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Introduction: According to the American Diabetes Association (ADA), 9–12 million 
patients suffer from chronic ulceration each year, costing the healthcare system 
over USD $25 billion annually. There is a significant unmet need for new and 
efficacious therapies to accelerate closure of non-healing wounds. Nitric Oxide 
(NO) levels typically increase rapidly after skin injury in the inflammatory phase 
and gradually diminish as wound healing progresses. The effect of increased NO 
concentration on promoting re-epithelization and wound closure has yet to be 
described in the context of diabetic wound healing.

Methods: In this study, we investigated the effects of local administration of an 
NO-releasing gel on excisional wound healing in diabetic mice. The excisional 
wounds of each mouse received either NO-releasing gel or a control phosphate-
buffered saline (PBS)-releasing gel treatment twice daily until complete wound 
closure. 

Results: Topical administration of NO-gel significantly accelerated the rate of 
wound healing as compared with PBS-gel-treated mice during the later stages 
of healing. The treatment also promoted a more regenerative ECM architecture 
resulting in shorter, less dense, and more randomly aligned collagen fibers within 
the healed scars, similar to that of unwounded skin. Wound healing promoting 
factors fibronectin, TGF-β1, CD31, and VEGF were significantly elevated in NO vs. 
PBS-gel-treated wounds.

Discussion: The results of this work may have important clinical implications for 
the management of patients with non-healing wounds.
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Introduction

Despite medical advances and various prevention efforts, diabetes 
mellitus has become a major global health crisis (1). More than 26 
million individuals in the United States were diagnosed with diabetes 
in 2020, and it is estimated that an additional 90 million individuals 
have evidence of pre-diabetes (2). In 2017, the estimated medical cost 
of diagnosed diabetes was 237 billion US dollars. In addition to 
treatment of the disease itself, annual nonmedical costs associated 
with diabetes exceeded 15 billion dollars, with projections that more 
than 41 million individuals will be diagnosed with diabetes by 2030 
(3). These figures highlight the growing financial burden this disease 
places on society. In addition, diabetic complications significantly 
reduce quality of life and diminish social productivity. Diabetic 
neuropathy and microangiopathy inhibit cutaneous wound closure 
and can result in chronic lesions, ulcers, epithelial erosion, and 
amputation of the extremities despite treatment efforts. Therefore, 
efforts to effectively promote wound healing and tissue repair of 
chronic wounds are increasingly relevant and vital to combat this 
evolving public health issue.

The mechanisms underlying wound repair involve complex 
biologic processes and coordinated interactions between cells, growth 
factors, and extracellular matrix (ECM) proteins (4). These 
mechanisms progress through a series of interdependent and 
overlapping phases including hemostasis, inflammation proliferation, 
and remodeling (5). Chronic wounds are wounds that have failed to 
progress through these ordered phases and have instead entered a 
state of pathologic inflammation and unresolved healing (6). The 
challenges associated with treating chronic wounds are potentiated by 
the systemic complications of diabetes, which include tissue hypoxia 
and decreased collagen production (7).

Nitric Oxide (NO) is an endogenous messenger molecule that 
plays a central role in wound healing (8). NO levels typically increase 
rapidly after skin injury in the inflammatory phase and gradually 
diminish as wound healing progresses (6). The NO molecule is 
produced from an oxidation process catalyzed by a group of three 
isozymes including endothelial nitric oxide synthetase (eNOS), 
inducible nitric oxide synthetase (iNOS), and neuronal nitric oxide 
synthetase (nNOS) (9). NO plays an important role in wound healing 
by mediating vascular hemostasis, inflammation, and antimicrobial 
action. Decreased production of NO is characteristic of diabetes and 
has been associated with impaired healing in chronic wounds. Studies 
have shown that the topical application of NO-releasing agents on 
wounds can stimulate cell proliferation, increase the production of 
collagen and growth factors, and accelerate angiogenesis (10–12). 
However, the effect of increased NO concentration in the context of 
diabetic wound healing has yet to be  described. In this study, 
we investigated the effect of local administration of an NO-releasing 
gel on excisional wound healing in diabetic mice.

Materials and methods

Animals

Genetically diabetic db/db mice (BKS.Cg-m 1/1 Leprdb/J) were 
obtained from Jackson Laboratories (Bar Harbor, ME) (strain #: 697). 
These homozygous db/db mice possess a genetic mutation of the 
leptin receptor and represent a model of type 2 diabetes characterized 
by impaired wound healing, obesity, hyperglycemia, and 
hyperinsulinemia (Supplementary Table  1). Animal care was 
provided in accordance with the Stanford University School of 
Medicine guidelines and policies for the use of laboratory animals.

