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Behçet disease (BD) and relapsing polychondritis (RP) are chronic multisystem 
disorders characterized by recurrent flare-ups of tissue inflammation. Major 
clinical manifestations of BD are oral aphthae, genital aphthous ulcers, skin 
lesions, arthritis, and uveitis. Patients with BD may develop rare but serious 
neural, intestinal, and vascular complications, with high relapse rates. Meanwhile, 
RP is characterized by the inflammation of the cartilaginous tissues of the ears, 
nose, peripheral joints, and tracheobronchial tree. Additionally, it affects the 
proteoglycan-rich structures in the eyes, inner ear, heart, blood vessels, and 
kidneys. The mouth and genital ulcers with inflamed cartilage (MAGIC) syndrome 
is a common characteristic of BD and RP. The immunopathology of these two 
diseases may be closely related. It is established that the genetic predisposition to 
BD is related to the human leukocyte antigen (HLA)-B51 gene. Skin histopathology 
demonstrates the overactivation of innate immunity, such as neutrophilic 
dermatitis/panniculitis, in patients with BD. Monocytes and neutrophils frequently 
infiltrate cartilaginous tissues of patients with RP. Somatic mutations in UBA1, which 
encodes a ubiquitylation-related enzyme, cause vacuoles, E1 enzyme, X-linked, 
autoinflammatory, somatic syndrome (VEXAS) with severe systemic inflammation 
and activation of myeloid cells. VEXAS prompts auricular and/or nasal chondritis, 
with neutrophilic infiltration around the cartilage in 52–60% of patients. Thus, 
innate immune cells may play an important role in the initiation of inflammatory 
processes underlying both diseases. This review summarizes the recent advances 
in our understanding of the innate cell-mediated immunopathology of BD and 
RP, with a focus on the common and distinct features of these mechanisms.
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1. Introduction

Behçet disease (BD) is an inflammatory disorder characterized by the frequent occurrence 
of oral ulcers, genital aphthous ulcers, and uveitis, with clinical manifestations involving the 
skin, cardiovascular, intestinal, and central nervous system (CNS) (1). These manifestations are 
important for diagnosis as there are no clinical or laboratory findings specific to BD. In 1985, 
an international study group developed diagnostic criteria based on the major symptoms of BD; 
a diagnosis is made when an individual has developed recurrent oral ulceration (at least three 
times over the past 12 months) with at least two of the following symptoms: persistent genital 
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ulceration; eye lesions, such as uveitis and retinal vasculitis; skin 
involvement, such as erythema nodosum and thrombophlebitis; and 
a positive pathergy test (2). The clinical diagnostic criteria must 
be followed by the exclusion criteria for patients with other immune 
disorders presenting with common symptoms of BD. For example, 
chronic oral ulcerations are frequently observed in Crohn disease too 
(3). Additionally, Vogt-Koyanagi-Harada and Cogan syndromes 
should be  considered during the differential diagnosis of BD in 
patients with uveitis (4, 5). CNS and gastrointestinal involvement are 
indicators of a poor prognosis in patients with neuro-BD and 
intestinal BD, respectively. Patients in the BD subgroup are difficult to 
distinguish from those with multiple sclerosis (6) and Crohn 
disease (7).

Relapsing polychondritis (RP) is a chronic inflammatory disorder 
characterized by chondritis of the auricular, nasal, joint, and tracheal 
cartilaginous tissues (8). In addition, it affects the proteoglycan-rich 
structures in the eyes, inner ear, heart, blood vessels, and kidneys. In 
the clinical features, respiratory involvement is associated with poor 
prognosis through the severe pulmonary complications such as 
tracheobronchomalacia and/or pulmonary infection (9). The 
diagnosis is usually made based on clinical symptoms using McAdam’s 
(10), Damiani’s (11), and/or Michet’s (12) criteria, because there are 
no pathognomonic clinical and laboratory features, similar to patients 
with BD. Approximately 20–35% of RP cases are further complicated 
by other immune disorders such as systemic vasculitis, rheumatoid 
arthritis, and systemic lupus erythematosus (10–13). In most 
instances, coexisting diseases precede the onset of RP (10), and in 
some patients, complications occur as consequent symptoms of RP 
(8). It is possible that the clinical course of the disease makes it difficult 
to obtain an early and accurate diagnosis.

Identifying new diagnostic biomarkers for human inflammatory 
diseases require further studies. Generally, human autoinflammatory 
diseases, such as familial Mediterranean fever (FMF) and tumor 
necrosis factor (TNF) receptor-associated periodic fever syndrome 
(TRAPS), are thought to be caused by abnormalities in phagocytes 
against pathogenic elements. In contrast, human autoimmune diseases 
are characterized by the overactivation of lymphocytes in response to 
autoantigens. In these studies, most immune disorders were suggested 
to be caused by a combination of autoimmune and autoinflammatory 
mechanisms in the disease spectrum, based on the genetic and cellular 
basis (14). In the immune disease spectrum, BD is associated with a 
mixed pattern of autoinflammatory and autoimmune diseases 
(Figure 1) (14).

