking of the contributions of model prediction

variables, serum albumin level, body surface area and maximum

daily dose of cisplatin contributed the most to the prediction

of the model. Based on the specific values of the parameters,

it was shown that high-dose cisplatin (100–120 mg/day) and

hypoalbuminemia (1.30–3.10 mg/dL) were risk factors for Cis-AKI

in all patients. The study, despite some shortcomings, is pioneering

for oncology patients, especially those treated with nephrotoxic

chemotherapeutic agents such as cisplatin, and the reduction in

chemotherapy-related complications is extremely critical to improve

the survival rate of oncology patients. It is believed that more

similar studies will be conducted in the future, which will bring

more benefits for the control of side effects from AKI-related

drugs such as cisplatin or immune checkpoint inhibitors (85)

(Table 6).

Sodium-glucose cotransporter two inhibitors (SGLT2s) are

a new oral hypoglycemic agent with positive cardiovascular

protective effects but controversial effects on renal function,

and a meta-analysis concluded that SGLT2s not only reduce

the progression of chronic kidney disease but also have a

preventive effect on AKI. (90). However, several studies, including

a warning from the US Food and Drug Administration (FDA)

(https://www.fda.gov/Drugs/DrugSafety/ucm505860.htm), have

concluded that SGLT2s can contribute to the development of

AKI by affecting patients’ blood volume and inducing renal

medullary damage (91, 92). Therefore, Yang et al. (86) in 2022

used a machine learning approach to establish a model to predict

the risk of AKI in diabetic patients receiving SGLT2s for the first

time. Based on the source data of 17,649 patients’ case information,

the model used the random forest method and 14 preselected

variables and had an AUC value of 0.72. This study is not only

representative of the predictive analysis of rare and serious adverse

events, but its risk factor analysis also provides new ideas for

clinical decision optimization, such as the study’s conclusion

that diuretics contributed most to the model and, although it

cannot be determined that it has the strongest correlation with

AKI, it does illustrate the impact of drug combinations on AKI

(Table 6).

5. Conclusion

In this review study, we systematically described the research

status of machine learning prediction models for AKI, summarized

the data characteristics, method characteristics and result

characteristics of the existing models, and provided a relatively

comprehensive field summary for peer research. however, it is

inevitable that the methodological introduction of some studies

is still not comprehensive enough, and a small number of non-

English language articles are not included in the analysis, this may

have left out some of the research results. In conclusion, AKI is

a worldwide health problem, and its short-term and long-term

adverse effects on hospitalized patients are very obvious. However,

the current challenges facing the diagnosis and treatment of AKI

are still huge, including timely detection and early prediction

of AKI. Based on this, future research in machine learning

predictive models is likewise well directed, except to overcome

the above issues, increasing the use of novel biomarkers for

model training, inviting more specialized scientific and technical

teams for methodological assistance, and enabling the embedding

of models with health care work systems will provide greater

assistance in improving the overall diagnosis and treatment status

of AKI.
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