In vivo stented excision wound model

Female db/db mice were randomized into two treatment groups: 
NO-gel or PBS-gel control (n = 5 mice per group). Splinted full-
thickness excisional wounds were created as previously described by 
Galiano et al. (13) A full-thickness wound was excised using a sterile 
6-mm punch biopsy tool on each side of the dorsal midline. Each 
wound was splinted with donut-shaped silicone splints cut from a 
0.5 mm silicone sheet (Grace Bio-Laboratories, Bend, OR). The splint 
was centered around the wound, affixed to the skin using a bonding 
adhesive (surgical glue), and then sutured in place to prevent wound 
contracture and promote granulation tissue formation to mimic human 
wound healing. Two excisional wounds of each mouse received either 
NO-gel or control PBS-gel treatment twice daily until complete wound 
closure. All wounds were covered with a sterile occlusive dressing 
(Tegaderm, 3 M, St. Paul, MN, United States). Wound dressings were 
changed once per day for the duration of the experiment. Digital 
photographs were taken on day 0 and 1 and every other day thereafter 
until complete wound closure. The wound areas were quantified using 
ImageJ and expressed as a percentage of the original wound area.

NO-gel preparation and application

Based on Zhu’s method, a warm solution of sodium nitrite 
(14.6 mM) in distilled water was introduced into a gel by adding 
hydroxyethyl cellulose (molecular weight 50,000–1,250,000) (9, 14).

This dosage was chosen as it releases a comparatively constant 
maximal output of NO over time. In the current study, 2 g sodium 
nitrite was dissolved in 100 mL 3.2 g/100 mL cellulose solution to 
prepare nitrite gel, and 0.85 g maleic acid and 1.3 g vitamin C were 
dissolved in 25 ml 3.2 g/100 mL cellulose solution to prepare low pH 
acid gel. After mixing equal amounts of the two gels immediately 
before use, the mixture was placed on the excisional wound. This 
dosage for application was established based on an approved protocol 
by the National Institute of Health-Small Business Technology 
Transfer (NIH-STTR) grant. The release kinetics of this nitric oxide 
gel has previously been monitored by an amperometric electrode 
technique (amiNO-2000 NO Sensor, Innovative Instruments, In. 
Tampa, FL). This NO-release study showed that the concentration of 
NO can be maintained at 10 nM within the wound bed over 1 h after 
application (9). The PBS gel was prepared by exchanging sodium 
nitrite for sodium phosphate. The sodium nitrite and low pH gel 
prepared with the addition of maleic acid and ascorbic acid were 

Abbreviations: FN, Fibronectin; TGF-β1, Transforming growth factor beta-1; NO, 

Nitric oxide.
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mixed prior to application, and subsequently applied to the wound 
area, covering the area entirely. Immediately after wounding, either 
NO-releasing gel (1 × 10 in 100 μL of PBS) or the same volume of 
PBS-gel was applied onto wound twice daily until wound closure, and 
the rate of wound healing was evaluated every other day.

Histological analysis of collagen content 
and architecture

Wounds were harvested on day 2 and 7 after wounding, and 
healed scar tissue was harvested at the end of the study on day 21. 
Tissues were fixed in 4% paraformaldehyde overnight, dehydrated 
with sequential ethanol concentrations (30%, 50%, 70%, and 95%), 
xylene, and paraffin washes, and embedded in paraffin for sectioning. 
Hematoxylin and Eosin (H&E) and Masson’s Trichrome staining 
were performed according to the manufacturer’s recommendations, 
and images were captured with a Leica Aperio AT2 digital whole slide 
scanner. We implemented an algorithm in MATLAB to automatically 
deconvolute the color information of each Trichrome image (15). 
This algorithm allows for a robust and flexible method for objective 
immunohistochemical analysis of samples stained with up to three 
different colors. Picrosirius Red (Sigma Aldrich) staining was also 

performed, and we utilized a Leica DM5000 B upright microscope 
for linear polarized light microscopy to capture images of the 
Picrosirius Red-stained images. Polarized light was oriented to 
maximally display fibers parallel to the skin surface. Collagen fiber 
quantification was performed using CT-FIRE and CurveAlign, an 
open-source software package for automatic segmentation and 
quantification of individual collagen fibers1 (15). Briefly, CurveAlign 
quantifies all fiber angles and the strength of alignment within an 
image, while CT-FIRE analyzes individual fiber metrics such as 
length, width, angle, and curvature. The average fiber parameters for 
each mouse were used for statistical analysis. Finally, complexity and 
heterogeneity were measured using the ImageJ plug-in FracLac (16). 
The software analyzes tissue morphology using fractional dimensions 
to determine the lacunarity (L) values using the subsample box 
counting scan (50 grid default sampling size, minimal pixel density 
threshold = 0, and rectangle subscan). L measures the amount of 
randomness or heterogeneity in a sample. A low L implies less 
heterogeneous collagen fiber orientation.