In this review, we summarize current knowledge of innate cell 
mediated immunopathology in BD and RP to identify accurate 
positions of the immune disorders in the disease spectrum to facilitate 
the development of new therapeutic strategies.

2. Behçet disease

2.1. Epidemiology of BD

2.1.1. Environmental factors in BD
BD is prevalent along the ancient Silk Road between the 

Mediterranean Basin and East Asia (1). The human leukocyte antigen 
(HLA)-B51 gene is established as a major BD susceptibility gene, 
especially in the patients with ocular involvement (1). Additionally, a 

geological association was observed between the prevalence of BD and 
HLA-B51 (15). These data demonstrated that BD inflammation may 
be triggered by innate immunity as well as environmental factors, such 
as bacterial and viral agents.

Oral plaque index scores are associated with the presence of 
oral ulcers and BD severity (16). Dental plaque bacteria 
(Streptococcus sanguinis) are frequently observed in the oral cavity 
of patients (17). Mouthwashes containing soluble betamethasone, 
doxycycline, and nystatin improve oral ulcer severity scores in 
patients with BD (18).

Recent studies have revealed perturbation of oral and gut 
microbiota, especially increases in lactate-producing bacteria such as 
Lactobacillus and Bifidobacterium, in patients with BD compared with 
those in healthy individuals. Researchers have suggested pathological 
relationships between microbiota and immunological dysfunction in 
BD (Figure 2A) (19–22). In contrast to these clinical and laboratory 
findings, HLA-B51 transgenic mice demonstrate no obvious clinical 
phenotypes of BD, although stimulated neutrophils produce high 
levels of superoxide (23).

2.1.2. Genetic variations in BD
Genome-wide profiling analyses revealed that, adding to 

HLA-B51, myeloid immune cell-related molecules, such as 
endoplasmic reticulum aminopeptidase-1 (ERAP1), major 
histocompatibility complex (MHC) class I  polypeptide-related 
sequence-A (MICA), familial Mediterranean (MEFV) gene 
products, toll-like receptor-4 (TLR-4), c-c motif chemokine 
receptors CCR1-CCR3, interleukin (IL)-1β, IL-10, interferon 
(IFN)-γ receptor (IFNGR)-1, IL-23R, and IL-12RB, were risk 
factors of BD (24–29). These findings suggest that innate immune 
functions and bacterial identification systems play crucial roles in 
the pathogenesis of BD (Figure 2A). Lymphocytes obtained from 
BD patients react with human and/or mycobacterial heat shock 
protein peptides (30, 31). TLR-1, 2, and 4 are expressed more 
abundantly on neutrophils, monocytes, and lymphocytes derived 
from patients with BD than on those derived from healthy 
individuals (32).

The tumor necrosis factor-α-induced protein-3 (TNFAIP3) gene 
encodes A20 which regulates negatively TNFα pathway through the 
ubiquitin ligase activity (33). Patients with A20 haploinsufficiency 
develop BD phenotypes with an onset in childhood and young 
adulthood. Peripheral blood mononuclear cells (PBMCs) of the 
patients produced higher amounts of proinflammatory cytokines, 
such as IL-1β, TNFα, IL-17, and IL-18, in the presence of 
lipopolysaccharide (LPS), than those of healthy individuals.

2.1.3. Clinical phenotypes in BD
Recent clustering analyses have demonstrated that patients with 

BD can be divided into several subgroups according to their clinical 
symptoms to simplify and increase the accuracy of the clinical 
assessment (34, 35). For example, patients with mucocutaneous 
manifestations belonged to one subgroup, those with vascular 
manifestations belonged to another, and those with eye and/or CNS 
involvement belonged to another (35).

Interestingly, HLA-B51 positivity was relatively low in patients 
with BD with intestinal involvement, and male and female patients 
had eye and mucocutaneous involvement, respectively 
(Figure 2A) (34).
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2.2. Histopathology of BD

Erythema nodosum (EN)-like lesions and papulopustular lesions 
are common in patients with BD (36). Histopathological examination 
of EN-like lesions in BD demonstrates panniculitis with vasculitis, 
leukocytoclastic and lymphocytic vasculitis, or phlebitis of the dermis. 
BD skin lesions are occasionally associated with thrombosis. The 
infiltrating immune cells consist mainly of neutrophils and 
lymphocytes (37). Similarly, in papulopustular lesions, neutrophilic 
infiltration was observed in the epidermis and around hair follicles. 
Lymphocytic infiltration has been suggested to occur as a late-stage 
inflammation in the neutrophilic reaction (38). Indeed, an 
investigation of patients with EN-like lesions revealed that neutrophilic 
dermatitis/panniculitis was more frequently observed in patients with 
BD with EN-like lesions than in patients with nodular vasculitis or EN 
of other immune disorders (39).

Sterile needle pricks often form inflammatory papules or pustules 
on the skin in patients with BD, with infiltration of neutrophils and 
lymphocytes as a positive pathergy test (40). Higher response rates 

were observed for pricks with larger gauge and/or blunt needles in 
patients with BD (41). A similar procedure using saliva pricks 
increased positive rates and was associated with disease activity (42). 
These data suggest that pathergy tests with needle pricks lead to the 
overactivation of immune cells against pathogen- and damage-
associated molecular patterns in patients with BD (40).

In the pathergy test, lymphocyte and monocyte infiltrations were 
persistent up to 48 h after the needle prick in patients with BD 
compared to healthy individuals (43). Small clusters of elastase-
positive neutrophils have been observed at needle prick sites in the 
relatively early phases of the test until 24 h after the prick (44, 45).

In the oral and genital ulcer lesions, leukocytoclastic vasculitis and 
lymphocyte infiltration were frequently observed in the lamina 
propria of the lesions (46). Intestinal ulceration is commonly found in 
the ileocecal region and is histologically characterized by neutrophilic 
and lymphocytic cell infiltration around lesions (47–49). The 
postmortem brain tissues of patients with neuro-BD demonstrate 
perivascular cuffing of macrophages and T cells in the 
parenchyma (50).

FIGURE 1

Stratification of human autoinflammatory and autoimmune diseases by evaluating immune conditions (14, McGonagle and McDermotte. PLoS Med. 
2006; 3:e297. Modified).  Innate immune overactivation via inflammatory cytokine signaling, pathogen sensing, and/or disruption of local tissue 
homeostasis are the proposed main causes of autoinflammatory diseases, while autoimmune diseases are associated with self-reactive lymphocytes 
through impaired immune tolerance. Behçet disease (BD) and relapsing polychondritis (RP) may be allocated to distinct clusters of the stratification. 
FMF: Familial Mediterranean fever; TRAPS: TNF receptor-associated periodic fever syndrome; CD: Crohn disease; UC: Ulcerative colitis; AS: Ankylosing 
spondylitis; RA: Rheumatoid arthritis; SLE: Systemic lupus erythematosus; ALPS: autoimmune lymphoproliferative syndrome; IPEX: immune 
dysregulation, polyendocrinopathy, enteropathy, X-linked.
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FIGURE 2

Stratification of human autoinflammatory and autoimmune diseases by evaluating immune conditions (14, McGonagle and McDermotte. PLoS Med. 
2006; 3:e297. Modified).
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2.3. Peripheral blood cells in BD

2.3.1. Neutrophils in BD
Neutrophils produce reactive oxygen species (ROS) as a first-line 

defense against infectious pathogens (51). HLA-B51-positive 
neutrophils produce excessive superoxide compared to those without 
HLA in patients with BD and healthy individuals (23).

Neutrophil migration in patients with BD was enriched in an in 
vivo assay compared to that in healthy individuals, and the titers were 
significantly reduced in the disease remission phases (52). No 
significant differences were observed in superoxide production or 
adhesion capabilities between patients with BD and healthy 
individuals (52).

Neutrophil oxidative burst responses in patients with severe BD 
and organ involvement, such as complications of the eye, intestines, 
central nervous system, and cardiovascular system, were significantly 
higher than those in patients with mild BD (53).

2.3.2. Neutrophil extracellular traps in BD
Neutrophils activated by phorbol myristate acetate, IL-8, or LPS 

become flat and produce extracellular structures called NETs, which 
contain myeloperoxidase, neutrophil elastase, and cathepsin G (54). 
The nuclear enzyme protein-arginine deiminase type 4 (PAD4) 
citrullinates histones and promotes chromatin decondensation (55). 
NETs degrade virulence factors and inhibit the growth of bacteria 
such as Staphylococcus aureus, Salmonella typhimurium, and Shigella 
flexneri (54). On the other hand, damage-associated molecular 
patterns, such as cholesterol crystals, induced NET release of 
neutrophils and the NETs with cholesterol crystals promoted IL-1β 
production of macrophages (56). PAD4 deficient mice demonstrated 
reduced NET formation and a lower degree of thrombosis (57).

NETs may increase and induce thrombosis in patients with 
BD. Neutrophil NET release and serum levels of DNA components 
were significantly increased in patients with active BD compared to 
those in patients with inactive BD and healthy individuals (58). 
Neutrophil PAD4 expression level is significantly higher in patients 
with BD than in healthy individuals (59). Thrombin generation 
parameters in platelet-poor plasma obtained from patients with BD 
were significantly higher than those in healthy individuals, and 
correlated well with DNA component levels (58). NETs obtained from 
BD patients effectively promoted IL-8 and TNFα production of 
monocytes/macrophages compared with healthy individuals (60). 
Diffuse elastase-producing neutrophils were observed in BD skin 
panniculitis and vasculitis (59). NETs play a crucial role in the 
pathogenesis of BD.