Immunofluorescent staining

Immunofluorescent staining was performed using primary 
antibodies Fibronectin (1:100 dilution, Abcam, Ab2413), TGFβ1 (1:100 
dilution, Abcam, Ab215715), VEGF (1:100 dilution, Thermo Fisher 
Scientific, PA1-21796), and CD31 (Abcam, ab28364). The percentage of 
fluorescent area was quantified using a custom MATLAB image 
processing code written by the authors and previously published (17). All 
immunofluorescent images shown are representative images.

Statistical analysis

Statistical analysis was performed in Prism8 (GraphPad, San 
Diego, California). Continuous variables were assessed using an 
unpaired Student’s t-test or two-way analysis of variance (ANOVA). 
Data were presented as means ± standard error of the mean. Sample 
sizes (n) and p values are indicated in the figure legends. Values of 
*p < 0.05 were considered statistically significant.

Results

Nitric oxide-releasing gel accelerates 
excisional wound healing in db/db mice

The efficacy of topical administrated NO-releasing gel on wound 
healing was evaluated in a mouse excisional wound healing model as 
described previously (Figure  1A). To measure the effect of each 
hydrogel treatment on wound healing, we assessed wound area change 
over time by analyzing digital photographs that were taken during 
each dressing change (Figures 1B,C). The wound size is represented as 
an average size of 10 wounds per treatment group (5 mice per group, 
2 wounds per mouse). At postoperative days 13 and 15, wounds 

1 http://loci.wisc.edu/software/ctfire

FIGURE 1

(A) Experimental overview of excisional wounding and treatment. 
(B) Representative images of the wound over time by treatment 
group, where NO = Nitric Oxide gel; PBS: Phosphate-Buffered 
Saline-gel control. Healed = healed wound that has closed. 
(C) Quantification of wound area over time by treatment group. 
(D) Wound area size at postoperative (POD) 13 and 15. (E) Days until 
complete wound closure by treatment group. Data are presented as 
mean value ± SEM, *p < 0.05.
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treated with the NO gel were significantly smaller than wounds treated 
with PBS (Figure 1C). The absolute wound percentage sizes are also 
shown as individual bar graphs (Figure 1D) to further demonstrate 
this significant difference at both postoperative day (POD) 13 
(*p < 0.05) and POD 15 (*p < 0.05). We  then assessed the digital 
photographs of each mouse wound to determine the average number 
of days before complete wound closure for each treatment group. The 
mean time for complete wound healing was 14.0 ± 0.75 days in the 
NO-gel-treated group, significantly faster than 16.0 ± 0.75 days in the 
PBS-gel-treated group (*p < 0.05, Figure 1E).

Nitric oxide-releasing gel improves 
collagen architecture in healed diabetic 
wounds

Collagen tissue quality of healed wounds in the NO- and PBS-gel-
treated groups at day 21 was evaluated using picrosirius red staining, 
which highlights collagen networks by making use of the birefringent 
properties of collagen molecules, to evaluate the collagen density and 
orientation of the scars in each group. Analysis of unwounded (UW) 
skin was included for comparison. The red pixel intensity among PBS 
and NO-gel-treated healed scars and UW skin were similar, 
indicating a comparable amount of mature collagen within the healed 
scars in both groups (Figure 2A). A quantitative assessment of the 
collagen architecture of the wounds was then performed using the 
software algorithms CT-Fire, CurveAlign, and FracLac, which have 

been previously developed for analysis of collagen fiber properties on 
histology images (18–20). We utilized this array of metrics to analyze 
the fiber length, angle skewness, red pixel intensity, and fiber 
lacunarity of the tissues. Using CurveAlign, we found that NO-gel-
treated wounds showed significantly more random alignment 
compared to PBS-gel-treated wounds and displayed a similar 
phenotype to that of UW skin (*p < 0.05; Figure 2B). Using CT-FIRE, 
we  found that NO-gel-treated wounds and UW skin also 
demonstrated a trend toward shorter fiber lengths compared to 
PBS-gel-treated wounds (p = 0.0807; Figure  2C). Finally, using 
FracLac analysis to assess the complexity and heterogeneity of the 
healed scars in all groups, we found that NO-gel-treated wounds and 
UW skin displayed significantly greater lacunarity compared to 
PBS-gel-treated wounds (*p < 0.05), indicating a more heterogeneous 
collagen fiber network orientation (Figure 2D). Lacunarity measures 
the number of gaps in the tissue and thus is a surrogate marker of 
tissue density. We found that NO-gel-treated wounds had a porous 
architecture akin to that of UW skin. Taken together, our results 
suggest that NO-gel promoted shorter and more randomly aligned 
collagen in the wound bed, more like the collagen fiber networks 
present in UW skin (Figures  2A–D) (4, 18, 21, 22). In contrast, 
PBS-gel-treated wounds promoted a densely aligned collagen 
network with long fibers typically associated with fibrotic tissue.