Low-density neutrophils are immature or degranulated and 
recognized in human diseases (61). The frequencies of low-density 
neutrophils and NET production by the stimulated cells were 
increased in patients with BD compared to healthy individuals, but 
the cells exhibited decreased phagocytic capacities (62). Determining 
the mechanisms underlying these associations warrant further studies.

2.3.3. Monocytes/macrophages in BD
In in vitro experiments, bone marrow cells were differentiated 

into classically activated M1 macrophages in the presence of IFNγ 
and LPS and promoted production of proinflammatory cytokines, 
such as IL-1β, IL-6, and TNFα (63). Cells differentiate into 
alternatively activated M2 macrophages with IL-4 and increased 

IL-10 expression levels (63). M2 macrophages have been suggested to 
play distinct roles in lesions by reducing inflammation and promoting 
tissue remodeling.

Monocyte-derived macrophages treated with BD sera produced 
more effectively IL-12 and TNFα than those treated with sera of 
healthy individuals, suggesting M1 macrophage prevalence in 
peripheral blood of patients with BD (64). Stimulated M1 macrophages 
from patients with BD exhibit higher CCR1 expression levels than 
those from healthy individuals (65). Similarly, a gene expression 
profiling study demonstrated that, compared with healthy individuals, 
expression levels of proinflammatory monocyte-associated molecules, 
such as IL-1β and a CCR1 ligand CCL3, were elevated in patients with 
BD (66).

2.3.4. Inflammasome components in BD
The inflammasome complex consists of a cytosolic nucleotide-

binding domain, leucine-rich-repeat-containing (NLR) proteins, 
AIM2-like receptor (ALR) proteins, adaptor apoptosis-associated 
speck-like protein containing a CARD (ASC), and pro-caspase-1 (67). 
The well-studied inflammasome NLRP3 responds to and is activated 
by bacterial, fungal, and viral pathogen-associated molecular patterns 
and damage-associated molecular patterns such as ATP and uric acid 
crystals (68). Activated caspase-1 processes pro-IL-1β and pro-IL-18 
and biologically active cytokines are secreted (68). An 
autoinflammatory disease, cryopyrin-associated periodic syndrome, 
has been suggested to be associated with NLRP3 gene mutations (69).

In the PBMCs of patients with BD, the protein and mRNA levels 
of NLRP3, ASC, and caspase-1 were significantly increased compared 
with healthy individuals (70, 71). Activated PBMCs with LPS and ATP 
induced significantly higher levels of IL-1β compared with cells 
without the stimulation (70). NLRP3 levels of cerebrospinal fluids of 
BD patients with CNS involvement are positively correlated with 
serum C-reactive protein concentrations and erythrocyte 
sedimentation rates (71). Patients with BD share common clinical 
features, at least among those with autoinflammatory diseases.

2.3.5. Eosinophils in BD
Serum immunoglobulin E (IgE) and eosinophil counts are 

significantly reduced in patients with BD (72). Similarly, serum 
eosinophil cationic protein levels are significantly lower in active 
patients with BD than in inactive patients (73), suggesting a role for 
helper type 1 (Th1)-skewed cytokine responses in the 
pathogenesis of BD.

2.4. Humoral mediators in BD

2.4.1. Cytokines/chemokines in BD
A literature-based meta-analysis ascertained that serum IL-1β, 

IL-6, and TNFα were significantly increased in patients with BD 
compared with healthy individuals (Figure 2A) (74). High levels of 
Th1 and Th17 related cytokines, such as IL-1β, IL-6, IL-12, IL-17, 
IL-23, IFNγ, and TNFα, were identified in an array analysis (75). 
BD shares skewed IL-17/IL-23 pathways and several clinical features 
with spondyloarthritis and Vogt-Koyanagi-Harada disease (76, 77). 
Serum and plasma levels of CCL2, CCL3, and CXCL10 are higher 
in patients with BD compared with healthy individuals (78–80). 
Aqueous humor CXCL16 and CX3CL1 levels are higher in patients 
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with BD than in healthy individuals and patients with Vogt-
Koyanagi-Harada disease, suggesting an enhancement of Th1 
responses in BD uveitis (81).

2.4.2. Matrix metalloproteinases in BD
Serum MMP-2 and MMP-9 levels were significantly higher in 

patients with vasculo-BD than in healthy individuals (Figure 2A) (82), 
especially in patients with aneurysms, similar to patients with 
abdominal aortic aneurysms (83). Synovial fluid concentrations of 
MMP-3 are significantly lower in patients with BD than in patients 
with rheumatoid arthritis and are comparable to those in patients with 
osteoarthritis (84).

2.4.3. Autoantibodies in BD
Autoantibodies were observed in patients with BD and reacted 

with an endothelial cell antigen, α-enolase (a positive rate of 38% by 
an ELISA) (85), a ubiquitously expressed membrane protein, 
prohibitin (28% by an ELISA) (86), α-tropomyosin (22% by an 
ELISA) (87), the nuclear mitotic apparatus protein (NuMA; 28% by 
an ELISA) (88), a riboflavin-containing flavoprotein (41% by an 
ELISA) (89), a membrane protein annexin A2 (34% by an ELISA) 
(90), a microtubule-related protein, kinectin (23% by an 
immunoprecipitation assay) (91), and an actin-binding protein, 
cofilin-1 (13% by western blotting; Figure  2A) (92). Thus, BD 
demonstrates a mixed pattern of autoinflammatory and autoimmune 
diseases within the spectrum (14).

3. Relapsing polychondritis

3.1. Epidemiology of RP

3.1.1. Genetic variations in RP
Epidemiological studies on patients with RP have identified that 

the incidence rates are approximately the same in several regions of 
the world (93–95). HLA-DR4 appears to be a susceptibility allele for 
RP (96). A recent genetic study demonstrated that HLA-DRB1*16:02, 
HLA-DQB1*05:02, and HLA-B*67:01 are associated with RP 
(Figure 2B) (97). Based on our data, the authors concluded that RP 
may be  a distinct disease from other rheumatic diseases such as 
rheumatoid arthritis, systemic lupus erythematosus, Takayasu 
arthritis, and BD.

3.1.2. Environmental factors in RP
Based on the global incidence rates mentioned above, few 

environmental factors have been reported to be associated with RP 
pathogenesis. Interestingly, similar to the data of patients with BD, 
a metagenomic analysis demonstrated characteristic alterations in 
the gut microbiota composition, such as an increase in the 
abundance of Eubacterium, Ruminococcus, Bacteroides, and 
Veillonella, in patients with RP compared with that in healthy 
individuals. Here, we suggest an association between gut microbes 
and RP immunopathogenesis (98).

3.1.3. Clinical phenotypes of RP
In the clinical manifestations, respiratory and auricular 

involvement, which are two key hallmark features of RP, are 
recognized in 40–67% and 85–90% of patients with RP, respectively, 

at the latest follow-up (10–13). Tracheobronchial chondritis is 
increasingly recognized as distinct from other pathogenic 
complications (Figure 2B) (99, 100). Certainly, patients with RP with 
respiratory involvement have progressive disease compared to those 
with auricular involvement (101). Similar to the ocular involvement 
in BD, posterior segment inflammation is associated with a weak 
response to treatment (102).

3.2. Histopathology of RP

In the initial stages of the disease, mononuclear cells and 
neutrophils infiltrate the perichondrium beside the normal cartilage 
tissue (103, 104). Among the inflammatory cells in granulation tissues, 
CD4+ Th cells and CD68+ monocytes/macrophages are prevalent 
(105). Damaged chondrocytes produce MMP-3 and cathepsins, and 
the number of proteolytic enzyme-expressing cells correlates with that 
of apoptotic chondrocytes. Interestingly, MMP-3 was observed in the 
cartilage and perichondrium, whereas MMP-8 and MMP-9 were 
detected only in perichondrium granulation tissues. Cartilage tissues 
are progressively destroyed and finally replaced by fibrous 
connective tissues.

Notably, 1.6–38% of patients with RP showed skin involvement 
(9, 10, 12, 13, 95, 106); mucosal aphthosis, nodules on the limbs, 
purpura, and sterile pustules were the most common dermatological 
manifestations (107). Skin biopsy specimens revealed leukocytoclastic 
vasculitis, thrombosis of the skin vessels, septal panniculitis, 
neutrophil infiltration, and lymphocytic vasculitis as their histological 
findings. About 0–12% of patients with RP develop neurological 
manifestations, mainly confusion, seizures, delusions, amnesia, and/
or dementia (108). Histopathology of the CNS exhibited perivascular 
cuffs of monocytes/lymphocytes and lymphocytic infiltration in the 
meninges and the cerebral parenchyma of patients with RP (109–111). 
In contrast to BD, gastrointestinal involvement is not generally 
identified in patients with RP (8–13, 93, 95, 106).

3.3. Peripheral blood cells in RP

3.3.1. Neutrophils in RP
As mentioned previously, neutrophil infiltration into cartilage 

tissues has been recognized since the early stages of chondritis (103, 
104). Leukocyte clastic vasculitis and neutrophil infiltration are 
frequently observed (40%) in skin biopsy specimens (107). These 
results suggested that neutrophil activation plays a crucial role in the 
initiation of chondritis in patients with RP.