Nitric oxide-releasing gel improves dermal 
structure in healed diabetic wounds

The tissue composition of murine scar tissue was qualitatively 
assessed using Hematoxylin and Eosin (H&E) staining, which showed, 
on average, increased cellularity in the NO-gel-treated scars compared 
to the PBS-gel-treated scars (Figure 3A). Dermal structure of murine 
scar tissue was assessed using Masson’s Trichrome staining 
(Figure 3B). Trichrome staining confirmed the picrosirius red staining 
analysis results, showing a more randomly aligned collagen fiber 
network in the NO-gel-treated healed scars on day 21. In contrast, 
PBS-gel-treated healed scars on day 21 were characterized by longer 
and more avascular bundles of collagen. The collagen area was similar 
and nonsignificant between the NO and PBS-gel-treated groups. On 
day 2 of treatment, there were minimal differences in collagen 
deposition and area between the two groups. Interestingly, on day 7 of 
treatment, there was significantly higher collagen deposition in the 
NO-gel-treated wounds (Figure 3B).

Nitric oxide-releasing gel increases 
expression of wound healing promoting 
factors

To assess the effect of NO on wound healing promoting factors, 
we performed immunostaining of fibronectin and TGF-β1, which 
have been shown to be reduced in abnormal wound repair and in 
chronic wounds (23–28). First, we  observed that expression of 
fibronectin was significantly higher at days 2, 7, and 21 (post healing) 
in the NO-gel-treated group compared to the PBS-gel-treated group 
(Figure 4A). Further, fibronectin levels appeared to be consistently 
maintained over time in the NO-gel-treated group, while levels 
appeared to decrease over time in the PBS-gel-treated group. 

FIGURE 2

Picrosirius red staining and comparison of NO and PBS-gel-treated 
wounds, using collagen algorithms CurveAlign, CT-Fire, and FracLac. 
Scale bars: 200 μm. Quantification of (A) collagen fiber pixel intensity, 
(B) fiber angle skewness, (C) fiber length, and (D) tissue lacunarity. 
ns = nonsignificant. Data are presented as mean value ± SEM, 
*p < 0.05.
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We observed that expression of TGF-β1 progressively decreased over 
the course of PBS-gel treatment and was significantly lower than in 
the NO-gel treatment group on day 21 (*p < 0.05) (Figure 4B). Staining 
for markers of angiogenesis, CD31 and VEGF, in explanted scar tissue 
revealed significantly higher expression of both markers in the 
NO-gel-treated group compared to the PBS-gel -treated group 
(*p < 0.05) (Supplementary Figure S1). Taken together, these results 
suggest that NO-gel treatment is associated with a cascade of 
downstream effects, including upregulation and sustained 
maintenance of wound healing and angiogenic promoting factors. 
Thus, administration of exogenous NO promotes a healing phenotype 
that reverses the impaired wound healing observed in diabetic mice.

Discussion

Previous studies have shown that topical NO-releasing agents 
enhance excisional wound healing in diabetic models via a variety of 
mechanisms including increased cell infiltration, cytokine release, and 
growth factor production (6, 8, 10–12, 14). However, the tissue 
architectural changes in collagen structure and alignment resulting 
from the application of exogenous NO in diabetic wound healing have 
not been described. Here, we found that the application of NO-gel 

treatment accelerates wound healing and promotes tissue with shorter, 
less dense, and more randomly aligned collagen fibers, more similar 
to the natural architecture of unwounded skin. Further, we show that 
application of NO-gel treatment elevates expression of fibronectin and 
TGF-β1 throughout the healing process, as well as elevates expression 
of angiogenic factors CD31 and VEGF within the healed tissue.