3.3.2. Monocytes/macrophages in RP
Gene expression level of IL-10, a major effector cytokine of 

regulatory T (Treg) cells, was significantly higher in freshly isolated 
PBMCs from patients with RP than in those from healthy 
individuals (112). After the initiation of cell culture with mitogen 
stimulation, IL-10 gene expression level was significantly decreased 
in patients with RP compared to that in healthy individuals. The 
researchers suggested that the gene expression analysis of PBMCs 
revealed Treg cell exhaustion or anergy of patients with RP and the 
skewed T cell function associated with innate cell overactivation 
(Figure 2B) (113).
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3.3.3. Eosinophils in RP
Similar to neutrophil infiltration in RP lesions, eosinophils have 

been identified in specimens from the conjunctiva (114), nasal septum 
(104), and skin (115), probably indicating their early involvement in 
the process of chondritis in patients with RP.

3.4. Humoral mediators in RP

3.4.1. Cytokines/chemokines in RP
In Th cell-related cytokines, IFNγ and IL-10 were increased in the 

sera of patients with RP compared with healthy individuals (116, 117). 
Serum levels of innate cytokines and chemokines, such as IL-8, CCL2, 
and CCL4, were higher in patients with RP than in healthy individuals 
(Figure 2B) (116, 117).

3.4.2. MMPs in RP
Serum MMP-3 levels were higher in patients with RP than in 

healthy individuals, likely corresponding to histopathological changes 
in the patients (101, 116). Lymphocytes, monocytes/macrophages, and 
MMP-3 positive chondrocytes were simultaneously observed in RP 
lesions, suggesting that these cells aggravate chondritis (105). When 
the concentrations were compared between RP patients with and 
without respiratory involvement based on the epidemiological data 
mentioned above, MMP-3 levels increased significantly in patients 
with respiratory involvement compared to those without respiratory 
involvement (118).

In an in vitro assay, RP PBMCs upregulated mRNA expression of 
inflammatory cytokines IL-1β and IL-6 against stimulation compared 
with those of healthy individuals (118). Expression positively 
correlated with serum MMP-3 only in patients with RP and respiratory 
involvement. These data suggested that mononuclear cells with innate 
cytokines play a crucial role in the inflammatory processes of RP 
lesions, especially in patients with RP and respiratory involvement 
(Figure 2B).

3.4.3. Triggering receptor expressed on myeloid 
cell in RP

As the molecule name, neutrophils and monocytes/macrophages 
express TREM-1 and promote inflammation partly through TLR-4 
pathway activation (119). Soluble TREM-1 is increased in the sera of 
RP patients with active disease compared with those with inactive 
disease, suggesting its possible role as a biomarker (116).

3.4.4. Autoantibodies in RP
Several cartilage elements were identified as potential 

autoantigens for RP (Figure 2B). An initial report of circulating 
autoantibodies in patients with RP revealed that, using indirect 
immunofluorescence, 33% of patients had autoantibodies against 
type 2 collagen, and the titers increased when acute symptoms 
were exhibited (120). Type 2 collagen-immunized rats develop 
auricular chondritis in the presence of type 2 collagen-reactive 
antibodies (121).

Matrilin-1 is a cartilage-specific protein, and its serum 
concentrations were found to be significantly elevated in an RP patient 
with tracheal chondritis who was monitored for 2 years (122). 
Autoantibodies for matrilin-1 were detected using ELISA in 13% of 
97 patients with RP (123). In this study, researchers ascertained that 

sera from RP patients with positive anti-matrilin-1 antibodies reacted 
with newborn mouse tracheolaryngeal cartilage, whereas sera from 
patients with rheumatoid arthritis did not.

Certainly, several cartilage components are associated with 
phenotypic differences between patients with RP with and without 
respiratory involvement.

4. VEXAS and RP

A cutting-edge analysis demonstrated that patients with somatic 
mutations in UBA1, a gene encoding the ubiquitin activating enzyme 
E1, developed treatment-refractory severe autoinflammatory 
conditions in late middle age, such as vacuole, E1 enzyme, X-linked, 
autoinflammatory, and somatic syndrome (VEXAS) (124). It is 
characterized by refractory constitutional symptoms, ear and nose 
chondritis, and inflammatory arthritis. Patients with VEXAS often 
develop hematological disorders, such as myelodysplastic syndrome 
(MDS) and multiple myeloma, with a poor prognosis. Hypercellular 
bone marrow, vacuolization of erythroid and myeloid precursors, and 
spontaneously activated peripheral blood myeloid cells are common 
laboratory findings in patients with VEXAS.

When the symptoms were compared between RP patients with 
and without VEXAS, fever, ear chondritis, skin involvement 
(leukocytoclastic vasculitis and neutrophilic dermatosis), and 
periorbital edema were frequently observed in the patients with the 
syndrome (125). Notably, RP patients with VEXAS do not develop 
tracheobronchial chondritis during their clinical course. These data 
support the hypothesis that local interactions between inflammatory 
myeloid cells and chondrocytes/extracellular matrix are important for 
the initiation of chondritis in patients with RP.

5. Myelodysplastic syndrome in BD

A recent case report demonstrated that a 60-year-old man with 
somatic variants of UBA1 developed BD phenotypes with MDS and 
was resistant to aggressive treatments (126). This report demonstrates 
the possibility that the clinical spectrum of VEXAS can expand to 
BD manifestations.

In epidemiological studies, 10–20% of patients with MDS 
developed autoimmune manifestations (127, 128); conversely, 
autoimmune manifestations proceeded with the onset of MDS in 30% 
of patients (129). The prevalent autoimmune manifestations in a 
retrospective cohort study were neutrophilic dermatoses, such as 
Sweet syndrome, pyoderma gangrenosum, and BD (127). In this 
study, the deletion of 5q and trisomy 8 were associated with 
neutrophilic dermatosis and BD, respectively.

6. Mouth and genital ulcers with 
inflamed cartilage syndrome

Patients with MAGIC syndrome exhibit clinical features of both 
BD and RP. A prospective cohort study demonstrated good sensitivity 
in classifying patients according to McAdam’s or Damiani’s Criteria 
for RP and the International Criteria for BD (130). Interestingly, in 
this study, RP patients with MAGIC syndrome demonstrated higher 
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frequency of anti-type 2 collagen autoantibodies than in those 
without MAGIC syndrome. This finding suggests differences in the 
underlying molecular mechanisms between the two respective 
groups of patients.

7. Innate immune responses in 
treatment of BD and RP

Tables 1, 2 show previously reported data on innate immune 
responses to therapeutic treatment in BD and RP, respectively (59, 
131–149).

Colchicine reduced neutrophil and monocyte infiltration into 
lesions by decreasing the expression levels of adhesion molecules, such 

as selectin P ligand (SELPLG) and platelet endothelial cell adhesion 
molecule-1 (PECAM-1) (150). In a study using BD neutrophils, 
colchicine reduced NET release to an extent similar to that of 
methylprednisolone, a PAD inhibitor (Cl-amidine), and an ROS 
inhibitor (N-acetyl cysteine) (59). Biological agents are recommended 
for the treatment of patients with refractory BD and RP (76, 151).

A phosphodiesterase (PDE)-4 inhibitor, apremilast, reduces 
degradation of cyclic adenosine monophosphate and inhibits 
production of proinflammatory cytokines such as IL-12, IL-23, and 
TNFα from PBMCs (152). Additionally, apremilast decreased the total 
number of oral ulcers during a 12-week placebo-controlled clinical 
trial (153).

Zinc plays a crucial role in innate and adaptive immune 
function and its depletion has led to IL-1β secretion increase of 

TABLE 1 Innate immune responses in vivo and in vitro induced by immunosuppressants in patients with Behçet disease.

References Patient numbers Medication Study protocols Laboratory findings

(131) 80 Colchicine Peripheral blood samples were 

obtained before and 1, 3 months 

after the initiation

Neutrophil-lymphocyte and monocyte-lymphocyte 

ratios decreases

(132) 61 Colchicine, methyl-PSL, PSL Peripheral blood samples were 

obtained from active patients 

with and without the treatment 

before and 1, 3 months after the 

initiation

Neutrophil-lymphocyte ratio decrease, plasma IFNγ, 

IL-4 decease

(59) 31 Colchicine, dexamethasone, 

Cl-amidine, N-Acetyl cysteine

Neutrophils were obtained and 

incubated with compounds (ex 

vivo)

NETS release decrease (all compounds)

(133) 10 Colchicine Neutrophils and monocytes 

were obtained and incubated 

with colchicine (ex vivo)

Oxidative burst decrease, ROS production decrease

(134) N/A Colchicine Neutrophils were obtained and 

incubated with colchicine (in 

vitro)

NET release decrease, intracellular ROS levels not 

change

(135) 35 Colchicine, PSL Peripheral blood samples were 

obtained from active patients 

with and without treatment

Neutrophil CXCR2 expression decrease only by 

corticosteroid

(136) 8 Infliximab Peripheral blood samples were 

obtained before and 1 week after 

infliximab infusion

IFNγ, IL-6, TNFα production not change in active 

patients

(137) 5 Infliximab CSF and sera were obtained 

before, 1 day, and 3, 7, 18 weeks 

after infliximab infusion

CSF IL-6 decrease, CSF TNFα and serum IL-6 not 

change

(138) 18 Infliximab Peripheral blood samples were 

obtained before and 1 day after 

infliximab infusion (ex vivo)

TNFα decease and IFNγ, IL-12R increase

(139) 7 Gevokizumab Peripheral blood samples were 

obtained before and 7 days after 

infliximab infusion (ex vivo)

IL-1β decrease and IL-1ra not change

(140) 12 Colchicine, apremilast Neutrophils were collected 

before and 12 weeks after 

treatment and incubated with 

colchicine and apremilast (ex 

vivo)