We found that the NO-gel-treated and PBS-gel-treated diabetic 
wounds had similar rates of wound closure until approximately day 9, 
when the NO-gel-treated wounds began to close more rapidly. This 
divergence indicates that our treatment produces the most significant 
effects toward the later stages of diabetic wound healing. Interestingly, 
although the total collagen area in both groups was similar in the 
healed scars by day 21, the resultant tissue architecture was markedly 
different between the two groups. Our unbiased collagen analysis 
showed that healed tissue from NO-gel-treated wounds exhibited a 
“basket weave”-like collagen fiber network, resembling the physiologic 
dermal collagen architecture of unwounded murine skin. This 
contrasted with PBS-gel-treated wounds, which were predominantly 
composed of large, long bundles of avascular collagen and a less robust 
tissue architecture. A “basket weave”-like tissue architecture has been 
associated with significantly higher resistance to mechanical tensile 
forces compared to scars that display more highly aligned collagen 

FIGURE 4

(A) Immunostaining for Fibronectin and (B) TGF-β1 in tissue sections 
on days 2, 7, and 21 (healed). Scale bars: 50 μm. Quantification of 
percent area positive for marker in each section. Data are presented 
as mean value ± SEM, *p < 0.05.

FIGURE 3

(A) Representative H&E images of tissue sections on days 2, 7, and 21 
(healed) showing cells (nuclei in purple) and extracellular matrix 
(pink) in all groups. Arrows indicate blood vessels. Scale bars: 150 μm. 
(B) Masson’s trichrome staining of representative tissue sections 
showing dermal structure of NO and PBS-gel-treated wounds on 
days 2, 7, and 21 (healed). Analysis for total area positive for collagen 
(area blue). Scale Bar: 200 μm.
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networks (29–31). Our immunohistochemical analyses showed that 
levels of fibronectin and TGF-β1 progressively decreased in the 
PBS-gel-treated group but remained persistently elevated in the 
NO-gel-treated group over the course of healing.

Fibronectin is a large glycoprotein that provides critical linkage 
between the ECM and integrins (24). During healing, fibronectin acts 
as a building block that helps to facilitate the formation of more mature 
ECM (e.g., collagens), granulation tissue, and new epithelial tissue in 
concert with fibroblasts and other cell types (23). Reduced fibronectin 
matrix deposition is associated with chronic wound healing and an 
inability to form a new ECM in the wound bed (32–34). NO-synthase 
has been shown to be  directly involved in enhancing fibronectin 
production by endothelial cells (35). Upregulated fibronectin expression 
was observed as early as day 2 and then persistently throughout all time 
points, which likely helped to promote accelerated wound closure, ECM 
reconstruction, and overall beneficial tissue healing.

Chronic wounds, including diabetic foot ulcers, have been found 
to exhibit a lack of expression of all transforming growth factor 
(TGF-β) isoforms (27). Specifically, fibroblasts from diabetic wounds, 
which are recruited to the wounds from immune cells, appear to 
exhibit impaired TGF-β signaling and decreased ECM synthesis (26, 
36). In the context of wound healing, TGF-β is involved in 
angiogenesis, fibrosis, as well as the production and maintenance of 
ECM components including fibronectin and collagen (26). TGF-β 
downregulates the expression and activity of matrix-degrading 
enzymes such as MMPs, which are highly upregulated in diabetic 
wounds. Some studies have suggested a mutual feedback mechanism 
between nitric oxide synthase (NOS) and TGF-β1 where NOS may 
be exerting its action within the wound bed via signaling of TGF-β1, 
leading to fibroblast activation and collagen production (25, 28, 37–
40). In normal wound healing, TGF-β1 secreted from macrophages 
stimulates granulation tissue formation, collagen formation, and ECM 
remodeling (5). Our data indicate that NO-gel treatment is associated 
with steadily increasing TGF-β1 levels within the wound bed, which 
is likely linked in part to the improved tissue quality we observed.

Overall, our findings suggest that NO-gel treatment in chronic 
diabetic wounds accelerates wound healing and promotes a scar 
phenotype more similar to the natural basket-weave architecture of 
unwounded skin. The direct and indirect effects of NO 
pharmacologically accelerate wound healing, likely in part, by 
increasing angiogenesis and production of fibronectin and TGF-β1 
within the wound bed. These factors lay the appropriate foundation 
for normal ECM reconstruction, angiogenesis, and tissue 
reconstruction in chronically impaired wounds. We show that by 
restoring the physiological environment present in normal wound 
healing, we can promote tissue reconstruction and accelerate healing 
in diabetic wounds. Future studies will need to be  performed to 
interrogate the molecular mechanisms driving healing from 
exogenous NO therapy, as well as the relationship between NO, 
fibronectin, TGF-β1, and angiogenesis in chronic wound healing.
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