NET release and CD11b, CD64, CD66b-expressing 

cells decrease by both

(Continued)
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References Patient numbers Medication Study protocols Laboratory findings

(141) 10 Azithromycin Peripheral blood samples were 

obtained and incubated with 

azithromycin (ex vivo)

IFNγ production decrease

(142) 50 Zinc supplementation Patients were randomly 

allocated into zinc gluconate or 

placebo groups for 12 weeks

Caspase-1/NLRP3 expressions, and serum IL-1β 

decrease

PSL, prednisolone. Cl-amidine, an inhibitor for PAD4 (a key enzyme of NET formation). N-Acetyl cysteine, a reactive oxygen species (ROS) inhibitor. N/A: not applicable. Infliximab: anti-
TNF antibody, Gevokizumab: anti-IL-1β antibody.

TABLE 2 Induction of innate immune responses by administration of immunosuppressants in patients with relapsing polychondritis.

References Age/
gender

Clinical 
phenotypes

Medications Previous 
medications

Clinical 
responses

Laboratory 
findings

(143) 29/f Respiratory Tocilizumab PSL, CsA, TAC, CP, 

infliximab

PSL reduction to 

10 mg/day

Serum MMP3 

decrease

(143) 52/m Respiratory Tocilizumab PSL, MTX PSL reduction to 

10 mg/day

Serum MMP3 

decrease

(144) 65/f Respiratory Tocilizumab PSL, CP PSL reduction to 

0 mg/day

Serum IL-6 decrease

(145) 55/m Respiratory Adalimumab PSL, MTX, AZA PSL reduction to 

8 mg/day

Serum MMP3 

decrease

(146) 68/m Auricular Adalimumab PSL PSL reduction to 

20 mg/day

Serum IL-6, Anti-

type 2 collagen 

antibody titer 

decrease

(147) 18/m Respiratory Infliximab, Etanercept PSL, MTX, CsA MTX resumption 

after biologic 

therapy cessation

Serum IFNγ, IL-2, 

IL-12 decrease

(148) 61/m Auricular + 

meningoencephalitis

Methyl-PSL None Follow-up with PSL 

and MTX

CSF IL-6 decrease

(149) 66/m VEXAS Tocilizumab PSL PSL dose before 

9 mg/day to 3 mg/

day for 8 months

High levels of IL-6, 

IL-1β, IFNγ, TNFα 

sustained

(149) 74/m VEXAS Tocilizumab PSL, MTX PSL dose before 

22.5 mg/day to 

13.5 mg/day for 

5 months

High levels of IL-6, 

IL-1β, IFNγ sustained

(149) 67/m VEXAS Tocilizumab PSL, AZA, colchicine PSL dose before 

30 mg/day to 30 mg/

day for 5 months

High levels of IL-6, 

IL-1β, IFNγ, TNFα 

sustained

PSL, prednisolone; CsA, cyclosporine; TAC, tacrolimus; CP, cyclophosphamide; MMP, matrix metalloproteinase; MTX, methotrexate; AZA, azathioprine; CSF, cerebrospinal fluid; VEXAS, 
vacuole, E1 enzyme, X-linked, autoinflammatory, somatic syndrome. Tocilizumab: anti-IL-6R antibody, Adalimumab: anti-TNF antibody, Infliximab: anti-TNF antibody, Etanercept: anti-TNF 
antibody.

TABLE 1 (Continued)

stimulated macrophages through induction of NLRP3 
inflammasome (154). Zinc gluconate supplementation reduced the 
expression levels of serum IL-1β and white blood cell NLRP3, while 
decreasing the incidence of genital ulcer in patients with BD within 
3 months (142).

Sustained high concentrations of inflammatory cytokines have 
been observed in patients with VEXAS, indicating the refractory 
nature of the disease, even after the initiation of an anti-IL-6 agent, 
tocilizumab, administration (149).

8. Conclusion

This review collates and summarizes the recent advances in our 
understanding of the innate cell mediated immunopathology of BD 
and RP. These studies suggest that innate immune cells are crucial in 
the direct initiation of local inflammation under dysregulated 
lymphocyte function in inflammatory diseases (Figure 1). Certain 
susceptibility genes characterizing BD are associated with several rare 
monogenic autoinflammatory diseases, such as FMF and 

https://doi.org/10.3389/fmed.2023.1055753
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Shimizu et al. 10.3389/fmed.2023.1055753

Frontiers in Medicine 10 frontiersin.org

TRAPS. Meanwhile, RP is characterized by distinct clinical 
phenotypes that are associated with several autoantigens in humans 
and mice. Adaptive immune cells and genetic/environmental factors 
simultaneously enhance innate immune responses in BD and RP. The 
identification of controllable active elements is important for the 
development of effective and safe treatment approaches.
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